Ir-Catalyzed Chemo-, Regio-, and Enantioselective Allylic Enolization of 6,6-Dimethyl-3-((trimethylsilyl)oxy)cyclohex-2-en-1-one Involving Keto-Enol Isomerization
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Reagents and General Methods
3.2. Synthetic Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kresge, A.J. Ingold Lecture. Reactive Intermediates: Carboxylic Acid Enols and Other Unstable Species. Chem. Soc. Rev. 1996, 25, 275. [Google Scholar] [CrossRef]
- Chiang, Y.; Kresge, A.J.; Santaballa, J.A.; Wirz, J. Ketonization of Acetophenone Enol in Aqueous Buffer Solutions. Rate-Equilibrium Relations and Mechanism of the Uncatalyzed Reaction. J. Am. Chem. Soc. 1988, 110, 5506–5510. [Google Scholar] [CrossRef]
- Wright, T.B.; Evans, P.A. Catalytic Enantioselective Alkylation of Prochiral Enolates. Chem. Rev. 2021, 121, 9196–9242. [Google Scholar] [CrossRef]
- Genet, J.P.; Ferroud, D.; Juge, S.; Montes, J.R. Synthesis of α-Amino Acids. Schiff Base of Glycine Methyl Ester. A New and Efficient Prochiral Nucleophile in Palladium Chiral Catalytic Allylation. Tetrahedron Lett. 1986, 27, 4573–4576. [Google Scholar] [CrossRef]
- Giambastiani, G.; Poli, G. Palladium Catalyzed Alkylation with Allylic Acetates under Neutral Conditions. J. Org. Chem. 1998, 63, 9608–9609. [Google Scholar] [CrossRef]
- Trost, B.M.; Schroeder, G.M. Palladium-Catalyzed Asymmetric Alkylation of Ketone Enolates. J. Am. Chem. Soc. 1999, 121, 6759–6760. [Google Scholar] [CrossRef]
- Graening, T.; Hartwig, J.F. Iridium-Catalyzed Regio- and Enantioselective Allylation of Ketone Enolates. J. Am. Chem. Soc. 2005, 127, 17192–17193. [Google Scholar] [CrossRef]
- Weix, D.J.; Hartwig, J.F. Regioselective and Enantioselective Iridium-Catalyzed Allylation of Enamines. J. Am. Chem. Soc. 2007, 129, 7720–7721. [Google Scholar] [CrossRef]
- Chen, M.; Hartwig, J.F. Iridium-Catalyzed Enantioselective Allylic Substitution of Unstabilized Enolates Derived from α,β-Unsaturated Ketones. Angew. Chem. Int. Ed. 2014, 53, 8691–8695. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Hartwig, J.F. Iridium-Catalyzed Enantioselective Allylic Substitution of Enol Silanes from Vinylogous Esters and Amides. J. Am. Chem. Soc. 2015, 137, 13972–13979. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, W.; Hartwig, J.F. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones. Angew. Chem. Int. Ed. 2016, 55, 5819–5823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartwig, J.F.; Stanley, L.M. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution. Acc. Chem. Res. 2010, 43, 1461–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.-B.; Reeves, C.M.; Stoltz, B.M. Enantio-, Diastereo-, and Regioselective Iridium-Catalyzed Asymmetric Allylic Alkylation of Acyclic β-Ketoesters. J. Am. Chem. Soc. 2013, 135, 17298–17301. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wei, K.; Yang, Y.-R. Iridium-Catalyzed Enantioselective Allylation of Silyl Enol Ethers Derived from Ketones and α,β-Unsaturated Ketones. Chem. Commun. 2015, 51, 17471–17474. [Google Scholar] [CrossRef] [PubMed]
