Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = regioselectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2078 KiB  
Review
Bacterial Sialidases: Biological Significance and Application
by Stephan Engibarov, Yana Gocheva, Irina Lazarkevich and Rumyana Eneva
Appl. Biosci. 2025, 4(2), 17; https://doi.org/10.3390/applbiosci4020017 - 1 Apr 2025
Viewed by 29
Abstract
This review summarizes recent findings on the diverse roles of bacterial sialidases in microbial biology. Bacterial sialidases, also known as neuraminidases, are exog α-lycosidases that cleave terminal sialic acid residues from a number of complex compounds designated as sialoglycoconjugates (glycoproteins, glycolipids and oligosaccharides). [...] Read more.
This review summarizes recent findings on the diverse roles of bacterial sialidases in microbial biology. Bacterial sialidases, also known as neuraminidases, are exog α-lycosidases that cleave terminal sialic acid residues from a number of complex compounds designated as sialoglycoconjugates (glycoproteins, glycolipids and oligosaccharides). Metabolically, they are involved in sialic acid catabolism, providing energy, carbon and nitrogen sources. Catabolic degradation of sialic acids is a physiological feature that can be considered an important virulence factor in pathogenic microorganisms. Sialidases play a pivotal role in host–pathogen interactions and promotion of bacterial colonization. The activity of these enzymes enables bacterial adhesion, biofilm formation, tissue invasion, and also provides immune evasion by exposing cryptic receptors and modifying immune components. Many different perspectives are being developed for the potential application of sialidases. In the field of medicine, they are being explored as appropriate targets for antimicrobials, vaccines, diagnostic preparations and in tumor immunotherapy. In the field of enzymatic synthesis, they are used for the regioselective production of oligosaccharide analogs, enzymatic separation of isoenzymes and as a tool for structural analysis of sialylated glycans, among other applications. Full article
Show Figures

Figure 1

8 pages, 954 KiB  
Communication
On-Resin Acetamidomethyl (Acm) Removal and Disulfide Formation in Cysteinyl Peptides Using N-Chlorosuccinimide (NCS) in the Presence of Other Cys-Protecting Groups
by Amit Chakraborty, Fernando Albericio and Beatriz G. de la Torre
Int. J. Mol. Sci. 2025, 26(6), 2523; https://doi.org/10.3390/ijms26062523 - 11 Mar 2025
Viewed by 252
Abstract
Acetamidomethyl (Acm)-protected cysteine derivatives are essential components of multi-disulfide synthesis, particularly due to the availability of multimodal removal conditions for Acm protection. Most of these removal conditions are harsh and are commonly used to remove Acm protection at the last step of regioselective [...] Read more.
Acetamidomethyl (Acm)-protected cysteine derivatives are essential components of multi-disulfide synthesis, particularly due to the availability of multimodal removal conditions for Acm protection. Most of these removal conditions are harsh and are commonly used to remove Acm protection at the last step of regioselective synthesis of a multi-disulfide, implying that the removal of Acm is performed in the absence of other Cys thiol protections. In this context, N-chlorosuccinimide (NCS)-mediated removal of Acm and concomitant disulfide bridge formation provides a fast and reliable way to synthesize multi-disulfides. In the present study, we demonstrate that NCS-mediated Acm removal and disulfide bond formation can be performed in the presence of other commonly used Cys thiol protections. Interestingly, Acm can be removed with NCS without affecting the Trt group, which is also removed with I2. Later, we successfully employ the NCS-based Acm removal method in the synthesis of multi-disulfide peptides like α-conotoxin SI. Full article
(This article belongs to the Special Issue Solid-Phase Peptides: Syntheses and Applications)
Show Figures

