Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review
Abstract
:1. Introduction
2. Regulating the Intestinal Microbiota Disorder
3. Resisting Digestion
4. Reducing Inflammation
5. Regulating Hypoglycemic Related Enzymes
6. Other Mechanisms of the Hypoglycemic Action
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Englyst, H.; Kingman, S.; Cummings, J. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, M.D. Dietary-Resistant Starch and Glucose Metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 362–367. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA) Scientific Opinion on the Substantiation of Health Claims Related to Resistant Starch and Reduction of Post-Prandial Glycaemic Responses (ID 681), “Digestive Health Benefits” (ID 682) and “Favours a Normal Colon Metabolism” (ID 783) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2024. [CrossRef]
- Englyst, H.N.; Trowell, H.; Southgate, D.A.; Cummings, J.H. Dietary Fiber and Resistant Starch. Am. J. Clin. Nutr. 1987, 46, 873–874. [Google Scholar] [CrossRef]
- Keenan, M.J.; Zhou, J.; Hegsted, M.; Pelkman, C.; Durham, H.A.; Coulon, D.B.; Martin, R.J. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance. Adv. Nutr. 2015, 6, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodinham, C.L.; Smith, L.; Thomas, E.L.; Bell, J.D.; Swann, J.R.; Costabile, A.; Russell-Jones, D.; Umpleby, A.M.; Robertson, M.D. Efficacy of Increased Resistant Starch Consumption in Human Type 2 Diabetes. Endocr. Connect. 2014, 3, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, K.C.; Phillips, A.K. Dietary Substitutions for Refined Carbohydrate That Show Promise for Reducing Risk of Type 2 Diabetes in Men and Women. J. Nutr. 2015, 145, 159S–163S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.; Louie, J. The Relationship between Resistant Starch and Glycemic Control: A Review on Current Evidence and Possible Mechanisms. Starch Stärke 2016, 69, 1600205. [Google Scholar] [CrossRef]
- Shen, L.; Keenan, M.J.; Raggio, A.; Williams, C.; Martin, R.J. Dietary-Resistant Starch Improves Maternal Glycemic Control in Goto-Kakizaki Rat. Mol. Nutr. Food Res. 2011, 55, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.D.; Currie, J.M.; Morgan, L.M.; Jewell, D.P.; Frayn, K.N. Prior Short-Term Consumption of Resistant Starch Enhances Postprandial Insulin Sensitivity in Healthy Subjects. Diabetologia 2003, 46, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.L.; Thomas, E.L.; Bell, J.D.; Frost, G.S.; Robertson, M.D. Resistant Starch Improves Insulin Sensitivity in Metabolic Syndrome. Diabet. Med. 2010, 27, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.; Ma, Q.; Tian, B.; Nie, C.; Chen, Z.; Li, J. Health Beneficial Effects of Resistant Starch on Diabetes and Obesity via Regulation of Gut Microbiota: A Review. Food Funct. 2020, 11, 5749–5767. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 2018, 7, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-Chain Fatty Acids in Control of Body Weight and Insulin Sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
- Nielsen, T.S.; Theil, P.K.; Purup, S.; Nørskov, N.P.; Bach Knudsen, K.E. Effects of Resistant Starch and Arabinoxylan on Parameters Related to Large Intestinal and Metabolic Health in Pigs Fed Fat-Rich Diets. J. Agric. Food Chem. 2015, 63, 10418–10430. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.L.; Horn, W.F.; Wen, A.; Rust, B.; Woodhouse, L.R.; Newman, J.W.; Keim, N.L. Resistant Starch Wheat Increases PYY and Decreases GIP but Has No Effect on Self-Reported Perceptions of Satiety. Appetite 2022, 168, 105802. [Google Scholar] [CrossRef]
