Synthesis and Anticancer Activity of 1,3,4-Thiadiazoles with 3-Methoxyphenyl Substituent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Investigations
2.3. Docking Studies
2.4. Analysis of Caspase 3/7 and 8 Activity by Flow Cytometry
3. Materials and Methods
3.1. Chemistry
3.1.1. General Comments
3.1.2. Synthesis of Thiosemicarbazide Derivatives
- Synthesis of SC2, SC3 and SC6
- Synthesis of SC1, SC4 and SC5
- 1-(4-Chlorobenzoyl)-4-(3-methoxyphenyl)thiosemicarbazide (SC1) [32]
- CAS 901364-10-1
- 1-(4-Fluorobenzoyl)-4-(3-methoxyphenyl)thiosemicarbazide (SC2)
- CAS 901362-15-0
- 4-(3-Methoxyphenyl)-1-(2-trifluoromethylbenzoyl)thiosemicarbazide (SC3)
- 1-(4-Methoxybenzoyl)-4-(3-methoxyphenyl)thiosemicarbazide (SC4)
- CAS 216502-05-5
- 1-(3-Chlorobenzoyl)-4-(3-methoxyphenyl)thiosemicarbazide (SC5)
- CAS 891377-64-3
- 1-(3-Methoxybenzoyl)-4-(4-trifluoromethylphenyl)thiosemicarbazide (SC6)
- Synthesis of 1,3,4-thiadiazoles
- Synthesis of SCT1 and SCT2
- Synthesis of SCT4, SCT5, and SCT6
- Synthesis of SCT3
- 5-(4-Chlorophenyl)-2-(3-methoxyphenylamino)-1,3,4-thiadiazole (SCT1) [33]
- CAS 143722-18-3
- 5-(4-Fluorophenyl)-2-(3-methoxyphenylamino)-1,3,4-thiadiazole (SCT2)
- 5-(4-Methoxyphenyl)-2-(3-methoxyphenylamino)-1,3,4-thiadiazole (SCT4) [33]
- CAS 143722-16-1
- 5-(3-Chlorophenyl)-2-(3-methoxyphenylamino)-1,3,4-thiadiazole (SCT5)
- 2-(3-Methoxyphenylamino)-5-(4-trifluorometylophenyl)-1,3,4-thiadiazole (SCT6)
3.2. Cell Culture
3.3. Cell Viability Assay
3.4. [3H]-Thymidine Incorporation Assay
3.5. Docking Simulations
3.6. Caspase 3/7 and 8 Activity Assay
3.7. Flow Cytometry Assessment of Annexin V and Propidium Iodide Binding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All. Available online: https://apps.who.int/iris/handle/10665/330745 (accessed on 5 September 2022).
- Sung, H.; Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. Suppl. 2022, 95, 20211033. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Amorim, I.; Gärtner, F.; Vale, N. Understanding breast cancer: From conventional therapies to repurposed drugs. Eur. J. Pharm. Sci. 2020, 151, 105401. [Google Scholar] [CrossRef] [PubMed]
- Licznerska, B.; Baer-Dubowska, W. Estrogen intracrinology: Therapy and chemoprevention of breast cancer. Postep. Hig. Med. Dosw. 2010, 64, 220–230. [Google Scholar]
- Li, Y.; Geng, J.; Liu, Y.; Yu, S.; Zhao, G. Thiadiazole—A promising structure in medicinal chemistry. ChemMedChem 2013, 8, 27–41. [Google Scholar] [CrossRef]
- Kalidhar, U.; Kaur, A. 1,3,4-Thiadiazole derivatives and their biological activities: A Review. Res. J. Pharm. Biol. Chem. 2011, 1091–1106. [Google Scholar]