- Sigismondi, S.; Sinou, D. Palladium(0)-Catalyzed Substitution of Allylic Substrates in an Aqueous-Organic Medium. Influence of Various Parameters on the Selectivity of the Reaction. J. Mol. Catal. A Chem. 1997, 116, 289–296. [Google Scholar] [CrossRef]
- Kayaki, Y.; Koda, T.; Ikariya, T. Halide-Free Dehydrative Allylation Using Allylic Alcohols Promoted by a Palladium−Triphenyl Phosphite Catalyst. J. Org. Chem. 2004, 69, 2595–2597. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Shinokubo, H.; Oshima, K. Water Enables Direct Use of Allyl Alcohol for Tsuji−Trost Reaction without Activators. Org. Lett. 2004, 6, 4085–4088. [Google Scholar] [CrossRef] [PubMed]
- Gan, K.-H.; Jhong, C.-J.; Yang, S.-C. Direct Palladium/Carboxylic Acid-Catalyzed C-Allylation of Cyclic 1,3-Diones with Allylic Alcohols in Water. Tetrahedron 2008, 64, 1204–1212. [Google Scholar] [CrossRef]
- Gruber, S.; Pregosin, P. Ruthenium Catalyzed Selective Regio-and-Mono-Allylation of Cyclic 1,3-Diketones Using Allyl Alcohols as Substrates. Adv. Synth. Catal. 2009, 351, 3235–3242. [Google Scholar] [CrossRef]
- Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855–1969. [Google Scholar] [CrossRef]
- Qu, J.; Helmchen, G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res. 2017, 50, 2539–2555. [Google Scholar] [CrossRef]
- Chu, D.T.W.; Huckin, S.N. Cshemistry of Hexamethyldisilazane. Silylation of β-Diketones and Amination of β-Triketones. Can. J. Chem. 1980, 58, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Kiener, C.A.; Shu, C.; Incarvito, C.; Hartwig, J.F. Identification of an Activated Catalyst in the Iridium-Catalyzed Allylic Amination and Etherification. Increased Rates, Scope, and Selectivity. J. Am. Chem. Soc. 2003, 125, 14272–14273. [Google Scholar] [CrossRef]
- Tissot-Croset, K.; Polet, D.; Gille, S.; Hawner, C.; Alexakis, A. Synthesis and Use of a Phosphoramidite Ligand for the Copper-Catalyzed Enantioselective Allylic Substitution. Tandem Allylic Substitution/Ring-Closing Metathesis. Synthesis 2004, 2004, 2586–2590. [Google Scholar] [CrossRef]
- Arnold, L.A.; Imbos, R.; Mandoli, A.; de Vries, A.H.M.; Naasz, R.; Feringa, B.L. Enantioselective Catalytic Conjugate Addition of Dialkylzinc Reagents Using Copper–Phosphoramidite Complexes; Ligand Variation and Non-Linear Effects. Tetrahedron 2000, 56, 2865–2878. [Google Scholar] [CrossRef] [Green Version]
- Hoen, R.; van den Berg, M.; Bernsmann, H.; Minnaard, A.J.; de Vries, J.G.; Feringa, B.L. Catechol-Based Phosphoramidites: A New Class of Chiral Ligands for Rhodium-Catalyzed Asymmetric Hydrogenations. Org. Lett. 2004, 6, 1433–1436. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, A.; Rosset, S.; Allamand, J.; March, S.; Guillen, F.; Benhaim, C. Novel Biphenol Phosphoramidite Ligands for the Enantioselective Copper-Catalyzed Conjugate Addition of Dialkyl Zincs. Synlett 2001, 2001, 1375–1378. [Google Scholar] [CrossRef]
- Shintani, R.; Park, S.; Duan, W.-L.; Hayashi, T. Palladium-Catalyzed Asymmetric [3+3] Cycloaddition of Trimethylenemethane Derivatives with Nitrones. Angew. Chem. Int. Ed. 2007, 46, 5901–5903. [Google Scholar] [CrossRef]
- The Cambridge Crystallographic Data Centre. CCDC 2098319. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 7 September 2022).