Figure 1

36 pages, 13267 KiB  
Article
Synthesis, Antiproliferative Activity, and ADME Profiling of Novel Racemic and Optically Pure Aryl-Substituted Purines and Purine Bioisosteres
by Martina Piškor, Astrid Milić, Sanja Koštrun, Maja Majerić Elenkov, Petra Grbčić, Sandra Kraljević Pavelić, Krešimir Pavelić and Silvana Raić-Malić
Biomolecules 2025, 15(3), 351; https://doi.org/10.3390/biom15030351 - 28 Feb 2025
Viewed by 318
Abstract
The aim of this study was to synthesize new racemic and optically pure aryl-substituted purine bioisosteres using ultrasound-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Regioselective synthesis of α-azido alcohols was applied to afford heterocycles with a 2-hydroxyeth-1-yl linker. Catalytic asymmetric synthesis using halohydrin dehalogenase in [...] Read more.
The aim of this study was to synthesize new racemic and optically pure aryl-substituted purine bioisosteres using ultrasound-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Regioselective synthesis of α-azido alcohols was applied to afford heterocycles with a 2-hydroxyeth-1-yl linker. Catalytic asymmetric synthesis using halohydrin dehalogenase in the ring-opening of epoxides gave enantioenriched azido alcohols, which subsequently afforded R- and S-enantiomers of purine and pyrrolo[2,3-d]pyrimidines with a 1-hydroxyeth-2-yl linker. The newly synthesized compounds were evaluated in vitro for their antiproliferative activity against four malignant tumor cell lines. The influence of regioisomerism and the stereochemistry of the hydroxyethyl group, as well as a N-heterocyclic scaffold linked to the aryl moiety on cytostatic activity was evaluated. Of all the compounds tested, purine 40a and pyrrolo[2,3-d]pyrimidine 45a derivatives with p-trifluoromethyl-substituted aryl connected to 1,2,3-triazole via a 2-hydroxyeth-1-yl spacer showed promising submicromolar antiproliferative activity. In addition, compound 45a exhibited selectivity towards the tumor cell line, with a selectivity index (SI) of 40, moderate clearance, and good membrane permeability. Full article
Show Figures

Graphical abstract

15 pages, 2943 KiB  
Article
Phenolic Acid Decarboxylase for Carbon Dioxide Fixation: Mining, Biochemical Characterization, and Regioselective Enzymatic β-carboxylation of para-hydroxystyrene Derivatives
by Jie Chen, Shirong Wang, Junru Zhou, Jiaxing Xu, Bin Wu, Zhen Gao and Bingfang He
Catalysts 2025, 15(3), 210; https://doi.org/10.3390/catal15030210 - 22 Feb 2025
Viewed by 424
Abstract
The use of CO2 as a C1 carbon source for the synthesis of valuable chemicals through biotechnology methods represents an effective strategy to fix carbon dioxide. Phenolic acid decarboxylases possess the capability to introduce a carboxyl group into para-hydroxystyrenes for the [...] Read more.
The use of CO2 as a C1 carbon source for the synthesis of valuable chemicals through biotechnology methods represents an effective strategy to fix carbon dioxide. Phenolic acid decarboxylases possess the capability to introduce a carboxyl group into para-hydroxystyrenes for the regionally selective synthesis of (E)-para-hydroxycinnamic acids, utilizing bicarbonate as a CO2 source. It is difficult to achieve this reaction with traditional chemical methods, and only a few enzymes have been isolated and characterized. Here, we mined which low amino acid sequence shared its identity with those of related decarboxylases and which heterologously expressed phenolic acid decarboxylase PAD_Cs from Clostridium sp. DSM 8431 in E. coli. The recombinant PAD_Cs displayed maximum activity at 50 °C, and pH 5.0. PAD_Cs showed distinct carboxylation ability. The carboxylated substrates have a wide range of substitution modes on aromatic systems, including alkyl and alkoxy groups as well as halogens. Furthermore, the carboxylation conversion rates were impressive: para-hydroxystyrene exceeded 20% and 2-methoxy-4-vinylphenol surpassed 26%. This study indicated that PAD_Cs might serve as a potential enzyme source in biotechnological CO2 fixation. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