- Binou, P.; Yanni, A.E.; Stergiou, A.; Karavasilis, K.; Konstantopoulos, P.; Perrea, D.; Tentolouris, N.; Karathanos, V.T. Enrichment of Bread with Beta-Glucans or Resistant Starch Induces Similar Glucose, Insulin and Appetite Hormone Responses in Healthy Adults. Eur. J. Nutr. 2021, 60, 455–464. [Google Scholar] [CrossRef]
- Maziarz, M.P.; Preisendanz, S.; Juma, S.; Imrhan, V.; Prasad, C.; Vijayagopal, P. Resistant Starch Lowers Postprandial Glucose and Leptin in Overweight Adults Consuming a Moderate-to-High-Fat Diet: A Randomized-Controlled Trial. Nutr. J. 2017, 16, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.A.; Higbee, D.R.; Donahoo, W.T.; Brown, I.L.; Bell, M.L.; Bessesen, D.H. Resistant Starch Consumption Promotes Lipid Oxidation. Nutr. Metab. 2004, 1, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebihara, K.; Shiraishi, R.; Okuma, K. Hydroxypropyl-Modified Potato Starch Increases Fecal Bile Acid Excretion in Rats. J. Nutr. 1998, 128, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, A.; Sieber, J.R.; Schmidt, A.W.; Waldron, C.; Theis, K.R.; Schmidt, T.M. Variable Responses of Human Microbiomes to Dietary Supplementation with Resistant Starch. Microbiome 2016, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, A.E.; Minicucci, O.; Long, D.J.; Miller, V.J.; Keller, A.; Sheridan, C.; O’brien, G.; Ward, E.; Schuler, B.; Connelly, S.; et al. Resistant Starch Combined with Whey Protein Increases Postprandial Metabolism and Lowers Glucose and Insulin Responses in Healthy Adult Men. Foods 2021, 10, 537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Martin, R.J.; Tulley, R.T.; Raggio, A.M.; McCutcheon, K.L.; Shen, L.; Danna, S.C.; Tripathy, S.; Hegsted, M.; Keenan, M.J. Dietary Resistant Starch Upregulates Total GLP-1 and PYY in a Sustained Day-Long Manner through Fermentation in Rodents. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1160–E1166. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Cui, W.W.; Huang, G.H. Long Term Effect on Diabetic Rats of Feeding Resistant Starch. Sci. Technol. Food Ind. 2014, 35, 374–378, 382. [Google Scholar]
- Chen, Y.C.; Liu, J.H.; Zhang, X.; Cui, J.A.; Chen, X.P. Metabolic Regulation and Mechanism of Multi-Component Resistant Starch on High-Sugar and High-Fat Model Mice. Sci. Technol. Food Ind. 2021, 42, 357–362. [Google Scholar]
- Boll, E.V.J.; Ekström, L.M.N.K.; Courtin, C.M.; Delcour, J.A.; Nilsson, A.C.; Björck, I.M.E.; Östman, E.M. Effects of Wheat Bran Extract Rich in Arabinoxylan Oligosaccharides and Resistant Starch on Overnight Glucose Tolerance and Markers of Gut Fermentation in Healthy Young Adults. Eur. J. Nutr. 2016, 55, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Q.; Zhang, Y.M. Effects of Resistant Starch on Insulin Resistance in Diabetes Mellitus Rats. Acta Nutr. Sin. 2008, 30, 257–261. [Google Scholar]
- Haub, M.D.; Hubach, K.L.; Al-Tamimi, E.K.; Ornelas, S.; Seib, P.A. Different Types of Resistant Starch Elicit Different Glucose Reponses in Humans. J. Nutr. Metab. 2010, 2010, 230501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ma, S.; Wu, J.; Luo, L.; Qiao, S.; Li, R.; Xu, W.; Wang, N.; Zhao, B.; Wang, X.; et al. A Specific Gut Microbiota and Metabolomic Profiles Shifts Related to Antidiabetic Action: The Similar and Complementary Antidiabetic Properties of Type 3 Resistant Starch from Canna Edulis and Metformin. Pharmacol. Res. 2020, 159, 104985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, S.; Jiang, Y.; Wei, Y.; Zhou, X. Regulatory Function of Buckwheat-Resistant Starch Supplementation on Lipid Profile and Gut Microbiota in Mice Fed with a High-Fat Diet. J. Food. Sci. 2019, 84, 2674–2681. