Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis?
Abstract
:1. General Considerations
2. Antioxidants
2.1. Classification of Antioxidants
2.2. Toxicity of Antioxidants
2.3. Detection of Antioxidants
3. Chemical Analysis of Synthetic Antioxidants in Foodstuffs
3.1. Chromatographic Analysis of Synthetic Phenolic Antioxidants
3.2. Extraction Methods for Synthetic Phenolic Antioxidants
3.2.1. Liquid–Liquid Extraction (LLE)
Extraction Method | Extractant | Sample | Antioxidant | Technique | Experimental Conditions | LOD | LR | Rec. (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
LLME | Organic solvent | Soya bean oil Peanut oil Cereal cooking oil | BHT BHA TBHQ | GC/MS | DB-17 capillary column Helium carrier gas | 0.001 mg/L 0.002 mg/L 0.004 mg/L | 0.01–20 mg/L | 94–108 | [16] |
QuEChERS | Adjust of pH NaOH MgSO4, NaCl Acetonitrile PSA | Fruit juice | BHA BHT TBHQ PG OG | GC/MS/MS | TG-5MS capillary column Helium carrier gas | 8.14–25.45 μmol/L | 100–1000 ng/L | 80–115 | [18] |
DLLME | NR | Corn Sunflower Olive Canola Grape seed | BHT BHA TBHQ | GC/FID | HP-1 capillary column Helium carrier gas | 0.32 ng/mL 0.42 ng/mL 0.13 ng/mL | 0.13–0.42 ng/mL | NR | [7] |
SBSE | PEDOT/MIL-101/PVA | Fruit juice Milk Infant formula Coffee Creamer | BHT BHA TBHQ | HPLC/UV | C18 column Water and acetonitrile | 0.05–0.15 μg/kg | 0.2–200 μg/kg | 87–101 | [65] |
LDS-DLLME-MSPE | Organic solvent, DA@Fe3O4 | Edible oil | BHT BHA TBHQ PG | HPLC/DAD | Reversed-phase C18 Column Methanol and water with 0.5% acetic acid | 1.2–5.8 ng/mL | 50–2000 ng/mL | 90–100 | [19] |
WSVAME | Surfactant | Edible oil | BHA TBHQ | HPLC/UV | 20–26 μg/L | 0.2–200 μg/mL | 95–102 | [14] | |
SPE | Graphene | Precooked food | BHA PG | HPLC/UV | Chromaphase RP-18 | 12 mg/L 14 mg/L | 0.4–16 mg/L | 87–89 | [13] |
VACPE | Nonionic surfactant | Spices | BHT BHA TBHQ PG | HPLC/DAD | Acetonitrile and distilled-deionized water contained 0.1% acetic acid | 3.2–9.8 ng/mL | 8.0–800 ng/mL | 89–103.5 | [66] |
LLE | Iso-propanol/n-hexane | Blend oil Olive oil Prickly oil Ginger oil Garlic oil | PG TBHQ BHA OG BHT | HPLC/FLD | WondaSil C18 column Methanol, acetonitrile, and 1% formic acid in water | NR | 0.28–31.36 μg/L | 97–108 | [67] |
UALLME | Organic solvent | Edible oil | BHT BHA TBHQ | GC/MS | HP-5MS column Helium carrier gas | 0.04 ng/mL 0.03 ng/mL 0.04 ng/mL | 1–50 ng/mL | 86–115 | [68] |
LLE | Organic solvent | Edible oil | PG TBHQ BHA OG DG BHT | HPL/-UV | C18 column 5% acetic acid in Acetonitrile, 5% acetic acid in water | 0.11–0.98 μg/mL | 0.78–100 lg/mL | 91–116 | [64] |
LLE-DSPE | Organic Solvent PSA GCB | Edible oil | BHT BHA | GC/MS | Helium carrier gas | 0.002–0.04 mg/kg | 0.5–20 mg/kg | 74–118 | [17] |
DLLME | Organic Solvent Centrifugation | Fruit juice | BHT BHA | HPLC/UV | C18 reversed-phase column Methanol and water glacial and acetic acid | 0.9 μg/L 2.5 μg/L | 2–2500 μg/L | 95–100 | [69] |
QuEChERS | NR | Salmon silage | BHA PG | HPLC/MS/MS | Ascentis® Express C18 column Methanol/95%, water, and 5 mM ammonium formate in methanol | 0.12–0.15 mg/kg | 0.01–10 µg/mL | 97–101 | [70] |
SPME | PTFE-faced septum | Beverages | BHT BHA TBHQ | GC/MS/MS | Rtx-1301 capillary column Helium carrier gas | 0.005 μg/L 0.025 μg/L 0.05 μg/L | 0.005–0.2 μg/L | 98–109 | [71] |
CPE | Tergitol TMN-6 (TMN-6) nonionic surfactant | Edible oils | BHT BHA TBHQ PG | HPLC/UV | Reversed-phase C18 methanol and water with 1.5% acetic acid | 1.6–9.0 ng/mL | 1.0–500 ng/mL | 90–98 | [72] |
DLLME | Organic Solvent Centrifugation | Honey | BHT BHA | GC/FID | DB-1 capillary column Helium carrier gas | 1.7–41 ng/mL | 5.0–20,000 ng/mL | 144–186 | [57] |
SBSE-TD | NR | Soft drink | BHT BHA TBHQ | GC/MS/MS | HP-5MS column Helium carrier gas | 0.03–0.05 ng/mL | 0.5–20 ng/mL | 81–117 | [15] |