23 pages, 970 KiB  
Article
Synthesis of Enantiostructured Triacylglycerol Prodrugs Constituting an Active Drug Located at Terminal sn-1 and sn-3 Positions of the Glycerol Backbone
by Lena Rós Jónsdottir and Gudmundur G. Haraldsson
Molecules 2025, 30(5), 991; https://doi.org/10.3390/molecules30050991 - 21 Feb 2025
Viewed by 266
Abstract
The current paper reports the asymmetric synthesis of a focused library of enantiostructured triacylglycerols (TAGs) constituting a potent drug of the NSAID type (ibuprofen or naproxen) along with a pure bioactive n-3 polyunsaturated fatty acid (PUFA) intended as a novel type of prodrug. [...] Read more.
The current paper reports the asymmetric synthesis of a focused library of enantiostructured triacylglycerols (TAGs) constituting a potent drug of the NSAID type (ibuprofen or naproxen) along with a pure bioactive n-3 polyunsaturated fatty acid (PUFA) intended as a novel type of prodrug. In this second category, a TAG prodrug of the terminal sn-1 or sn-3 position of the glycerol skeleton is acylated with a single saturated medium-chain fatty acid (C6, C8, C10, or C12), and another with the drug entity; the PUFA (EPA or DHA) is located in the sn-2 position. This was accomplished by a six-step chemoenzymatic approach, two of which were promoted by a lipase, starting from enantiopure (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The most challenging key step involved the incorporation of the drugs that were activated as oxime esters by the lipase exclusively in the terminal position of glycerol that is protected as a benzyl ether. All combinations, a total of 32 such prodrug TAGs, were prepared, isolated, and fully characterized, along with 24 acylglycerol intermediates, obtained in very-high-to-excellent yields in the majority of cases. Full article
Show Figures

Figure 1

11 pages, 911 KiB  
Communication
Sustainable Synthesis of α-Glucosidase Inhibitors by Gas-Free Pd-Carbonylation of Nature-Based Hydroxytyrosol
by Francesco Messa, Domenico Armenise, Anselma Liturri, Maria Grazia Perrone, Serena Perrone and Antonio Salomone
Catalysts 2025, 15(3), 202; https://doi.org/10.3390/catal15030202 - 21 Feb 2025
Viewed by 503
Abstract
This study outlines the sustainable synthesis of novel hydroxytyrosol (HT) and tyrosol (T) ester derivatives via a Pd-catalyzed alkoxycarbonylation of aromatic iodides. The high sustainability of the process is attributed to the use of (1) a solid carbon monoxide source, Mo(CO)6, [...] Read more.
This study outlines the sustainable synthesis of novel hydroxytyrosol (HT) and tyrosol (T) ester derivatives via a Pd-catalyzed alkoxycarbonylation of aromatic iodides. The high sustainability of the process is attributed to the use of (1) a solid carbon monoxide source, Mo(CO)6, in place of dangerous gaseous CO; (2) a biomass-derived organic solvent, CPME (cyclopentyl methyl ether); (3) naturally occurring hydroxylated compounds, such as HT and T, which could be derived from agricultural waste rather than produced from petroleum-based sources. The method enables the regioselective preparation of various HT and T esters in a short reaction time (4–8 h), under mild temperatures (80 °C), and with moderate-to-excellent yields (62–93%). Moreover, in vitro biological tests have demonstrated that, in addition to the well-known antioxidant properties typical of natural phenolic compounds such as HT and T, some of the newly synthesized derivatives have a safe profile and are effective inhibitors of the α-glucosidase with potential application in the management of hyperglycemia. This synthetic approach offers a promising strategy for exploring biologically relevant chemical space, bridging the gap between natural products and sustainable drug synthesis. Full article
(This article belongs to the Special Issue Recent Advances in Palladium-Catalyzed Organic Synthesis)
Show Figures

Figure 1

18 pages, 5267 KiB  
Article
The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study
by Mikołaj Sadowski, Ewa Dresler and Radomir Jasiński
Molecules 2025, 30(4), 974; https://doi.org/10.3390/molecules30040974 - 19 Feb 2025
Viewed by 309
Abstract
The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile N-oxides were explored on the basis of the ωB97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should [...] Read more.
The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile N-oxides were explored on the basis of the ωB97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should be undermined. Within our research, several aspects of the title reaction were also examined: interactions between reagents, electronic structures of alkenes and nitrile oxides, the nature of transition states, the influence of the polarity solvent on the reaction selectivity and mechanism, substituent effects, etc. The obtained results offer a general conclusion for all of the important aspects of some groups of cycloaddition processes. Full article
(This article belongs to the Special Issue Quantum Chemical Calculations of Molecular Reaction Processes)
Show Figures