- Polkam, N.; Rayam, P.; Anireddy, J.S.; Yennam, S.; Anantaraju, H.S.; Dharmarajan, S.; Balasubramanian, S. Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2,5-dimethoxyphenyl)-1,3,4-thiadiazole-2-amino derivatives. Bioorg. Med. Chem. Lett. 2015, 25, 1398–1402. [Google Scholar] [CrossRef]
- Azaam, M.M.; Kenawy, E.R.; El-din, A.S.B.; Khamis, A.A.; El-Magd, M.A. Antioxidant and anticancer activities of α-aminophosphonates containing thiadiazole moiety. J. Saudi Chem. Soc. 2018, 22, 34–41. [Google Scholar] [CrossRef]
- Rezaei, Z.; Moghimi, S.; Javaheri, R.; Asadi, M.; Mahdavi, M.; Shabani, S.; Foroumadi, A. Synthesis and biological evaluation of 1,3,4-thiadiazole linked phthalimide derivatives as anticancer agents. Lett. Drug Des. Discov. 2017, 14, 1138–1144. [Google Scholar] [CrossRef]
- Chandra Sekhar, D.; Venkata Rao, D.V.; Tejeswara Rao, A.; Lav Kumar, U.; Jha, A. Design and synthesis of 1,3,4-thiadiazole derivatives as novel anticancer and antitubercular agents. Russ. J. Gen. Chem. 2019, 89, 770–779. [Google Scholar] [CrossRef]
- Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem. 2013, 70, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Morsy, S.M.I.; Badawi, A.M.; Cecchi, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Biphenylsulfonamides with inhibitory action towards the transmembrane, tumor-associated isozymes IX possess cytotoxic activity against human colon, lung and breast cancer cell lines. J. Enzyme Inhib. Med. Chem. 2009, 24, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Devi, E.R.; Sreenivasulu, R.; Rao, K.P.; Nadh, R.V.; Sireesha, M. Novel 1,3,4-thiadiazole linked amide derivatives of pteridone: Synthesis and study of anticancer activities. Lett. Org. Chem. 2019, 17, 54–60. [Google Scholar] [CrossRef]
- Hosseinzadeh, L.; Khorand, A.; Aliabadi, A. Discovery of 2-phenyl-N-(5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl)acetamide derivatives as apoptosis inducers via the caspase pathway with potential anticancer activity. Arch. Pharm. 2013, 346, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.O.; Gomha, S.M.; Abdelrehem, N.A.; Shalaby, A.M.; Kandeel, S.M. Synthesis and biological evaluation of some novel thiadiazole-benzofuran hybrids as potential antitumor agents. Synth. Commun. 2018, 48, 677–684. [Google Scholar] [CrossRef]
- Nassar, I.F.; Att-Allah, S.R.; Hemdan, M.M. Utility of thiophene-2-carbonyl isothiocyanate as a precursor for the synthesis of 1,2,4-triazole, 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives with evaluation of their antitumor and antimicrobial activities. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 630–636. [Google Scholar] [CrossRef]
- Vudhgiri, S.; Koude, D.; Veeragoni, D.K.; Misra, S.; Prasad, R.B.N.; Jala, R.C.R. Synthesis and biological evaluation of 5-fatty-acylamido-1, 3, 4-thiadiazole-2-thioglycosides. Bioorg. Med. Chem. Lett. 2017, 27, 3370–3373. [Google Scholar] [CrossRef]