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tapia, M.; Hernández-Velázquez, I.; Pichardo-Ontiveros, E.; Granados-Portillo, O.; Gálvez, A.; Tovar, A.R.; Torres, N. Consumption of Cooked Black Beans Stimulates a Cluster of Some Clostridia Class Bacteria Decreasing Inflammatory Response and Improving Insulin Sensitivity. Nutrients 2020, 12, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Dong, L.; Huang, L.; Shi, Z.; Shen, R. Effects of Oat β-Glucan, Oat Resistant Starch, and the Whole Oat Flour on Insulin Resistance, Inflammation, and Gut Microbiota in High-Fat-Diet-Induced Type 2 Diabetic Rats. J. Funct. Foods 2020, 69, 103939. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhang, N.; Zhou, Y.; Zhou, Z.; Bai, Y.; Strappe, P.; Blanchard, C. Manipulations of Glucose/Lipid Metabolism and Gut Microbiota of Resistant Starch Encapsulated Ganoderma Lucidum Spores in T2DM Rats. Food Sci. Biotechnol. 2021, 30, 755–764. [Google Scholar] [CrossRef]
- Klingbeil, E.A.; Cawthon, C.; Kirkland, R.; de La Serre, C.B. Potato-Resistant Starch Supplementation Improves Microbiota Dysbiosis, Inflammation, and Gut-Brain Signaling in High Fat-Fed Rats. Nutrients 2019, 11, 2710. [Google Scholar] [CrossRef] [Green Version]
- De La Serre, C.B.; Ellis, C.L.; Lee, J.; Hartman, A.L.; Rutledge, J.C.; Raybould, H.E. Propensity to High-Fat Diet-Induced Obesity in Rats Is Associated with Changes in the Gut Microbiota and Gut Inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G440–G448. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Guan, Y.; Li, X.; Lei, L.; Liu, J.; Yin, L.; Liu, G.; Wang, Z. Acetic Acid Activates the AMP-Activated Protein Kinase Signaling Pathway to Regulate Lipid Metabolism in Bovine Hepatocytes. PLoS ONE 2013, 8, e67880. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Gao, Z.; Zhang, J.; Ye, X.; Xu, A.; Ye, J.; Jia, W. Sodium Butyrate Stimulates Expression of Fibroblast Growth Factor 21 in Liver by Inhibition of Histone Deacetylase 3. Diabetes 2012, 61, 797–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.Z.; Hao, M.Z.; Meng, Y.; Wang, Q.; Xu, H.Z.; Wei, Y.L.; Cheng, L.Y. Preparation, Efficacy and Application of Resistant Starch. Food Nutr. China 2021, 27, 30–35. [Google Scholar]
- Bindels, L.B.; Segura Munoz, R.R.; Gomes-Neto, J.C.; Mutemberezi, V.; Martínez, I.; Salazar, N.; Cody, E.A.; Quintero-Villegas, M.I.; Kittana, H.; de Los Reyes-Gavilán, C.G.; et al. Resistant Starch Can Improve Insulin Sensitivity Independently of the Gut Microbiota. Microbiome 2017, 5, 12. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Zhou, Z.H. Effect of Resistant Starch on Blood Glucose in Patients with Type 2 Diabetes. J. Tongji Univ. 2014, 35, 56–60. [Google Scholar]
- Strozyk, S.; Rogowicz-Frontczak, A.; Pilacinski, S.; LeThanh-Blicharz, J.; Koperska, A.; Zozulinska-Ziolkiewicz, D. Influence of Resistant Starch Resulting from the Cooling of Rice on Postprandial Glycemia in Type 1 Diabetes. Nutr. Diabetes 2022, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.S.; Sharma, A.; Yadav, R.B. Studies on Effect of Multiple Heating/Cooling Cycles on the Resistant Starch Formation in Cereals, Legumes and Tubers. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S4), 258–272. [Google Scholar] [CrossRef]
- Haini, N.; Jau-Shya, L.; Mohd Rosli, R.G.; Mamat, H. Effects of High-Amylose Maize Starch on the Glycemic Index of Chinese Steamed Buns (CSB). Heliyon 2022, 8, e09375. [Google Scholar] [CrossRef] [PubMed]