Figure 1

26 pages, 5293 KiB  
Article
New Benzothiazole–Monoterpenoid Hybrids as Multifunctional Molecules with Potential Applications in Cosmetics
by Desislava Kirkova, Yordan Stremski, Maria Bachvarova, Mina Todorova, Bogdan Goranov, Stela Statkova-Abeghe and Margarita Docheva
Molecules 2025, 30(3), 636; https://doi.org/10.3390/molecules30030636 - 31 Jan 2025
Viewed by 943
Abstract
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35–80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for [...] Read more.
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35–80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for the development of biologically active compounds. New benzothiazole–monoterpenoid hybrids were synthesized through a regioselective α-amidoalkylation reaction of thymol and carvacrol with high yields (70–96%). This approach is both simple and cost-effective, employing easily accessible and inexpensive reagents to produce target molecules. The structure of the synthesized compounds was characterized spectrally using 1H-, 13C-NMR, FT-IR, and HRMS data. The newly obtained compounds are structural analogues of the UVB filter PBSA, which is used in cosmetics. The spectral properties of the aromatic products thymol hybrid (2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole) and carvacrol hybrid (2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole) were successfully examined, using a validated spectrophotometric method. SPF values varied from 31 to 36, compared to the PBSA (30), and were observed at concentrations of 1–0.25 mM. 2-Hydroxyphenylbenzothiazoles are known antimicrobial and antioxidant agents that have potential applications in the food industry and cosmetics as preservatives and antioxidants. In this context, antimicrobial activity of the hybrid compounds was evaluated using the agar diffusion method against E. coli, S. aureus, P. aeruginosa, and C. albicans. Compounds of methyl-2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate containing carvacrol fragments showed high activity against Staphylococcus aureus ATCC 25923 (with 0.044 μmol content). The radical scavenging activity was determined using ABTS and DPPH assays, the highest activity was exhibited by the thymol hybrids ethyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50—133.70 ± 10 µM) and methyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50—157.50 ± 10 µM), defined by ABTS. The aromatic benzothiazole–monoterpenoid hybrids are classified using in silico analyses as non-mutagenic, with low toxicity, and they are non-irritating to the skin. These compounds were identified as new hit scaffolds for multifunctional molecules in cosmetics. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 1211 KiB  
Article
Regioselective De Novo Synthesis of Phenolic Isoprenoids Grifolin and Neogrifolin
by Boram Lim, Huisu Yeo, Seunghyo Han, Dabin Kim, Hansuk Lee and Sangho Koo
Appl. Sci. 2025, 15(3), 1438; https://doi.org/10.3390/app15031438 - 30 Jan 2025
Viewed by 566
Abstract
The total synthesis of biologically and pharmacologically important phenolic isoprenoids, grifolin and neogrifolin, was developed through simple allylation and cyclization procedures using only ethyl acetoacetate, ethyl crotonate, and farnesyl bromide as substrates. The regioisomeric terpenophenols, which consist solely of orcinol and farnesyl moieties, [...] Read more.
The total synthesis of biologically and pharmacologically important phenolic isoprenoids, grifolin and neogrifolin, was developed through simple allylation and cyclization procedures using only ethyl acetoacetate, ethyl crotonate, and farnesyl bromide as substrates. The regioisomeric terpenophenols, which consist solely of orcinol and farnesyl moieties, cannot be synthesized purely by direct coupling between the units. The regioselectivity issue was solved by controlling the timing of the allylation of β-ketoester with farnesyl bromide and the cyclization with ethyl crotonate. 2-Farnesyl-5-methyl-cyclohexane-1,3-dione and 6-farnesyl-5-methyl-cyclohexane-1,3-dione were prepared in a highly regioselective manner from ethyl acetoacetate in overall yields of 43% and 40%, respectively. The oxidative aromatization of the regioisomeric cyclohexane-1,3-diones produced grifolin and neogrifolin, respectively. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