UALLME | Organic Solvent Centrifugation | Edible oils | TBHQ | HPLC/UV | C18 reversed-phase column Methanol and 0.5% acetic acid aqueous solution | 0.02 μg/mL | 5–500 μg/mL | 99–112 | [20] |
LLE | Organic Solvent Ultrasonic | Sunflower oil Olive oil | BHA PG TBHQ | Microchip capillary electrophoresis | Borate buffer pH 8.5 | 0.8–4.3 μmol/L | 10–200 μmol/L | 94–106 | [73] |
LLE | Organic Solvent Centrifugation | Sesame oil | BHA TBHQ | HPLC/CL | Methanol and water (80:20 v/v) | 0.024 μg/mL 0.033 μg/mL | 0.1–10 μg/mL | 98–102 | [74] |
LLE | Organic Solvent Centrifugation | Edible oil | BHT BHA | SWV | AuNPs/GCE BR buffer pH 2.0 | 0.039–0.08 μmol/L | 0.10–1.50 μmol/L | 96–101 | [75] |
LLE | Organic Solvent Ultrasonic Centrifugation | Olive oil Peanut oil Potato chips Cookies | BHA PG | LSV | Nafion/SAP/ HRP/Au- GN/GCE BR buffer pH 2.0 | 0.046 mg/L 0.024 mg/L | 0.1–100 mg/L | 87–126 | [76] |
LLE | Organic solvents | Edible oil | BHA TBHQ | LSV | AuNPs/ERGO/GCE PBS, pH 7.0 | 0.23 μmol/L 0.31 μmol/L | 1.0–10 μmol/L | NR | [77] |
LLE | Organic Solvent Centrifugation | Chewing gum | TBHQ BHA PG | MPA/FIA | Carbon glassy BR buffer, pH 2.0 | NR | NR | 95–116 | [78] |
LLE | Organic Solvent Centrifugation | Vegetable oil | TBHQ BHA | SWV | ZnO TPHS@GO/GCE citric acid, Na2HPO4 buffer, pH 3.0 | 0.14 μmol/L 0.05 μmol/L | 0.30–65 μmol/L | 95–106 | [49] |
LLE | Organic Solvent Centrifugation | Potato chips | BHA | DPV | NiHCF modified GWCE PBS, pH 7.0 | 0.6 μmol/L | 1.2–107 μmol/L | 98–100 | [50] |
LLE | Bz + EtOH binary mixture (1:2) in 0.1 mol/L H2SO4 | Edible oil | BHT BHA TBHQ | SWV | Ultramicroelectrode PBS, pH 7.0 | NR | NR | 89–118 | [51] |
LLE | Organic Solvent Centrifugation | Ghee Sunflower oil Salad dressing | BHT BHA TBHQ | LSV | AuNPs/graphite | 0.4 μmol/L 0.1 μmol/L 0.6 μmol/L | NR | 90–106 | [79] |
LLE | Organic Solvent Centrifugation | Potato chips | BHA | DPV | POC/MWCNT | 0.11 μmol/L | 0.33–110 μmol/L | 98–105 | [52] |
LLE | Brij® 35 | Linseed oils | BHA TBHQ | DPV | MWNT-Brij® 35 modified glassy carbon electrode in Brij® 35 micellar medium LiClO4 with Brij® 35 | 0.26 μmol/L 0.15 μmol/L | 1.0–1000 μmol/L | 99–103 | [80] |
LLE | Organic Solvent | Dry potato flakes | BHA | AMP | CuHCFNP/EMIMBF4 gel-modified electrode Phosphate buffer, pH 7 | 0.5 μmol/L | 1.5–1000 μmol/L | 97–99 | [81] |
LLE | Organic Solvent | Linseed oils | BHA TBHQ | DPV | poly-carminic acid/MWNT/GCE Britton–Robinson buffer (BR) pH 2.0 | 0.23 μmol/L 0.36 μmol/L | 1.5–100 μmol/L | 100–103 | [82] |
3.2.2. Solid-Phase Extraction (SPE)
3.2.3. Ultrasound Extraction
3.2.4. Solid-Phase Microextraction
3.2.5. Stir Bar Sorptive Extraction
3.2.6. Liquid–Liquid Microextraction
3.2.7. Cloud-Point Extraction
3.2.8. QuEChERS
3.3. Electrochemical Analysis of Synthetic Phenolic Antioxidants
3.4. Working Electrodes Used in Synthetic Phenolic Antioxidant Analysis
4. Trends and Perspectives in Synthetic Antioxidant Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.A. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of ActionSynthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Actio. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. (Eds.) Fennema’s Food Chemistry, 4th ed.; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Martins, F.C.O.L.; Sentanin, M.A.; De Souza, D. Analytical Methods in Food Additives Determination: Compounds with Functional Applications. Food Chem. 2019, 272, 732–750. [Google Scholar] [CrossRef] [PubMed]
- Samsidar, A.; Siddiquee, S.; Shaarani, S.M. A Review of Extraction, Analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. [Google Scholar] [CrossRef]
- Codex Stan 192-1995; General Standard for Food Additives. WHO FAO: Rome, Italy, 2018; p. 475.