- Djurle, S.; Andersson, A.A.M.; Andersson, R. Effects of Baking on Dietary Fibre, with Emphasis on β-Glucan and Resistant Starch, in Barley Breads. J. Cereal Sci. 2018, 79, 449–455. [Google Scholar] [CrossRef]
- Maki, K.C.; Pelkman, C.L.; Finocchiaro, E.T.; Kelley, K.M.; Lawless, A.L.; Schild, A.L.; Rains, T.M. Resistant Starch from High-Amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men. J. Nutr. 2012, 142, 717–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, C.; Liu, Y.L.; Xiao, M.F.; Liu, B.; Zeng, F. Research Progress of RS3 Resistant Starch. Food Ind. Sci. Technol. 2020, 41, 338–344. [Google Scholar]
- Wang, Q. Study on the Hypolipidemic Effect of Lotus Seed Resistant Starch and Its Mechanism. Ph.D. thesis, Fujian Agriculture and Forestry University, Fujian, China, 2018. [Google Scholar]
- Gourineni, V.; Stewart, M.L.; Wilcox, M.L.; Maki, K.C. Nutritional Bar with Potato-Based Resistant Starch Attenuated Post-Prandial Glucose and Insulin Response in Healthy Adults. Foods 2020, 9, 1679. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.L.; Wilcox, M.L.; Bell, M.; Buggia, M.A.; Maki, K.C. Type-4 Resistant Starch in Substitution for Available Carbohydrate Reduces Postprandial Glycemic Response and Hunger in Acute, Randomized, Double-Blind, Controlled Study. Nutrients 2018, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Mah, E.; Garcia-Campayo, V.; Liska, D. Substitution of Corn Starch with Resistant Starch Type 4 in a Breakfast Bar Decreases Postprandial Glucose and Insulin Responses: A Randomized, Controlled, Crossover Study. Curr. Dev. Nutr. 2018, 2, nzy066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, M.L.; Zimmer, J.P. A High Fiber Cookie Made with Resistant Starch Type 4 Reduces Post-Prandial Glucose and Insulin Responses in Healthy Adults. Nutrients 2017, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wu, Y.; Xiao, D.; Guzman, G.; Stewart, M.L.; Gourineni, V.; Burton-Freeman, B.; Edirisinghe, I. Food Prototype Containing Resistant Starch Type 4 on Postprandial Glycemic Response in Healthy Adults. Food Funct. 2020, 11, 2231–2237. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Z.; Deng, B.; Gilbert, R.G.; Sullivan, M.A. The Effect of High-Amylose Resistant Starch on the Glycogen Structure of Diabetic Mice. Int. J. Biol. Macromol. 2022, 200, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.S.; Zheng, H.Y.; Sun, M.Y.; Zhang, Z.H.; Xu, H.; Chen, H. Recent Progress in Physiological Functions and Mechanism of Action of Resistant Starch. Food Sci. 2020, 41, 330–337. [Google Scholar]
- Gargari, B.P.; Namazi, N.; Khalili, M.; Sarmadi, B.; Jafarabadi, M.A.; Dehghan, P. Is There Any Place for Resistant Starch, as Alimentary Prebiotic, for Patients with Type 2 Diabetes? Complement. Ther. Med. 2015, 23, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Tayebi Khosroshahi, H.; Vaziri, N.D.; Abedi, B.; Asl, B.H.; Ghojazadeh, M.; Jing, W.; Vatankhah, A.M. Effect of High Amylose Resistant Starch (HAM-RS2) Supplementation on Biomarkers of Inflammation and Oxidative Stress in Hemodialysis Patients: A Randomized Clinical Trial. Hemodial. Int. 2018, 22, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, Z.; Li, X.; Liu, L.; Hu, X. A More Pronounced Effect of Type III Resistant Starch vs. Type II Resistant Starch on Ameliorating Hyperlipidemia in High Fat Diet-Fed Mice Is Associated with Its Supramolecular Structural Characteristics. Food Funct. 2020, 11, 1982–1995. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, W.; Chen, D.; Zhu, X.; Meng, L. Effects of a Treatment with Se-Rich Rice Flour High in Resistant Starch on Enteric Dysbiosis and Chronic Inflammation in Diabetic ICR Mice. J. Sci. Food Agric. 2017, 97, 2068–2074. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, F.; Ren, X.; Wang, Y.; Blanchard, C. Resistant Starch Manipulated Hyperglycemia/Hyperlipidemia and Related Genes Expression in Diabetic Rats. Int. J. Biol. Macromol. 2015, 75, 316–321. [Google Scholar] [CrossRef]
