Antihypertensive Activity of the Alkaloid Aspidocarpine in Normotensive Wistar Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Structure of the Compound
2.2. In Vivo Blood Pressure Assessment
2.3. Rotarod Test
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Animals
3.5. In Vivo Blood Pressure Assessment
3.6. Rotarod Test
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chockalingam, A. World Hypertension Day and global awareness. Can. J. Cardiol. 2008, 24, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Bachheti, R.K.; Worku, L.A.; Gonfa, Y.H.; Zebeaman, M.; Deepti; Pandey, D.P.; Bachheti, A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. Evid.-Based Complement. Altern. Med. 2022, 2022, 5741198. [Google Scholar] [CrossRef] [PubMed]
- Greenway, F.; Liu, Z.; Yu, Y.; Gupta, A. A clinical trial testing the safety and efficacy of a standardized Eucommia ulmoides Oliver bark extract to treat hypertension. Altern. Med. Rev. 2011, 16, 338–347. [Google Scholar] [PubMed]
- Chan, P.; Tomlinson, B.; Chen, Y.-J.; Liu, J.-C.; Hsieh, M.-H.; Cheng, J.-T. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br. J. Clin. Pharmacol. 2000, 50, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolzani, V.D.S.; Serur, L.M.; De Matos, F.J.; Golieb, O.R. Indole alkaloid evolution in Aspidosperma. Biochem. Syst. Ecol. 1987, 15, 187–200. [Google Scholar] [CrossRef]
- Garcia, R.M.F.; Brown, K.S. Alkaloids of three Aspidosperma species. Phytochemistry 1976, 15, 1093–1095. [Google Scholar] [CrossRef]
- Pereira, A.S.D.S.; Simões, A.O.; dos Santos, J.U.M. Taxonomy of Aspidosperma Mart. (Apocynaceae, Rauvolfioideae) in the State of Pará, Northern Brazil. Biota Neotrop. 2016, 16, e20150080. [Google Scholar] [CrossRef] [Green Version]
- Tomchinsky, B.; Ming, L.C.; Kinupp, V.F.; Hidalgo, A.D.F.; Chaves, F.C.M. Ethnobotanical study of antimalarial plants in the middle region of the Negro River, Amazonas, Brazil. Acta Amaz. 2017, 47, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.R.; Krettli, A.U.; Aguiar, A.C.C.; Leitão, G.G.; Vieira, M.N.; Martins, K.S.; Leitão, S.G. Ethnopharmacological evaluation of medicinal plants used against malaria by quilombola communities from Oriximiná, Brazil. J. Ethnopharmacol. 2015, 173, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Vásquez, S.P.F.; Mendonça, M.S.D.; Noda, S.D.N. Etnobotânica de plantas medicinais em comunidades ribeirinhas do Município de Manacapuru, Amazonas, Brasil. Acta Amaz. 2014, 44, 457–472. [Google Scholar] [CrossRef]
- Ribeiro, E.F.; de Fátima Reis, C.; de Carvalho, F.S.; Abreu, J.P.S.; Arruda, A.F.; Garrote, C.F.D.; Rocha, M.L. Diuretic effects and urinary electrolyte excretion induced by Aspidosperma subincanum Mart. and the involvement of prostaglandins in such effects. J. Ethnopharmacol. 2015, 163, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.P.; Costa, C.D.F.; Herculano, E.; Aquino, P.; Goulart Sant’Ana, A.E.; Nogueira Ribeiro, E.A.; de Araújo-Jr, J.X. Cardiovascular effects of the Aspidosperma macrocarpum leaves ethanol extract in rats. Pharmacologyonline 2012, 1, 102–107. [Google Scholar]
- Estrada, O.; González-Guzmán, J.M.; Salazar-Bookman, M.M.; Cardozo, A.; Lucena, E.; Alvarado-Castillo, C.P. Hypotensive and Bradycardic Effects of Quinovic Acid Glycosides from Aspidosperma fendleri in Spontaneously Hypertensive Rats. Nat. Prod. Commun. 2015, 10, 281–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herculano, E.A.; Costa, C.D.F.; Aquino, P.G.V.; Goulart Sant’Ana, A.E.; de Araújo-Jr, J.X.; Nogueira Ribeiro, E.A. Evaluation of cardiovascular response induced by ethanolic extract of Aspidosperma pyrifolium wood on arterial pressure in spontaneously ion.hypertensive rats. Pharmacologyonline 2012, 1, 16–21. [Google Scholar]