- Afshar Mogaddam, M.R.; Farajzadeh, M.A.; Tuzen, M.; Jouyban, A.; Khandaghi, J. Organic Solvent-Free Elevated Temperature Liquid–Liquid Extraction Combined with a New Switchable Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction of Three Phenolic Antioxidants from Oil Samples. Microchem. J. 2021, 168, 106433. [Google Scholar] [CrossRef]
- Liu, R.; Ruan, T.; Song, S.; Lin, Y.; Jiang, G. Determination of Synthetic Phenolic Antioxidants and Relative Metabolites in Sewage Treatment Plant and Recipient River by High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1381, 13–21. [Google Scholar] [CrossRef]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants and Transformation Products in Human Sera from United States Donors. Environ. Sci. Technol. Lett. 2018, 5, 419–423. [Google Scholar] [CrossRef]
- Çelik, G.; Saygın, Ö.; Akmehmet Balcıoğlu, I. Multistage Recovery Process of Phenolic Antioxidants with a Focus on Hydroxytyrosol from Olive Mill Wastewater Concentrates. Sep. Purif. Technol. 2021, 259, 117757. [Google Scholar] [CrossRef]
- Davoli, E.; Bastone, A.; Bianchi, G.; Salmona, M.; Diomede, L. A Simple Headspace Gas Chromatography/Mass Spectrometry Method for the Quantitative Determination of the Release of the Antioxidants Butylated Hydroxyanisole and Butylated Hydroxytoluene from Chewing Gum. Rapid Commun. Mass Spectrom. 2017, 31, 859–864. [Google Scholar] [CrossRef]
- Zhao, K.; Cao, X.; Di, Q.; Wang, M.; Cao, H.; Deng, L.; Liu, J.; Wang, F.; Tan, T. Synthesis, Characterization and Optimization of a Two-Step Immobilized Lipase. Renew. Energy 2017, 103, 383–387. [Google Scholar] [CrossRef]
- Mateos, R.; Vera, S.; Díez-Pascual, A.M.; San Andrés, M.P. Graphene Solid Phase Extraction (SPE) of Synthetic Antioxidants in Complex Food Matrices. J. Food Compos. Anal. 2017, 62, 223–230. [Google Scholar] [CrossRef]
- Amlashi, N.E.; Hadjmohammadi, M.R.; Nazari, S.S.S.J. Water-Contained Surfactant-Based Vortex-Assisted Microextraction Method Combined with Liquid Chromatography for Determination of Synthetic Antioxidants from Edible Oil. J. Chromatogr. A 2014, 1361, 9–15. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Determination of Synthetic Phenolic Antioxidants in Soft Drinks by Stir-Bar Sorptive Extraction Coupled to Gas Chromatography-Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 665–673. [Google Scholar] [CrossRef]
- Ding, M.; Zou, J. Rapid Micropreparation Procedure for the Gas Chromatographic-Mass Spectrometric Determination of BHT, BHA and TBHQ in Edible Oils. Food Chem. 2012, 131, 1051–1055. [Google Scholar] [CrossRef]
- Fang, Y.; Tian, W.; Pei, F.; Li, P.; Shao, X.L.; Fan, Y.; Hu, Q. Simultaneous Determination of Pesticide Residues and Antioxidants in Blended Oil Using a Liquid-Liquid Extraction Combined with Dispersive Solid Phase Extraction Method. Food Chem. 2017, 229, 347–353. [Google Scholar] [CrossRef]
- Gupta, M.K.; Anand, A.; Asati, A.; Thati, R.; Katragunta, K.; Agarwal, R.; Mudiam, M.K.R. Quantitative Determination of Phenolic Antioxidants in Fruit Juices by GC-MS/MS Using Automated Injector Port Silylation after QuEChERS Extraction. Microchem. J. 2021, 160, 105705. [Google Scholar] [CrossRef]