- Yang, X.H.; Wen, Q.; Zhao, T.T.; Sun, J.; Li, X.; Xing, M.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents. Bioorg. Med. Chem. 2012, 20, 1181–1187. [Google Scholar] [CrossRef]
- Li, S.; Jing, F.; Fu, X.; Zhao, J.; Wang, X.; Li, B.; Chen, B. Synthesis and antitumor activities of disulfide derivatives containing 1,3,4-thiadiazole moiety. Chin. J. Org. Chem. 2015, 35, 2624–2628. [Google Scholar] [CrossRef]
- Gomha, S.M.; Kheder, N.A.; Abdelhamid, A.O.; Mabkhot, Y.N. One pot single step synthesis and biological evaluation of some novel bis(1,3,4-thiadiazole) derivatives as potential cytotoxic agents. Molecules 2016, 21, 1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhamid, A.O.; Gomha, S.M.; Abdelriheem, N.A.; Kandeel, S.M. Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecules 2016, 21, 929. [Google Scholar] [CrossRef] [PubMed]
- Yadagiri, B.; Gurrala, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Srujana, G.; Jain, N. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg. Med. Chem. Lett. 2015, 25, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.M.; Salah, T.A.; Abdelhamid, A.O. Synthesis, characterization, and pharmacological evaluation of some novel thiadiazoles and thiazoles incorporating pyrazole moiety as anticancer agents. Monatsh. Chem. 2015, 146, 149–158. [Google Scholar] [CrossRef]
- Janowska, S.; Khylyuk, D.; Bielawska, A.; Szymanowska, A.; Gornowicz, A.; Bielawski, K.; Noworól, J.; Mandziuk, S.; Wujec, M. New 1,3,4-thiadiazole derivatives with anticancer activity. Molecules 2022, 27, 1814. [Google Scholar] [CrossRef]
- Kumar, D.; Vaddula, B.R.; Chang, K.H.; Shah, K. One-pot synthesis and anticancer studies of 2-arylamino-5-aryl-1, 3, 4-thiadiazoles. Bioorg. Med. Chem. Lett. 2011, 21, 2320–2323. [Google Scholar] [CrossRef]
- Podichetty, A.K.; Wagner, S.; Faust, A.; Schäfers, M.; Schober, O.; Kopka, K.; Haufe, G. Fluorinated isatin derivatives. Part 3. New side-chain fluoro-functionalized pyrrolidinyl sulfonyl isatins as potent caspase-3 and-7 inhibitors. Future Med. Chem. 2009, 1, 969–989. [Google Scholar] [CrossRef]
- Zhao, G.; Zhu, Y.; Eno, C.O.; Liu, Y.; DeLeeuw, L.; Burlison, J.A.; Li, C. Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis. Mol. Cell. Biol. 2014, 34, 1198–1207. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Youle, R.J.; Tjandra, N. Structure of Bax: Coregulation of dimer formation and intracellular localization. Cell 2000, 103, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Czarnomysy, R.; Bielawska, A.; Muszyńska, A.; Bielawski, K. Effects of novel alkyl pyridine platinum complexes on apoptosis in Ishikawa endometrial cancer cells. Med. Chem. 2015, 11, 540–550. [Google Scholar] [CrossRef]