- Bernardes, M.J.C.; de Carvalho, F.S.; Lima Silveira, L.; de Paula, J.R.; Bara, M.T.; Garrote, C.F.; Pedrino, G.R.; Rocha, M.L. Hypotensive effect of Aspidosperma subincanum Mart. in rats and its mechanism of vasorelaxation in isolated arteries. J. Ethnopharmacol. 2013, 145, 227–232. [Google Scholar] [CrossRef]
- Vo, T.-S.; Kim, S.-K. Fucoidans as a natural bioactive ingredient for functional foods. J. Funct. Foods 2013, 5, 16–27. [Google Scholar] [CrossRef]
- Chierrito, T.P.; Aguiar, A.C.; de Andrade, I.M.; Ceravolo, I.P.; Gonçalves, R.A.; de Oliveira, A.J.; Krettli, A.U. Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malar. J. 2014, 13, 142. [Google Scholar] [CrossRef] [Green Version]
- Mitaine-Offer, A.-C.; Sauvain, M.; Valentin, A.; Callapa, J.; Mallié, M.; Zèches-Hanrot, M. Antiplasmodial activity of Aspidosperma indole alkaloids. Phytomedicine 2002, 9, 142–145. [Google Scholar] [CrossRef]
- Reina, M.; Ruiz-Mesia, L.; Ruiz-Mesia, W.; Sosa-Amay, F.E.; Encinas, L.A.; Gonzalez-Coloma, A.; Diaz, R.A.M. Antiparasitic Indole Alkaloids from Aspidosperma desmanthum and A. spruceanum from the Peruvian Amazonia. Nat. Prod. Commun. 2014, 9, 1075–1780. [Google Scholar] [CrossRef] [Green Version]
- Bannwart, G.; de Oliveira, C.M.A.; Kato, L.; da Silva, C.C.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Oliveira Santin, S.M. Antiproliferative activity and constituents of Aspidosperma macrocarpon (Apocynaceae) leaves. Rec. Nat. Prod. 2013, 7, 137–140. [Google Scholar]
- Shang, J.-H.; Cai, X.-H.; Feng, T.; Zhao, Y.-L.; Wang, J.-K.; Zhang, L.-Y.; Yan, M.; Luo, X.-D. Pharmacological evaluation of Alstonia scholaris: Anti-inflammatory and analgesic effects. J. Ethnopharmacol. 2010, 129, 174–181. [Google Scholar] [CrossRef]
- Gao, L.; Li, X. Protective Effect of Tubotaiwine on Cadmium-Induced Hypertension in Rats through Reduction in Arterial Stiffness and Vascular Remodeling. Dokl. Biochem. Biophys. 2021, 500, 368–375. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.; Palmer, K.; Marion, L. Isolation and Structure of a New Alkaloid: Aspidocarpine. Can. J. Chem. 1960, 38, 1547–1556. [Google Scholar] [CrossRef]
- Henrique, M.C.; Nunomura, S.M.; Pohlit, A.M. Alcaloides indólicos de cascas de Aspidosperma vargasii e A. desmanthum. Quim. Nova 2010, 33, 284–287. [Google Scholar] [CrossRef]
- de Andrade-Neto, V.F.; Pohlit, A.M.; Pinto, A.C.S.; Silva, E.C.; Nogueira, K.L.; Melo, M.R.; Henrique, M.C.; Amorim, R.C.; Silva, L.F.; Costa, M.R.; et al. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Mem. Inst. Oswaldo Cruz. 2007, 102, 359–365. [Google Scholar] [CrossRef] [Green Version]
- McLean, S.; Reynolds, W.F.; Zhu, X. Assignment of the 1H and 13C spectra of aspidocarpine and assignment of the structure and stereochemistry of the von Braun reaction product of aspidocarpine by 2D nmr spectroscopy. Can. J. Chem. 1987, 65, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, H.A.; Braz-Filho, R.; Vieira, I.J.C. 1H and 13C-NMR Data of the Simplest Plumeran Indole Alkaloids Isolated from Aspidosperma Species. Molecules 2012, 17, 3025–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.D.M.; Jácome, R.L.R.P.; Alcântara, A.F.D.C.; Alves, R.B.; Raslan, D.S. Indole alkaloids from species of the Aspidosperma (Apocynaceae) genus. Quim. Nova 2007, 30, 970–983. [Google Scholar] [CrossRef]