- Li, X.; Meng, D.; Zhang, L.; Zhao, J.; Yang, Y. Low-Density Solvent-Based Dispersive Liquid–Liquid Microextraction Coupled with Hydrophobic Magnetic Nanoparticles for Determination of Synthetic Phenolic Antioxidants in Vegetable Oils by High-Performance Liquid Chromatography. Sep. Sci. Technol. 2018, 53, 2224–2231. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, K.; Yu, J.; Bi, Y. A Green Ultrasonic-Assisted Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for the HPLC-UV Determination of TBHQ in Edible Oils. Food Anal. Methods 2017, 10, 3209–3215. [Google Scholar] [CrossRef]
- Galli, A.; De Souza, D.; Garbellini, G.S.; Coutinho, C.F.B.; Mazo, L.H.; Avaca, L.A.; Machado, S.A.S. Utilização de Técnicas Eletroanalíticas Na Determinação de Pesticidas Em Alimentos. Quim. Nova 2006, 29, 105–112. [Google Scholar] [CrossRef] [Green Version]
- De Souza, D.; Codognoto, L.; Malagutti, A.R.; Toledo, R.A.; Pedrosa, V.A.; Oliveira, R.T.S.; Mazo, L.H.; Avaca, L.A.; Machado, S.A.S. Voltametria de Onda Quadrada. Segunda Parte: Aplicações. Quim. Nova 2004, 27, 790–797. [Google Scholar] [CrossRef]
- Nahas, R.I. Natural Antioxidants as Food and Beverage Ingredients. In Natural Food Additives, Ingredients and Flavourings; Woodhead Publishing: Sawston, UK, 2012; pp. 100–126. [Google Scholar]
- Baines, D.; Seal, R. Natural Food Additives, Ingredients and Flavourings; Woodhead Publishing: Sawston, UK, 2012; pp. 1–460. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the Chemistry, Food Applications, Legislation and Role as Preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Miková, K. The Regulation of Antioxidants in Food; Woodhead Publishing: Sawston, UK, 2001. [Google Scholar]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Ousji, O.; Sleno, L. Identification of in Vitro Metabolites of Synthetic Phenolic Antioxidants BHT, BHA, and TBHQ by LC-HRMS/MS. Int. J. Mol. Sci. 2020, 21, 9525. [Google Scholar] [CrossRef]
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, Occurrence, Toxicity and Environmental Health Risks of Synthetic Phenolic Antioxidants: A Review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef] [PubMed]
- Makahleh, A.; Saad, B.; Bari, M.F. Synthetic Phenolics as Antioxidants for Food Preservation; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782420972. [Google Scholar]
- European Food Safety Authority. Scientific Opinion on the Re-Evaluation of Butylated Hydroxyanisole—BHA (E 320) as a Food Additive. EFSA J. 2011, 9, 2392. [Google Scholar] [CrossRef]
- Felter, S.P.; Zhang, X.; Thompson, C. Butylated Hydroxyanisole: Carcinogenic Food Additive to Be Avoided or Harmless Antioxidant Important to Protect Food Supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Z.; Wang, W.; Zhou, Q.; Shi, G.; Wei, F.; Jiang, G. Developmental Toxicity of Synthetic Phenolic Antioxidants to the Early Life Stage of Zebrafish. Sci. Total Environ. 2018, 643, 559–568. [Google Scholar] [CrossRef]
- Codex STAN 192-1995; Codex General Standard for Food Additives (GSFA) Online Database. FAO/WHO: Geneva, Switzerland, 2019; p. 490.
- Brasil Agência Nacional de Vigilância Sanitária—ANVISA. Available online: http://portal.anvisa.gov.br/institucional%0Ahttps://consultas.anvisa.gov.br/#/saude/ (accessed on 28 August 2021).
- European Food Safety Authority. Food Additives. Available online: https://www.efsa.europa.eu/en/topics/topic/food-additives (accessed on 6 September 2021).
- The ADI Is Listed in Units of Mg per Kg of Body Weight. 1 2; FAO/WHO: Geneva, Switzerland, 2008.
- Food and Drug Administration (FDA) CFR—Code of Federal Regulations. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=50.25 (accessed on 14 December 2021).