12 pages, 5537 KiB  
Article
Engineering of Cyclodextrin Glucosyltransferase from Paenibacillus macerans for Improved Regioselectivity and Product Specificity Toward Hydroxyflavone Glycosylation
by Jin Wang, Binhao Wang, Jieyu Zhou, Jinjun Dong, Ye Ni and Ruizhi Han
Catalysts 2025, 15(2), 120; https://doi.org/10.3390/catal15020120 - 26 Jan 2025
Viewed by 648
Abstract
The regioselective glycosylation and product specificity of hydroxyflavonoid compounds profoundly influences their biological activity and stability, offering significant therapeutic potential. However, most cyclodextrin glucosyltransferases (CGTases) inherently lack regioselectivity and product specificity for flavone glycosylation. Herein, a CGTase from Paenibacillus macerans was engineered for [...] Read more.
The regioselective glycosylation and product specificity of hydroxyflavonoid compounds profoundly influences their biological activity and stability, offering significant therapeutic potential. However, most cyclodextrin glucosyltransferases (CGTases) inherently lack regioselectivity and product specificity for flavone glycosylation. Herein, a CGTase from Paenibacillus macerans was engineered for enhanced glycosylation regioselectivity and product specificity by combining molecular docking analysis and saturation mutagenesis strategies. K232L (favoring 4′-and 6-hydroxyflavones) and K232V (favoring 7-hydroxyflavone) were identified with distinct preferences. In addition, H233Y (preferring for 4′-hydroxyflavones), H233T (preferring for 6′-hydroxyflavones), and H233K (preferring for 7′-hydroxyflavones) also demonstrated distinct regioselectivity. These variants further exhibited enhanced hydrolytic activity, enabling the efficient production of short sugar-chain glycosides. Molecular dynamics (MDs) simulations revealed that the variants adopted optimized catalytic conformations with increased loop region flexibility near the binding pocket, enhancing substrate accessibility. These findings underscore the pivotal roles of K232 and H233 in broadening the substrate scope of CGTase and offer valuable guidance for enzyme engineering targeting regioselective glycosylation. Full article
Show Figures

Graphical abstract

17 pages, 8279 KiB  
Article
Understanding Dioxygen Activation in the Fe(III)-Promoted Oxidative Dehydrogenation of Amines: A Computational Study
by Ricardo D. Páez-López, Miguel Á. Gómez-Soto, Héctor F. Cortés-Hernández, Alejandro Solano-Peralta, Miguel Castro, Peter M. H. Kroneck and Martha E. Sosa-Torres
Inorganics 2025, 13(1), 22; https://doi.org/10.3390/inorganics13010022 - 15 Jan 2025
Cited by 1 | Viewed by 662
Abstract
Hydrogenation and dehydrogenation reactions are fundamental in chemistry and essential for all living organisms. We employ density functional theory (DFT) to understand the reaction mechanism of the oxidative dehydrogenation (ODH) of the pyridyl-amine complex [FeIIIL3]3+ (L3, [...] Read more.
Hydrogenation and dehydrogenation reactions are fundamental in chemistry and essential for all living organisms. We employ density functional theory (DFT) to understand the reaction mechanism of the oxidative dehydrogenation (ODH) of the pyridyl-amine complex [FeIIIL3]3+ (L3, 1,9-bis(2′-pyridyl)-5-[(ethoxy-2″-pyridyl)methyl]-2,5,8-triazanonane) to the mono-imine complex [FeIIL4]2+ (L4, 1,9-bis(2′-pyridyl)-5-[(ethoxy-2″-pyridyl)methyl]-2,5,8-triazanon-1-ene) in the presence of dioxygen. The nitrogen radical [FeIIL3N8•]2+, formed by deprotonation of [FeIIIL3]3+, plays a crucial role in the reaction mechanism derived from kinetic studies. O2 acts as an oxidant and is converted to H2O. Experiments with the deuterated ligand L3 reveal a primary C-H kinetic isotope effect, kCH/kCD = 2.30, suggesting C-H bond cleavage as the rate-determining step. The DFT calculations show that (i) 3O2 abstracts a hydrogen atom from the α-pyridine aliphatic C-H moiety, introducing a double bond regio-selectively at the C7N8 position, via the hydrogen atom transfer (HAT) mechanism, (ii) O2 does not coordinate to the iron center to generate a high-valent Fe oxo species observed in enzymes and biomimetic complexes, and (iii) the experimental activation parameters (ΔH = 20.38 kcal mol−1, ΔS = −0.018 kcal mol−1 K−1) fall within in the range of values reported for HAT reactions and align well with the computational results for the activated complex [FeIIL3N8•]2+···3O2. Full article
(This article belongs to the Special Issue Transition Metal Catalysts: Design, Synthesis and Applications)
Show Figures

