Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Composition
2.2. Impact on Single Species Adhesion
2.3. Impact on Dual Species (Prebiotic/Pathogen) Adhesion
2.4. Impact on Pathogen Displacement by Probiotics
2.5. Impact on Pathogen Exclusion by Probiotics
2.6. Populational Analysis of the Extract Impact upon Bacterial Adhesion
3. Materials and Methods
3.1. Extract Production and Purification
3.2. Extract Characterization
3.3. Microorganisms
3.4. Adhesion Studies
3.4.1. Microtiter Preparation
3.4.2. Bacterial Suspension Preparation
3.4.3. Impact on Single Species Adhesion
3.4.4. Impact on Dual Species (Prebiotic/Pathogen) Adhesion
3.4.5. Impact on Pathogen Displacement by Probiotics
3.4.6. Impact on Pathogen Exclusion by Probiotics
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gibson, G.R.; Williams, C.M. Functional Foods: Concept to Product; Woodhead Publishing Limited: Cambridge, UK, 2000; p. 374. [Google Scholar]
- Silva, S.; Costa, E.M.; Pereira, M.F.; Costa, M.R.; Pintado, M.E. Evaluation of the antimicrobial activity of aqueous extracts from dry Vaccinium corymbosum extracts upon food microorganism. Food Control 2013, 34, 645–650. [Google Scholar] [CrossRef]
- Lee, J.; Rennaker, C.; Wrolstad, R.E. Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem. 2008, 110, 782–786. [Google Scholar] [CrossRef]
- Lacombe, A.; Wu, V.C.H.; White, J.; Tadepalli, S.; Andre, E.E. The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiol. 2012, 30, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Sun, X.; Xie, Q.; Liu, H.; Zhao, Y.; Pan, Y.; Hwang, C.-A.; Wu, V.C.H. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control 2014, 35, 159–165. [Google Scholar] [CrossRef]
- Isolauri, E.; Kirjavainen, P.V.; Salminen, S. Probiotics: A role in the treatment of intestinal infection and inflammation? Gut 2002, 50 (Suppl. S3), iii54–iii59. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Mendes, M.; Morais, R.M.; Calhau, C.; Pintado, M.M. Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic anthocyanin rich blueberry extract purified by solid phase extraction. J. Appl. Microbiol. 2016, 121, 693–703. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Blueberries and Their Anthocyanins: Factors Affecting Biosynthesis and Properties. Compr. Rev. Food Sci. Food Saf. 2011, 10, 303–320. [Google Scholar] [CrossRef]
- Valeriano, V.D.; Parungao-Balolong, M.M.; Kang, D.K. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 2014, 117, 485–497. [Google Scholar] [CrossRef]
- Salaheen, S.; Jaiswal, E.; Joo, J.; Peng, M.; Ho, R.; Oconnor, D.; Adlerz, K.; Aranda-Espinoza, J.H.; Biswas, D. Bioactive extracts from berry byproducts on the pathogenicity of Salmonella Typhimurium. Int. J. Food Microbiol. 2016, 237, 128–135. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Vasiee, A.; Falah, F.; Behbahani, B.A.; Tabatabaee-yazdi, F. Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. J. Biosci. Bioeng. 2020, 130, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Hojjati, M.; Behabahani, B.A.; Falah, F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb. Pathog. 2020, 147, 104420. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Behbahani, B.; Noshad, M.; Falah, F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microb. Pathog. 2019, 136, 103677. [Google Scholar] [CrossRef] [PubMed]
- Vivas, N.; Lonvaud-Funel, A.; Glories, Y. Effect of phenolic acids and anthocyanins on growth, viability and malolactic activity of a lactic acid bacterium. Food Microbiol. 1997, 14, 291–299. [Google Scholar] [CrossRef]