- International Agency for Research on Cancer. Agents Classified by the IARC Monographs. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; WHO: Geneva, Switzerland, 2021; Volume 1-129, p. 1. [Google Scholar]
- Aguilar, R.; Crebelli, B.; Dusemund, P.; Galtier, J.; Gilbert, D.M.; Gott, U.; Gundert-Remy, J.; König, C.; Lambré, J.-C.; Leblanc, A.; et al. Scientific Opinion on the Re-Evaluation of Butylated Hydroxytoluene BHT (E 321) as a Food Additive. EFSA J. 2012, 10, 2588. [Google Scholar] [CrossRef]
- Rodil, R.; Quintana, J.B.; Basaglia, G.; Pietrogrande, M.C.; Cela, R. Determination of Synthetic Phenolic Antioxidants and Their Metabolites in Water Samples by Downscaled Solid-Phase Extraction, Silylation and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2010, 1217, 6428–6435. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.Y.; Lim, W.; You, S.; Song, G. Butylated Hydroxyanisole Exerts Neurotoxic Effects by Promoting Cytosolic Calcium Accumulation and Endoplasmic Reticulum Stress in Astrocytes. J. Agric. Food Chem. 2019, 67, 9618–9629. [Google Scholar] [CrossRef]
- Baran, A.; Yildirim, S.; Ghosigharehaghaji, A.; Bolat, I.; Sulukan, E.; Ceyhun, S.B. An Approach to Evaluating the Potential Teratogenic and Neurotoxic Mechanism of BHA Based on Apoptosis Induced by Oxidative Stress in Zebrafish Embryo (Danio Rerio). Hum. Exp. Toxicol. 2021, 40, 425–438. [Google Scholar] [CrossRef]
- Sarmah, R.; Kanta Bhagabati, S.; Dutta, R.; Nath, D.; Pokhrel, H.; Mudoi, L.P.; Sarmah, N.; Sarma, J.; Ahmed, A.M.; Jyoti Nath, R.; et al. Toxicity of a Synthetic Phenolic Antioxidant, Butyl Hydroxytoluene (BHT), in Vertebrate Model Zebrafish Embryo (Danio Rerio). Aquac. Res. 2020, 51, 3839–3846. [Google Scholar] [CrossRef]
- Ham, J.; Lim, W.; Park, S.; Bae, H.; You, S.; Song, G. Synthetic Phenolic Antioxidant Propyl Gallate Induces Male Infertility through Disruption of Calcium Homeostasis and Mitochondrial Function. Environ. Pollut. 2019, 248, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Christian, G.D.; Dasgupta, P.; Shug, K. Analytical Chemistry; University of Washington: Washington, DC, USA, 2013; Volume 21, ISBN 9789535108375. [Google Scholar]
- Karovičová, J.; Šimko, P. Determination of Synthetic Phenolic Antioxidants in Food by High-Performance Liquid Chromatography. J. Chromatogr. A 2000, 882, 271–281. [Google Scholar] [CrossRef]
- Demirhan, B.; Kara, H.E.Ş.; Demirhan, B.E. Overview of Green Sample Preparation Techniques in Food Analysis. In Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Gan, T.; Zhao, A.X.; Wang, S.H.; Lv, Z.; Sun, J.Y. Hierarchical Triple-Shelled Porous Hollow Zinc Oxide Spheres Wrapped in Graphene Oxide as Efficient Sensor Material for Simultaneous Electrochemical Determination of Synthetic Antioxidants in Vegetable Oil. Sens. Actuators B Chem. 2016, 235, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Richard Prabakar, S.J.; Sriman Narayanan, S. Flow Injection Analysis of BHA by NiHCF Modified Electrode. Food Chem. 2010, 118, 449–455. [Google Scholar] [CrossRef]
- Noel Robledo, S.; Alicia Zón, M.; Daniel Ceballos, C.; Fernández, H. Qualitative and Quantitative Electroanalysis of Synthetic Phenolic Antioxidant Mixtures in Edible Oils Based on Their Acid-Base Properties. Food Chem. 2011, 127, 1361–1369. [Google Scholar] [CrossRef]
- Manoranjitham, J.J.; Narayanan, S.S. Electrochemical Sensor for Determination of Butylated Hydroxyanisole (BHA) in Food Products Using Poly O-Cresolphthalein Complexone Coated Multiwalled Carbon Nanotubes Electrode. Food Chem. 2021, 342, 128246. [Google Scholar] [CrossRef]
- Tracy, M. Improved Determination of Antioxidants in Edible Oils Using Solid Core LC Columns; Thermo Fisher Scientific: Sunnyvale, CA, USA, 2014; pp. 6–9. [Google Scholar]
- European Union Reference Laboratory. Evaluation Report on the Analytical Methods Submitted in Connection with the Application for the Authorisation of Feed Additives According to Regulation (EC) No 1831/2003; European Union Reference Laboratory for Feed Additives (EURL-FA) JRC: Geel, Belgium, 2012; pp. 2–8. [Google Scholar]