- Pereira, M.M.; Souza, S.N.; Alcântara, A.F.C.; Pilo-Veloso, D.; Alves, R.B.; Machado, P.O.; Azevedo, A.O.; Moreira, F.H.; Castro, M.S.A.; Raslan, D.S. Constituintes químicos e estudo biológico de Aspidosperma nitidum (Apocynaceae). Rev. Bras. Plantas Med. 2006, 8, 1–8. [Google Scholar]
- Campos, A.R.; Lima, R.C.P.; Uchoa, D.E.A.; Silveira, E.R.; Santos, F.A.; Rao, V.S.N. Pro-erectile effects of an alkaloidal rich fraction from Aspidosperma ulei root bark in mice. J. Ethnopharmacol. 2006, 104, 240–244. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, D.P.; Nogueira, P.C.N.; Santos, A.D.C.; de Oliveira Costa, R.; de Lucena, J.D.; Gadelha-Filho, C.V.J.; Lima, F.A.V.; Neves, K.R.T.; Leal, L.K.A.M.; Silveira, E.R.; et al. Aspidosperma pyrifolium Mart: Neuroprotective, antioxidant and anti-inflammatory effects in a Parkinson’s disease model in rats. J. Pharm. Pharmacol. 2018, 70, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Wang, Z.; Zhang, J.; Li, X.; Huang, R. Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease mouse model. Pharmacogn. Mag. 2021, 17, 186–192. [Google Scholar] [CrossRef]
- Dey, A.; Mukherjee, A. Plant-Derived Alkaloids. In Discovery and Development of Neuroprotective Agents from Natural Products; Elsevier: Amsterdam, The Netherlands, 2018; pp. 237–320. [Google Scholar]
- Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Hemalatha, S.; Sudharani, G.; Jayakumari, S. Anti–anaphylactic and anti–inflammatory activities of a bioactive alkaloid from the root bark of Plumeria acutifolia Poir. Asian Pac. J. Trop. Biomed. 2011, 1, 401–405. [Google Scholar] [CrossRef]
5 min | 15 min | 30 min | 60 min | |
---|---|---|---|---|
Control | 180.00 s ± 0.00 | 180.00 s ± 0.00 | 180.00 s ± 0.00 | 180.00 s ± 0.00 |
DZP (5 mg/kg) | 178.14 s ± 1.29 * | 179.45 s ± 0.94 * | 179.47 s ± 0.83 * | 179.51 s ± 0.81 * |
ASP (1 mg/kg) | 179.82 s ± 0.36 | 180.00 s ± 0.00 | 179.78 s ± 0.42 | 179.70 s ± 0.59 |
ASP (3 mg/kg) | 179.62 s ± 0.59 | 179.26 s ± 0.83 | 179.95 s ± 0.13 | 180.00 s ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, N.O.; Monteiro, T.d.M.; Nogueira, T.S.R.; Cesar, J.R.; Nascimento, L.P.S.; Campelo, K.A.; Silveira, G.R.; Antunes, F.; de Oliveira, D.B.; de Carvalho Junior, A.R.; et al. Antihypertensive Activity of the Alkaloid Aspidocarpine in Normotensive Wistar Rats. Molecules 2022, 27, 6895. https://doi.org/10.3390/molecules27206895
Monteiro NO, Monteiro TdM, Nogueira TSR, Cesar JR, Nascimento LPS, Campelo KA, Silveira GR, Antunes F, de Oliveira DB, de Carvalho Junior AR, et al. Antihypertensive Activity of the Alkaloid Aspidocarpine in Normotensive Wistar Rats. Molecules. 2022; 27(20):6895. https://doi.org/10.3390/molecules27206895
Chicago/Turabian StyleMonteiro, Noemi Oliveira, Theresa de Moura Monteiro, Thalya Soares R. Nogueira, Jacqueline Rodrigues Cesar, Lara Pessanha S. Nascimento, Karoline Azerêdo Campelo, Graziela Rangel Silveira, Fernanda Antunes, Daniela Barros de Oliveira, Almir Ribeiro de Carvalho Junior, and et al. 2022. "Antihypertensive Activity of the Alkaloid Aspidocarpine in Normotensive Wistar Rats" Molecules 27, no. 20: 6895. https://doi.org/10.3390/molecules27206895
APA StyleMonteiro, N. O., Monteiro, T. d. M., Nogueira, T. S. R., Cesar, J. R., Nascimento, L. P. S., Campelo, K. A., Silveira, G. R., Antunes, F., de Oliveira, D. B., de Carvalho Junior, A. R., Braz-Filho, R., & Vieira, I. J. C. (2022). Antihypertensive Activity of the Alkaloid Aspidocarpine in Normotensive Wistar Rats. Molecules, 27(20), 6895. https://doi.org/10.3390/molecules27206895