- Zhu, X.H.; Yang, G.M.; Chen, A.M. Research the Improvement and Mechanism on Insulin Resistance of Raw Banana Powder in Type II Diabetic Mellitus. Ph.D. Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Hao, X.; Chen, F.; Wang, J. Study on Processing Technology of Banana Resistant Starch Biscuit. Food Technol. 2019, 44, 223–227. [Google Scholar]
- Xiao, B.; Deng, D.W. Resistant Starch to Diabetic Mice the Regulation of Blood Sugar and the Effect of Short Chain Fatty Acid. Master’s Thesis, Nanchang University, Nanchang, China, 2018. [Google Scholar]
- Li, T.; Teng, H.; An, F.; Huang, Q.; Chen, L.; Song, H. The Beneficial Effects of Purple Yam (Dioscorea Alata L.) Resistant Starch on Hyperlipidemia in High-Fat-Fed Hamsters. Food Funct. 2019, 10, 2642–2650. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q. Preparation of Resistant Starch Type 3 from Purple Disocorea Alata L and Its Application on Biscuit. Master’s thesis, Nanchang University, Nanchang, China, 2015. [Google Scholar]
- Wang, Y.; Perfetti, R.; Greig, N.H.; Holloway, H.W.; DeOre, K.A.; Montrose-Rafizadeh, C.; Elahi, D.; Egan, J.M. Glucagon-like Peptide-1 Can Reverse the Age-Related Decline in Glucose Tolerance in Rats. J. Clin. Investig. 1997, 99, 2883–2889. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Ma, X.; Zhang, S.; Zhao, D.; Liu, X. Resistant Starch Produces Antidiabetic Effects by Enhancing Glucose Metabolism and Ameliorating Pancreatic Dysfunction in Type 2 Diabetic Rats. Int. J. Biol. Macromol. 2018, 110, 276–284. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, Y.; Zhuang, W.; Lu, X.; Luo, X.; Zheng, B. Genome-Wide Transcriptional Changes in Type 2 Diabetic Mice Supplemented with Lotus Seed Resistant Starch. Food Chem. 2018, 264, 427–434. [Google Scholar] [CrossRef]
- MacNeil, S.; Rebry, R.M.; Tetlow, I.J.; Emes, M.J.; McKeown, B.; Graham, T.E. Resistant Starch Intake at Breakfast Affects Postprandial Responses in Type 2 Diabetics and Enhances the Glucose-Dependent Insulinotropic Polypeptide—Insulin Relationship Following a Second Meal. Appl. Physiol. Nutr. Metab. 2013, 38, 1187–1195. [Google Scholar] [CrossRef]
- Klosterbuer, A.S.; Thomas, W.; Slavin, J.L. Resistant Starch and Pullulan Reduce Postprandial Glucose, Insulin, and GLP-1, but Have No Effect on Satiety in Healthy Humans. J. Agric. Food Chem. 2012, 60, 11928–11934. [Google Scholar] [CrossRef] [PubMed]
- Warman, D.J.; Jia, H.; Kato, H. The Potential Roles of Probiotics, Resistant Starch, and Resistant Proteins in Ameliorating Inflammation during Aging (Inflammaging). Nutrients 2022, 14, 747. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Dong, H.; Zang, Z.; Wu, W.; Zhu, W.; Zhang, H.; Guan, Y. Kudzu Resistant Starch: An Effective Regulator of Type 2 Diabetes Mellitus. Oxid. Med. Cell. Longev. 2021, 2021, 4448048. [Google Scholar] [CrossRef]