Graphical abstract

16 pages, 6630 KiB  
Article
Regioselective Nucleophilic Aromatic Substitution: Theoretical and Experimental Insights into 4-Aminoquinazoline Synthesis as a Privileged Structure in Medicinal Chemistry
by Maria Letícia de Castro Barbosa, Pedro de Sena Murteira Pinheiro, Raissa Alves da Conceição, José Ricardo Pires, Lucas Silva Franco, Carlos Mauricio R. Sant’Anna, Eliezer J. Barreiro and Lídia Moreira Lima
Molecules 2024, 29(24), 6021; https://doi.org/10.3390/molecules29246021 - 20 Dec 2024
Viewed by 763
Abstract
The 4-aminoquinazoline scaffold is a privileged structure in medicinal chemistry. Regioselective nucleophilic aromatic substitution (SNAr) for replacing the chlorine atom at the 4-position of 2,4-dichloroquinazoline precursors is well documented in the scientific literature and has proven useful in synthesizing 2-chloro-4-aminoquinazolines and/or [...] Read more.
The 4-aminoquinazoline scaffold is a privileged structure in medicinal chemistry. Regioselective nucleophilic aromatic substitution (SNAr) for replacing the chlorine atom at the 4-position of 2,4-dichloroquinazoline precursors is well documented in the scientific literature and has proven useful in synthesizing 2-chloro-4-aminoquinazolines and/or 2,4-diaminoquinazolines for various therapeutic applications. While numerous reports describe reaction conditions involving different nucleophiles, solvents, temperatures, and reaction times, discussions on the regioselectivity of the SNAr step remain scarce. In this study, we combined DFT calculations with 2D-NMR analysis to characterize the structure and understand the electronic factors underlying the regioselective SNAr of 2,4-dichloroquinazolines for the synthesis of bioactive 4-aminoquinazolines. DFT calculations revealed that the carbon atom at the 4-position of 2,4-dichloroquinazoline has a higher LUMO coefficient, making it more susceptible to nucleophilic attack. This observation aligns with the calculated lower activation energy for nucleophilic attack at this position, supporting the regioselectivity of the reaction. To provide guidance for the structural confirmation of 4-amino-substituted product formation when multiple regioisomers are possible, we employed 2D-NMR methods to verify the 4-position substitution pattern in synthesized bioactive 2-chloro-4-aminoquinazolines. These findings are valuable for future research, as many synthetic reports assume regioselective outcomes without sufficient experimental verification. Full article
(This article belongs to the Special Issue Synthesis and Functionalization of Nitrogen Heterocycles)
Show Figures

Graphical abstract

14 pages, 3044 KiB  
Article
Highly Regioselective 1,3-Dipolar Cycloaddition of Nitrilimines and Thioaurones Towards Spiro-2-Pyrazolines: Synthesis, Characterization, and Mechanistic Study
by Mohamed Bakhouch, Bouchra Es-Sounni, Ayoub Ouaddi, Khaoula Oudghiri, Mohammed Chalkha, Lahoucine Bahsis, Taoufiq Benali, Mohamed Bourass, Rabiaa Fdil, Mohamed Akhazzane and Mohamed El Yazidi
Reactions 2024, 5(4), 1066-1079; https://doi.org/10.3390/reactions5040056 - 14 Dec 2024
Viewed by 853
Abstract
In this paper, we report a highly regioselective 1,3-dipolar cycloaddition (1,3-DC) reaction of nitrilimines with thioaurone derivatives that afforded the hitherto unreported spiropyrazolines. Spectroscopic and spectrometric data were utilized to confirm the structure of all products and elucidate the reaction’s regiochemistry. A mechanistic [...] Read more.
In this paper, we report a highly regioselective 1,3-dipolar cycloaddition (1,3-DC) reaction of nitrilimines with thioaurone derivatives that afforded the hitherto unreported spiropyrazolines. Spectroscopic and spectrometric data were utilized to confirm the structure of all products and elucidate the reaction’s regiochemistry. A mechanistic study was performed within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311G(d,p) computational level to explain the regioselectivity observed. The electron localization function (ELF) topological analysis confirms the carbenoid-type (cb-type) mechanism of the cycloaddition reactions between nitrilimines and thioaurones. The intermolecular interactions between reagents in this reaction account for the regioselectivity observed experimentally. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Figure 1