- Ali, B.; Khan, K.M.; Salar, U.; Hussain, S.; Ashraf, M.; Riaz, M.; Perveen, S. (1-[(4′-chlorophenyl)carbonyl-4-(aryl)thiosemicarbazide derivatives as potent urease inhibitors: Synthesis, in vitro and in silico studies. Bioorg. Chem. 2018, 79, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.D.; Jani, M.; Shah, B.R.; Undavia, N.; Trivedi, P.B. Synthesis of some bisthiosemicarbazones and their related 1,3,4-thiadiazolines. Chem. Inform. 1992, 23. [Google Scholar]
- Pawłowska, N.; Gornowicz, A.; Bielawska, A.; Surażyński, A.; Szymanowska, A.; Czarnomysy, R.; Bielawski, K. The molecular mechanism of anticancer action of novel octahydropyrazino[2,1-a:5,4-a]diisoquinoline derivatives in human gastric cancer cells. Investig. New Drugs 2018, 36, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Gornowicz, A.; Szymanowska, A.; Mojzych, M.; Bielawski, K.; Bielawska, A. The effect of novel 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide derivatives on apoptosis and autophagy in DLD-1 and HT-29 colon cancer cells. Int. J. Mol. Sci. 2020, 21, 5221. [Google Scholar] [CrossRef] [PubMed]
Viability of Cells [% of Control] | |||||
---|---|---|---|---|---|
SCT1 | SCT2 | SCT4 | SCT5 | SCT6 | |
MCF-7 | |||||
25 µM | 96 ± 1 | 100 ± 2 | 90 ± 1 | 93 ± 1 | 100 ± 2 |
50 µM | 90 ± 3 | 97 ± 2 | 80 ± 3 | 89 ± 1 | 99 ± 1 |
75 µM | 89 ± 3 | 94 ± 1 | 75 ± 1 | 83 ± 1 | 93 ± 2 |
100 µM | 86 ± 2 | 91 ± 1 | 74 ± 3 | 82 ± 2 | 91 ± 1 |
MDA-MB-231 | |||||
25 µM | 94 ± 1 | 100 ± 2 | 100 ± 3 | 99± 1 | 100 ± 2 |
50 µM | 92 ± 1 | 99 ± 1 | 99 ± 2 | 95 ± 3 | 98 ± 1 |
75 µM | 92 ± 3 | 92 ± 2 | 94 ± 1 | 85 ± 1 | 92 ± 1 |
100 µM | 90 ± 1 | 90 ± 1 | 89± 2 | 75 ± 2 | 89± 1 |
Human Skin Fibroblasts | |||||
25 µM | 100 ± 1 | 100 ± 1 | 100 ± 3 | 100 ± 2 | 100 ± 1 |
50 µM | 95 ± 1 | 100 ± 1 | 99 ± 1 | 99 ± 2 | 100 ± 2 |
75 µM | 94 ± 1 | 97 ± 2 | 96 ± 2 | 95 ± 3 | 95 ± 2 |
100 µM | 94 ± 2 | 96 ± 1 | 93 ± 3 | 91 ± 1 | 93 ± 1 |
[3H]-Thymidine Incorporation [% of Control] | |||||
---|---|---|---|---|---|
SCT1 | SCT2 | SCT4 | SCT5 | SCT6 | |
MCF-7 | |||||
25 µM | 93 ± 1 | 98 ± 3 | 87 ± 2 | 92 ± 3 | 98 ± 2 |
50 µM | 89 ± 2 | 95 ± 2 | 77 ± 3 | 88 ± 1 | 98 ± 2 |
75 µM | 86 ± 3 | 91 ± 2 | 72 ± 2 | 81 ± 2 | 89 ± 2 |
100 µM | 82 ± 2 | 88 ± 1 | 70 ± 3 | 80 ± 2 | 86 ± 1 |
MDA-MB-231 | |||||
25 µM | 91 ± 1 | 98 ± 1 | 99 ± 1 | 99 ± 2 | 98 ± 3 |
50 µM | 90 ± 3 | 97 ± 1 | 95 ± 1 | 91 ± 1 | 93 ± 1 |
75 µM | 88 ± 3 | 89 ± 2 | 88 ± 1 | 81 ± 1 | 86 ± 3 |
100 µM | 85 ± 1 | 85 ± 1 | 86 ± 2 | 71 ± 3 | 81 ± 1 |
Human Skin Fibroblasts | |||||
25 µM | 97 ± 2 | 99 ± 1 | 100 ± 1 | 100 ± 2 | 99 ± 1 |
50 µM | 94 ± 1 | 99 ± 2 | 97 ± 1 | 96 ± 1 | 98 ± 3 |
75 µM | 91 ± 3 | 98.± 2 | 92 ± 1 | 94 ± 1 | 93 ± 2 |