- Dainty, S.A.; Klingel, S.L.; Pilkey, S.E.; McDonald, E.; McKeown, B.; Emes, M.J.; Duncan, A.M. Resistant Starch Bagels Reduce Fasting and Postprandial Insulin in Adults at Risk of Type 2 Diabetes. J. Nutr. 2016, 146, 2252–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Meng, S.; Chen, D.; Zhu, X.; Yuan, H. Structure Characterization and Hypoglycemic Effects of Dual Modified Resistant Starch from Indica Rice Starch. Carbohydr. Polym. 2014, 103, 81–86. [Google Scholar] [CrossRef]
- Nilsson, A.C.; Ostman, E.M.; Holst, J.J.; Björck, I.M.E. Including Indigestible Carbohydrates in the Evening Meal of Healthy Subjects Improves Glucose Tolerance, Lowers Inflammatory Markers, and Increases Satiety after a Subsequent Standardized Breakfast. J. Nutr. 2008, 138, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Arias-Córdova, Y.; Ble-Castillo, J.L.; García-Vázquez, C.; Olvera-Hernández, V.; Ramos-García, M.; Navarrete-Cortes, A.; Jiménez-Domínguez, G.; Juárez-Rojop, I.E.; Tovilla-Zárate, C.A.; Martínez-López, M.C.; et al. Resistant Starch Consumption Effects on Glycemic Control and Glycemic Variability in Patients with Type 2 Diabetes: A Randomized Crossover Study. Nutrients 2021, 13, 52. [Google Scholar] [CrossRef]
Type of RS and Its Source | Model | Dosage/Duration | Intestinal Hormone/Intestinal Microbiota | Inferences | Ref. |
---|---|---|---|---|---|
76% HAM-RS2 (high-amylose maize) +24% raw potato starch | Thirty female pigs (BW 63.1 ± 4.4 kg) | RSD and AXD diets: 2.7% of average BW (75 kg); WSD diet: 2.44% of BW/3 weeks | Increase PYY | PYY promoted intestinal secretion, promotes GLP-1 secretion and stimulates insulin secretion | [19] |
Bread enriched with resistant starch (RSB) (15% of total starch) | Ten apparently healthy subjects (mean 27 years; SD 3.9) with a normal body mass index (mean 24.5 kg m−2; SD 2.8) | An amount corresponding to 50 g of available carbohydrates or a solution containing 50 g of glucose diluted in 250 mL of water/Test sessions, total 4 weeks. | Increase GLP-1 and PYY | The food contains RS and could retard the absorption of glucose | [20] |
HAM-RS2(high-amylose maize type 2 resistant starch) | Eighteen overweight, healthy adults | Either muffins enriched with 30 g HAM-RS2 (n = 11) or 0 g HAM-RS2 (control; n = 7) daily/6 weeks | Increase PYY | The consumption of HAM-RS2 can improve glucose homeostasis, lower leptin concentrations, and increase fasting PYY | [21] |
Pancake with RS | Eight healthy, adult man, middle-aged (51.4 ± 11.5 years), normal- and over-weight (BMI = 29.84 ± 7.77 kg/m2; percent body fat = 26.42 ± 11.62%) | Consumed together with water (180 mL) within 12 min | Increase SCFA production | Combination of the RS and WP might enhance the gut SCFA production and reduce the blood glucose | [25] |
RS (Hi-Maize 260) | One hundred adult male Sprague–Dawley rats | On the basis of the amount of Hi-Maize (56% RS) used/10 days | Increase GLP-1 and PYY | The plasma GLP-1 and PYY levels that regulate blood glucose were increased | [26] |
Corn, mung bean and Pueraria RS | Fifteen diabetic rats induced with STZ | 19 weeks | Increase GLP-1 | The GLP-1 show a different content, the level of it might be related to the level the blood glucose | [27] |
Ce-RS3 (RS3 from canna edulis) | Twenty-four diabetic mice induced with STZ | 2 g/kg/11 weeks | Improve Phascolarctobacterium, Ruminococcaceae_NK4A214_group, Ruminococcaceae_UCG_014, Helicobacter and Ruminooccu; Decrease Streptococcus and Bacillus genus | The gut microbial properties of the RS group were tightly associated with the T2DM-related indexes | [32] |
BRS (Buckwheat-RS) | Twenty-seven male 4-week-old C57BL/6 mice | 6 weeks | Increase Lactobacillus, Bifidobacterium and Enterococcus; Decrease Escherichia coli | The gut microbiota change caused by BRS might be associated with the capacity of regulating the gut redox status | [33] |