- International Union of Pure and Applied Chemistry. Commission on Oils, Fats and Derivatives. In Standard Methods for the Analysis of Oils, Fats and Derivatives; 1st Supplement to the 7th Edition; International Union of Pure and Applied Chemistry: Research Triangle Park, NC, USA, 1992; p. 151. [Google Scholar]
- Du, B.; Shen, M.; Pan, Z.; Zhu, C.; Luo, D.; Zeng, L. Trace Analysis of Multiple Synthetic Phenolic Antioxidants in Foods by Liquid Chromatography–Tandem Mass Spectrometry with Complementary Use of Electrospray Ionization and Atmospheric Pressure Chemical Ionization. Food Chem. 2021, 375, 131663. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Abbaspour, M.; Mogaddam, M.R.A.; Ghorbanpour, H. Determination of Some Synthetic Phenolic Antioxidants and Bisphenol A in Honey Using Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography-Flame Ionization Detection. Food Anal. Methods 2015, 8, 2035–2043. [Google Scholar] [CrossRef]
- Sandra, P.; David, F.; Vanhoenacker, G. Chapter 5 Advanced Sample Preparation Techniques for the Analysis of Food Contaminants and Residues. Compr. Anal. Chem. 2008, 51, 131–174. [Google Scholar] [CrossRef]
- André, C.; Castanheira, I.; Cruz, J.M.; Paseiro, P.; Sanches-Silva, A. Analytical Strategies to Evaluate Antioxidants in Food: A Review. Trends Food Sci. Technol. 2010, 21, 229–246. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, B. Liquid-Liquid Extraction (LLE). Sep. Purif. Technol. Biorefineries 2013, 61–78. [Google Scholar] [CrossRef]
- Silva, L.L.B.; Mageste, A.B.; de Valverde, B.P.; Caires, L.L.R.; do Hespanhol, M.C.; Ferreira, G.M.D. Liquid-Liquid Equilibrium of Aqueous Two-Phase Systems Formed by Non-Ionic Surfactant (Triton X-165 or Triton X-305) and Ionic Liquid Based on the Choline Cation (Choline Bitartrate or Choline Dihydrogen Citrate). J. Mol. Liq. 2020, 318, 114030. [Google Scholar] [CrossRef]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Sample Preparation and Extraction Methods for Pesticides in Aquatic Environments: A Review. TrAC—Trends Anal. Chem. 2020, 123, 115772. [Google Scholar] [CrossRef]
- de Pinho, G.P.; Neves, A.A.; de Queiroz, M.E.L.R.; Silvério, F.O. Optimization of the Liquid-Liquid Extraction Method and Low Temperature Purification (LLE-LTP) for Pesticide Residue Analysis in Honey Samples by Gas Chromatography. Food Control 2010, 21, 1307–1311. [Google Scholar] [CrossRef]
- Kim, J.M.; Choi, S.H.; Shin, G.H.; Lee, J.H.; Kang, S.R.; Lee, K.Y.; Lim, H.S.; Kang, T.S.; Lee, O.H. Method Validation and Measurement Uncertainty for the Simultaneous Determination of Synthetic Phenolic Antioxidants in Edible Oils Commonly Consumed in Korea. Food Chem. 2016, 213, 19–25. [Google Scholar] [CrossRef]
- Nurerk, P.; Bunkoed, O.; Jullakan, S.; Khongkla, S.; Llompart, M.; Poorahong, S. A Dumbbell-Shaped Stir Bar Made from Poly(3,4-Ethylenedioxythiophene)-Coated Porous Cryogel Incorporating Metal Organic Frameworks for the Extraction of Synthetic Phenolic Antioxidants in Foodstuffs. J. Chromatogr. A 2021, 1655, 462497. [Google Scholar] [CrossRef]
- Li, X.L.; Meng, D.L.; Zhao, J.; Yang, Y.L. Determination of Synthetic Phenolic Antioxidants in Essence Perfume by High Performance Liquid Chromatography with Vortex-Assisted, Cloud-Point Extraction Using AEO-9. Chin. Chem. Lett. 2014, 25, 1198–1202. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, H.L.; Sun, Y.M.; Gu, H.W.; Liu, Z.; Liu, Y.J.; Yu, R.Q. Simultaneous Determination of Phenolic Antioxidants in Edible Vegetable Oils by HPLC-FLD Assisted with Second-Order Calibration Based on ATLD Algorithm. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 947–948, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Determination of Synthetic Phenolic Antioxidants in Edible Oils Using Microvial Insert Large Volume Injection Gas-Chromatography. Food Chem. 2016, 200, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Biparva, P.; Ehsani, M.; Hadjmohammadi, M.R. Dispersive Liquid-Liquid Microextraction Using Extraction Solvents Lighter than Water Combined with High Performance Liquid Chromatography for Determination of Synthetic Antioxidants in Fruit Juice Samples. J. Food Compos. Anal. 2012, 27, 87–94. [Google Scholar] [CrossRef]