- Naasz, R.; Arnold, L.A.; Minnaard, A.J.; Feringa, B.L. Highly Enantioselective Copper-Phosphoramidite Catalyzed Kinetic Resolution of Chiral 2-Cyclohexenones. Angew. Chem. Int. Ed. 2001, 40, 927–930. [Google Scholar] [CrossRef]
- Wuts, P.G.M.; Ashford, S.W.; Anderson, A.M.; Atkins, J.R. New Process for the Preparation of Methyl Carbonates. Org. Lett. 2003, 5, 1483–1485. [Google Scholar] [CrossRef]
Entry | Ir catalyst | Ligand | Base | Solvent | Temp (°C) | 3a/3a′b | Yield b (%) | ee c (%) |
1 | [Ir(COD)Cl]2 | L1 | CsF | DCM | −20 | >20/1 | 13 | 85 |
2 | [Ir(COD)Cl]2 | L1 | CsF | THF | −20 | - | - | - |
3 | [Ir(COD)Cl]2 | L1 | CsF | CH3CN | −20 | >20/1 | 18 | 73 |
4 | [Ir(COD)Cl]2 | L1 | CsF | Toluene | −20 | >20/1 | 21 | 91 |
5 | [Ir(COD)Cl]2 | L1 | CsCl | Toluene | −20 | >20/1 | 19 | 70 |
6 | [Ir(COD)Cl]2 | L1 | Cs2CO3 | Toluene | −20 | >20/1 | 27 | 91 |
7 | [Ir(COD)Cl]2 | L1 | CsOH | Toluene | −20 | >20/1 | 49 | 71 |
8 | [Ir(COD)Cl]2 | L1 | K2CO3 | Toluene | −20 | >20/1 | 31 | 80 |
9 | [Ir(COD)Cl]2 | L1 | DBU | Toluene | −20 | - | nr | - |
10 | [Ir(COD)Cl]2 | L1 | Cs2CO3 | Toluene | 0 | >20/1 | 52 | 87 |
11 | [Ir(COD)Cl]2 | L1 | Cs2CO3 | Toluene | 10 | >20/1 | 60 | 92 |
12 | [Ir(COD)Cl]2 | L1 | Cs2CO3 | Toluene | 25 | >20/1 | 75 | 91 |
13 | [Ir(COD)Cl]2 | L1 | Cs2CO3 | Toluene | 35 | >20/1 | 86 | 85 |
14 | [Ir(Cp*)Cl2]2 | L1 | Cs2CO3 | Toluene | 25 | - | nr | - |
15 | Ir(COD)(acac) | L1 | Cs2CO3 | Toluene | 25 | >20/1 | 19 | 93 |
16 | [Ir(COD)Cl]2 | L2 | Cs2CO3 | Toluene | 25 | >20/1 | 78 | 87 |
17 | [Ir(COD)Cl]2 | L3 | Cs2CO3 | Toluene | 25 | >20/1 | 30 | 78 |
18 | [Ir(COD)Cl]2 | L4 | Cs2CO3 | Toluene | 25 | - | - | - |
19 | [Ir(COD)Cl]2 | L5 | Cs2CO3 | Toluene | 25 | - | - | - |
20 d | [Ir(COD)Cl]2 | L1 | Cs2CO3 | Toluene | 25 | - | nr | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-L.; Chen, J.-T.; Zheng, S.-C.; Zhao, X.-M. Ir-Catalyzed Chemo-, Regio-, and Enantioselective Allylic Enolization of 6,6-Dimethyl-3-((trimethylsilyl)oxy)cyclohex-2-en-1-one Involving Keto-Enol Isomerization. Molecules 2022, 27, 6981. https://doi.org/10.3390/molecules27206981
Wang X-L, Chen J-T, Zheng S-C, Zhao X-M. Ir-Catalyzed Chemo-, Regio-, and Enantioselective Allylic Enolization of 6,6-Dimethyl-3-((trimethylsilyl)oxy)cyclohex-2-en-1-one Involving Keto-Enol Isomerization. Molecules. 2022; 27(20):6981. https://doi.org/10.3390/molecules27206981
Chicago/Turabian StyleWang, Xiao-Lin, Ji-Teng Chen, Sheng-Cai Zheng, and Xiao-Ming Zhao. 2022. "Ir-Catalyzed Chemo-, Regio-, and Enantioselective Allylic Enolization of 6,6-Dimethyl-3-((trimethylsilyl)oxy)cyclohex-2-en-1-one Involving Keto-Enol Isomerization" Molecules 27, no. 20: 6981. https://doi.org/10.3390/molecules27206981
APA StyleWang, X. -L., Chen, J. -T., Zheng, S. -C., & Zhao, X. -M. (2022). Ir-Catalyzed Chemo-, Regio-, and Enantioselective Allylic Enolization of 6,6-Dimethyl-3-((trimethylsilyl)oxy)cyclohex-2-en-1-one Involving Keto-Enol Isomerization. Molecules, 27(20), 6981. https://doi.org/10.3390/molecules27206981