ORS (oat RS) | Fifty male Sprague–Dawley rats (4 weeks old, WD 105 ± 10 g) | 6 weeks | Increase Clostridium and Butyricoccus; Decrease Bacteroides, Lactobacillus, Oscillospira and Ruminococcus | The anti-diabetic effects of the ORS were achieved by altering the gut microbiota | [35] |
RS (Hi-maize TM) | Twenty-four healthy Sprague–Dawley rats (male, 190 ± 10 g weight) | 10.5 g/kg bw/day/28 days | Increase Proteobacteria | The reduction in the blood glucose might be related to the changes in the fecal microbial community which promoted an anti-inflammatory response | [37] |
Kind of RS | Results | Conclusion | Ref. |
---|---|---|---|
RS2 | The glycemic status and inflammatory markers in women with T2DM could be improved. | The improvement in glycemic status was due to the reduction of the TNF-α levels. | [62] |
RS2 | The expression levels of the insulin receptor substrate 1 and the insulin receptor substrate 2 were enhanced in the T2DM mice. | RS could regulate the expression level of the genes related to the glucose metabolism and improving the pancreatic dysfunction. | [73] |
Lotus seed RS (LSRS) | The blood glucose level was reduced by 16.0–33.6% and the serum insulin level was recovered by 25.0–39.0% in the T2DM mice. | The LSRS achieved the hypoglycemic effect by modulating the expression levels of the various key factors. | [74] |
Kudzu RS | The value of the fasting blood glucose of the T2DM mice was decreased. | Kudzu RS restored the expression of the relevant protein and it led to the improvements of the insulin synthesis efficiency and the glucose sensitivity in the T2DM mice. | [78] |
Bagel with high-amylose maize RS (RS2) | The fasting IS of the RS bagel treatment is lower than the control bagel treatment. | The amount of insulin required to manage the postprandial glucose were reduced by the high-HAM-RS2 bagel through the improvement of the glycemic efficiency, while improving the fasting IS in adults at an increased risk of T2DM. | [79] |
Indica rice resistant starch (IR-RS) prepared by modification | The blood glucose of the rats with T2DM was lower than those in the control group. | The IR-RS digestibility was affected as well as the blood glucose levels of the diabetic mice | [80] |
White wheat flour bread (WWB) enriched RS | The glucose tolerance and GLP-1 were improved, compared with that without WWB. | The consumption of RS might affect the glycemic excursions through a mechanism involving colonic fermentation. | [81] |
Banana starch (NBS) with a high resistant starch (RS) | The 24 h mean blood glucose (24 h MBG) value of the T2DM patients was lower in the NBS treatment but not significant. | The result might be influenced by different baseline microbiota, an underlying dietary variability, or other environmental factors. | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Lu, W.; Liang, Y.; Wang, L.; Jin, N.; Zhao, H.; Fan, B.; Wang, F. Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review. Molecules 2022, 27, 7111. https://doi.org/10.3390/molecules27207111
Liu J, Lu W, Liang Y, Wang L, Jin N, Zhao H, Fan B, Wang F. Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review. Molecules. 2022; 27(20):7111. https://doi.org/10.3390/molecules27207111
Chicago/Turabian StyleLiu, Jiameng, Wei Lu, Yantian Liang, Lili Wang, Nuo Jin, Huining Zhao, Bei Fan, and Fengzhong Wang. 2022. "Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review" Molecules 27, no. 20: 7111. https://doi.org/10.3390/molecules27207111