- Guldberg, T.S.; Sandrød, M.; Øiaas, J.B.; Holten, T.; Zahlsen, K.; Kvitvang, H.F. Analysis of Synthetic Antioxidants in Salmon Silage Using QuEChERS Extraction Method Followed by Determination by LC-MS/MS; a Single-Laboratory Validation Study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1174, 122715. [Google Scholar] [CrossRef]
- Žnideršič, L.; Mlakar, A.; Prosen, H. Development of a SPME-GC-MS/MS Method for the Determination of Some Contaminants from Food Contact Material in Beverages. Food Chem. Toxicol. 2019, 134, 110829. [Google Scholar] [CrossRef]
- Chen, M.; Hu, X.; Tai, Z.; Qin, H.; Tang, H.; Liu, M.; Yang, Y. Determination of Four Synthetic Phenolic Antioxidants in Edible Oils by High-Performance Liquid Chromatography with Cloud Point Extraction Using Tergitol TMN-6. Food Anal. Methods 2013, 6, 28–35. [Google Scholar] [CrossRef]
- Abdollahi Aghdam, A.; Majidi, M.R.; Veladi, H.; Omidi, Y. Microfluidic-Based Separation and Detection of Synthetic Antioxidants by Integrated Gold Electrodes Followed by HPLC-DAD. Microchem. J. 2019, 149, 104059. [Google Scholar] [CrossRef]
- Xu, S.; Chen, F.; Deng, M.; Sui, Y. Simple Simultaneous Determination of Butylated Hydroquinone (TBHQ) and Butylated Hydroxyanisole (BHA) Antioxidants in Oil Using High-Performance Liquid Chromatography with Chemiluminescence Detection. Luminescence 2014, 29, 1027–1032. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Glassy Carbon Electrodes Modified with Gold Nanoparticles for the Simultaneous Determination of Three Food Antioxidants. Anal. Chim. Acta 2013, 765, 54–62. [Google Scholar] [CrossRef]
- Wu, L.; Yin, W.; Tang, K.; Li, D.; Shao, K.; Zuo, Y.; Ma, J.; Liu, J.; Han, H. Enzymatic Biosensor of Horseradish Peroxidase Immobilized on Au-Pt Nanotube/Au-Graphene for the Simultaneous Determination of Antioxidants. Anal. Chim. Acta 2016, 933, 89–96. [Google Scholar] [CrossRef]
- Yue, X.; Song, W.; Zhu, W.; Wang, J.; Wang, Y. In Situ Surface Electrochemical Co-Reduction Route towards Controllable Construction of AuNPs/ERGO Electrochemical Sensing Platform for Simultaneous Determination of BHA and TBHQ. Electrochim. Acta 2015, 182, 847–855. [Google Scholar] [CrossRef]
- Bavol, D.; Economou, A.; Zima, J.; Barek, J.; Dejmkova, H. Simultaneous Determination of Tert-Butylhydroquinone, Propyl Gallate, and Butylated Hydroxyanisole by Flow-Injection Analysis with Multiple-Pulse Amperometric Detection. Talanta 2018, 178, 231–236. [Google Scholar] [CrossRef]
- Ng, K.L.; Tan, G.H.; Khor, S.M. Graphite Nanocomposites Sensor for Multiplex Detection of Antioxidants in Food. Food Chem. 2017, 237, 912–920. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Os’Kina, K.; Ziganshina, E.; Budnikov, H. Simultaneous Determination of TBHQ and BHA on a MWNT-Brij® 35 Modified Electrode in Micellar Media. Anal. Methods 2015, 7, 8344–8351. [Google Scholar] [CrossRef]
- Babu, R.S.; Prabhu, P.; Narayanan, S.S. Facile Immobilization of Potassium-Copper Hexacyanoferrate Nanoparticles Using a Room-Temperature Ionic Liquid as an Ionic Binder and Its Application towards BHA Determination. J. Solid State Electrochem. 2016, 20, 1575–1583. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Guss, E.; Budnikov, H. Amperometric Sensor Based on MWNT and Electropolymerized Carminic Acid for the Simultaneous Quantification of TBHQ and BHA. J. Electroanal. Chem. 2020, 859, 113885. [Google Scholar] [CrossRef]
- Poole, C.F.; Poole, S.K. Principles and Practice of Solid-Phase Extraction. Compr. Sampl. Sample Prep. 2012, 2, 273–297. [Google Scholar] [CrossRef]