18 pages, 3162 KiB  
Article
Isolated Dipolar ONN Schiff Base Regioisomers: Synthesis, Characterization and Crystallographic Study
by Pablo Castro-Tamay, David Villaman, Jean-René Hamon and Néstor Novoa
Molecules 2024, 29(24), 5863; https://doi.org/10.3390/molecules29245863 - 12 Dec 2024
Viewed by 611
Abstract
Organic compounds with 1,3-diketone or 3-amino enone functional groups are extremely important as they can be converted into a plethora of carbo- or heterocyclic derivatives or can be used as ligands in the formation of metal complexes. Here, we have achieved the preparation [...] Read more.
Organic compounds with 1,3-diketone or 3-amino enone functional groups are extremely important as they can be converted into a plethora of carbo- or heterocyclic derivatives or can be used as ligands in the formation of metal complexes. Here, we have achieved the preparation of a series of non-symmetrical β-ketoenamines (O,N,N proligand) of the type (4-MeOC6H4)C(=O)CH=C(R)NH(Q) obtained through the Schiff base condensation of 1,3-diketones (1-anisoylacetone, 1-anisyl-3-(4-cyanophenyl)-1,3-propanedione, and 1-anisyl-3-(4,4,4-trifluorotolyl)-1,3-propanedione) functionalized with electron donor and electron-withdrawing substituents and 8-aminoquinoline (R = CH3, 4-C6H4CN, 4-C6H4CF3; Q = C9H7N). Schiff base ketoimines with a pendant quinolyl moiety were isolated as single regioisomers in yields of 22–56% and characterized with FT-IR, 1H NMR, and UV-visible spectroscopy, as well as single-crystal X-ray crystallography, which allowed for the elucidation of the nature of the isolated regioisomers. The regioselectivity of the condensation of electronically unsymmetrical 1,3-diaryl-1,3-diketones with 8-aminoquinoline was studied by 1H NMR, providing regioisomer ratios of ~3:1 and ~2:1 in the case of CN and CF3 substituents, respectively. The electronic effects correlate well with the difference between the Hammett σ+ coefficients of the two para substituents on the aryl rings. Full article
Show Figures

Figure 1

24 pages, 1983 KiB  
Article
Synthesis and hLDHA Inhibitory Activity of New Stiripentol-Related Compounds of Potential Use in Primary Hyperoxaluria
by Mario Rico-Molina, Juan Ortega-Vidal, Juan Molina-Canteras, Justo Cobo, Joaquín Altarejos and Sofía Salido
Int. J. Mol. Sci. 2024, 25(24), 13266; https://doi.org/10.3390/ijms252413266 - 10 Dec 2024
Viewed by 820
Abstract
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria [...] Read more.
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, hLDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet’s syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its hLDHA inhibitory activity. In this work, several new STP-related compounds have been synthesized and their hLDHA inhibitory activity has been compared to that of STP. The synthesis of these analogues to STP was accomplished using crossed-aldol condensation guided by lithium enolate chemistry and a successive regioselective reduction of the resulting α,β-unsaturated ketones. The target molecules were obtained as racemates, which were separated into their enantiomers by chiral HPLC. The absolute configurations of pure enantiomers were determined by the modified Mosher’s method and electronic circular dichroism (ECD) spectroscopy. For the inhibitory effect over the hLDHA catalytic activity, a kinetic spectrofluorometric assay was used. All the new synthesized compounds turned out to be more active at 500 μM (46–72% of inhibition percentage) than STP (10%), which opens a new line of study on the possible capacity of these analogues to reduce urinary oxalate levels in vivo more efficiently. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

Back to TopTop