- Tabasco, R.; Sánchez-Patán, F.; Monagas, M.; Bartolomé, B.; Victoria Moreno-Arribas, M.; Peláez, C.; Requena, T. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiol. 2011, 28, 1345–1352. [Google Scholar] [CrossRef]
- Collado, M.C.; Grzeskowiak, L.; Salminen, S. Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr. Microbiol. 2007, 55, 260–265. [Google Scholar] [CrossRef]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 2008, 226, 1065–1073. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Coelho, M.C.; Morais, R.M.; Pintado, M.E. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L.) cultivars. Nat. Prod. Res. 2017, 31, 93–98. [Google Scholar] [CrossRef]
- Fernandes, I.; de Freitas, V.; Reis, C.; Mateus, N. A new approach on the gastric absorption of anthocyanins. Food Funct. 2012, 3, 508–516. [Google Scholar] [CrossRef]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. J. Hyg. 1938, 38, 732–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak Number | Anthocyanin | m/z (M+) | Fragments (m/z) |
---|---|---|---|
1 | Delphinidin-3-galactoside | 465 | 303; 162 |
2 | Delphinidin-3-glucoside | 465 | 303; 162 |
3 | Cyanidin-3-galactoside | 449 | 287; 162 |
4 | Delphinidin-3-arabinoside | 435 | 303; 132 |
5 | Cyanidin-3-glucoside | 449 | 287; 162 |
6 | Petunidin-3-galactoside | 479 | 317; 162 |
7 | Cyanidin-3-arabinoside | 419 | 287; 132 |
8 | Petunidin-3-arabinoside | 479 | 317; 162 |
9 | Peonidin-3-galactoside | 463 | 301; 162 |
10 | Petunidin-3-arabinoside | 449 | 331; 162 |
11 | Malvidin-3-galactoside | 493 | 331; 162 |
12 | Peonidin-3-glucoside | 463 | 301; 162 |
13 | Malvidin-3-glucoside | 493 | 331; 162 |
14 | Peonidin-3-arabinoside | 433 | 301; 132 |
15 | Malvidin-3-arabinoside | 463 | 331; 162 |
16 | Cyanidin | 287 | 174; 213; 231; 259 |
17 | Delphinidin | 303 | 157; 229; 257 |
18 | Petunidin | 317 | 302 |
19 | Peonidin | 301 | 286 |
20/21 * | Malvidin | 331 | 270; 287; 299; 316 |
Microorganism | Culture Media | Incubation Conditions |
---|---|---|
L. monocytogenes | Palcam Selective Agar (Biokar Diagnostics, Beauvais, France) | 24 h, at 37 °C under aerobiosis |
E. coli | MacConkey Agar (Biokar Diagnostics, Beauvais, France) | 24 h, at 37 °C under aerobiosis |
S. enteritidis | MacConkey Agar (Biokar Diagnostics, Beauvais, France) | 24 h, at 37 °C under aerobiosis |
L. rhamonsus, L. acidophilus, and L. plantarum | MRS agar (Biokar Diagnostics, Beauvais, France) | 48 h, at 37 °C under aerobiosis |
B. Bo and B. Bb12 | MRS agar with cysteine (0.5 g L−1; Sigma, Darmstad, Germany) | 48 h, at 37 °C under anaerobiosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.; Costa, E.M.; Oliveira, H.; Freitas, V.D.; Morais, R.M.; Calhau, C.; Pintado, M. Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems. Molecules 2022, 27, 6991. https://doi.org/10.3390/molecules27206991
Silva S, Costa EM, Oliveira H, Freitas VD, Morais RM, Calhau C, Pintado M. Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems. Molecules. 2022; 27(20):6991. https://doi.org/10.3390/molecules27206991
Chicago/Turabian StyleSilva, Sara, Eduardo M. Costa, Hélder Oliveira, Vitor De Freitas, Rui M. Morais, Conceição Calhau, and Manuela Pintado. 2022. "Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems" Molecules 27, no. 20: 6991. https://doi.org/10.3390/molecules27206991
APA StyleSilva, S., Costa, E. M., Oliveira, H., Freitas, V. D., Morais, R. M., Calhau, C., & Pintado, M. (2022). Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems. Molecules, 27(20), 6991. https://doi.org/10.3390/molecules27206991