100 µM | 90 ± 2 | 94 ± 1 | 90 ± 2 | 91 ± 1 | 92 ± 2 |
Compounds | Caspase 3 (PDB: 1GFW) | Caspase 8 (PDB: 3KJN) | Caspase 7 (PDB: 1SHL) | |||
---|---|---|---|---|---|---|
Estimated Free Energy of Binding Kcal/mol | Estimated Inhibition Constant, Ki μM | Estimated Free Energy of Binding Kcal/mol | Estimated Inhibition Constant, Ki μM | Estimated Free Energy of Binding Kcal/mol | Estimated Inhibition Constant, Ki μM | |
SCT1 | −6.05 | 36.93 | −7.06 | 6.71 | −7.34 | 4.20 |
SCT2 | −6.00 | 39.67 | −6.77 | 10.89 | −6.99 | 7.50 |
SCT4 | −6.46 | 18.52 | −6.95 | 7.99 | −7.17 | 5.56 |
SCT5 | −6.44 | 18.99 | −6.96 | 7.95 | −7.19 | 5.33 |
SCT6 | −5.89 | 48.20 | −6.33 | 22.83 | −7.06 | 6.65 |
MSI | −8.21 | 0.967 | - | - | - | - |
B93 | - | - | −8.17 | 1.03 | - | - |
CHEMBL60190 | - | - | - | - | −8.63 | 0.474 |
Compound | Bcl-xl (PDB: 2YXJ) | Bcl2 (PDB: 2W3L) | BAX (PDB: 1F16) | |||
---|---|---|---|---|---|---|
Estimated Free Energy of Binding Kcal/mol | Estimated Inhibition Constant, Ki μM | Estimated Free Energy of Binding Kcal/mol | Estimated Inhibition Constant, Ki μM | Estimated Free Energy of Binding Kcal/mol | Estimated Inhibition Constant, Ki μM | |
SCT1 | −6.78 | 10.65 | −5.79 | 57.28 | −7.91 | 1.60 |
SCT2 | −6.40 | 20.36 | −5.53 | 88.72 | −7.51 | 3.13 |
SCT4 | −6.07 | 35.31 | −5.59 | 79.80 | −7.72 | 2.21 |
SCT5 | −6.02 | 38.96 | −5.81 | 55.44 | −7.87 | 1.70 |
SCT6 | −6.04 | 37.66 | −5.17 | 161.61 | −7.35 | 4.12 |
N3C | −13.62 | 103.7 × 10−6 | - | - | - | - |
DRO | - | - | −9.71 | 0.07598 | ||
Zinc 14750348 | - | - | - | - | −8.13 | 1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowska, S.; Khylyuk, D.; Gornowicz, A.; Bielawska, A.; Janowski, M.; Czarnomysy, R.; Bielawski, K.; Wujec, M. Synthesis and Anticancer Activity of 1,3,4-Thiadiazoles with 3-Methoxyphenyl Substituent. Molecules 2022, 27, 6977. https://doi.org/10.3390/molecules27206977
Janowska S, Khylyuk D, Gornowicz A, Bielawska A, Janowski M, Czarnomysy R, Bielawski K, Wujec M. Synthesis and Anticancer Activity of 1,3,4-Thiadiazoles with 3-Methoxyphenyl Substituent. Molecules. 2022; 27(20):6977. https://doi.org/10.3390/molecules27206977
Chicago/Turabian StyleJanowska, Sara, Dmytro Khylyuk, Agnieszka Gornowicz, Anna Bielawska, Michał Janowski, Robert Czarnomysy, Krzysztof Bielawski, and Monika Wujec. 2022. "Synthesis and Anticancer Activity of 1,3,4-Thiadiazoles with 3-Methoxyphenyl Substituent" Molecules 27, no. 20: 6977. https://doi.org/10.3390/molecules27206977
APA StyleJanowska, S., Khylyuk, D., Gornowicz, A., Bielawska, A., Janowski, M., Czarnomysy, R., Bielawski, K., & Wujec, M. (2022). Synthesis and Anticancer Activity of 1,3,4-Thiadiazoles with 3-Methoxyphenyl Substituent. Molecules, 27(20), 6977. https://doi.org/10.3390/molecules27206977