- Beyer, A.; Biziuk, M. Applications of Sample Preparation Techniques in the Analysis of Pesticides and PCBs in Food. Food Chem. 2008, 108, 669–680. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC—Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Biparva, P.; Abbas, A. Microextraction Techniques as a Sample Preparation Step for Metal Analysis. At. Absorpt. Spectrosc. 2012, 30, 61–88. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, H. New Trends in Sample Preparation for Clinical and Pharmaceutical Analysis. TrAC—Trends Anal. Chem. 2003, 22, 232–244. [Google Scholar] [CrossRef]
- Martins, F.C.O.L.; Batista, A.D.; Melchert, W.R. Current Overview and Perspectives in Environmentally Friendly Microextractions of Carbamates and Dithiocarbamates. Compr. Rev. Food Sci. Food Saf. 2021, 20, 6116–6145. [Google Scholar] [CrossRef]
- Berijani, S.; Assadi, Y.; Anbia, M.; Milani Hosseini, M.R.; Aghaee, E. Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Flame Photometric Detection. Very Simple, Rapid and Sensitive Method for the Determination of Organophosphorus Pesticides in Water. J. Chromatogr. A 2006, 1123, 1–9. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Arpa Şahin, Ç.; Efeçinar, M.; Şatiroǧlu, N. Combination of Cloud Point Extraction and Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Nickel and Manganese Ions in Water and Food Samples. J. Hazard. Mater. 2010, 176, 672–677. [Google Scholar] [CrossRef]
- Citak, D.; Tuzen, M. A Novel Preconcentration Procedure Using Cloud Point Extraction for Determination of Lead, Cobalt and Copper in Water and Food Samples Using Flame Atomic Absorption Spectrometry. Food Chem. Toxicol. 2010, 48, 1399–1404. [Google Scholar] [CrossRef]
- Wang, S.; Meng, S.; Guo, Y. Cloud Point Extraction for the Determination of Trace Amounts of Cobalt in Water and Food Samples by Flame Atomic Absorption Spectrometry. J. Spectrosc. 2013, 2013, 735702. [Google Scholar] [CrossRef]
- Sarraf, M.; Beig-babaei, A.; Naji-Tabasi, S. Application of QuEChERS Method for Extraction of Functional Compounds. SN Appl. Sci. 2020, 2, 1858. [Google Scholar] [CrossRef]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry, 9th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2013; ISBN 978-1-4080-9373-3. [Google Scholar]
- De Souza, D.; Gonçalves-Filho, D.; Franco, D.L. Pesticide Residues Analysis by Electroanalytical Techniques. In Sustainable Agriculture Reviews 48; Inamuddin, Ahamed, M.I., Lichtfouse, E., Eds.; Springer: Cham: Switzerland, 2021; pp. 1–75. ISBN 978-3-030-54719-6. [Google Scholar]
- Martins, F.C.O.L.; Sentanin, M.A.; De Souza, D. Categories of Food Additives and Analytical Techniques for Their Determination. In Innovative Food Analysis; Elsevier: Amsterdam, The Netherlands, 2021; pp. 123–156. [Google Scholar]
- Piljac-Žegarac, J.; Valek, L.; Stipčević, T.; Martinez, S. Electrochemical Determination of Antioxidant Capacity of Fruit Tea Infusions. Food Chem. 2010, 121, 820–825. [Google Scholar] [CrossRef]
- Zoski, C.G. Handbook of Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780444519580. [Google Scholar]
- Farajmand, B.; Kamyabi, M.A.; Sorkhani, F.Y.; Jam, H.S.; Bahrami, H. Combination of Micro Liquid-Liquid Extraction with Differential Pulse Voltammetry for Determination of TBHQ in Edible Oil Samples by Pre-Anodized Glassy Carbon Electrode. J. Electroanal. Chem. 2020, 861, 113966. [Google Scholar] [CrossRef]
- Robledo, S.N.; Tesio, A.Y.; Ceballos, C.D.; Zon, M.A.; Fernández, H. Electrochemical Ultra-Micro Sensors for the Determination of Synthetic and Natural Antioxidants in Edible Vegetable Oils. Sens. Actuators B Chem. 2014, 192, 467–473. [Google Scholar] [CrossRef]
- Ruiz, M.A.; García-Moreno, E.; Barbas, C.; Pingarrón, J.M. Determination of Phenolic Antioxidants by HPLC with Amperometric Detection at a Nickel Phthalocyanine Polymer Modified Electrode. Electroanalysis 1999, 11, 470–474. [Google Scholar] [CrossRef]
- Kumar, S.S.; Narayanan, S.S. Mechanically Immobilized Nickel Aquapentacyanoferrate Modified Electrode as an Amperometric Sensor for the Determination of BHA. Talanta 2008, 76, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Alipour, E.; Mirzae Bolali, F.; Norouzi, S.; Saadatirad, A. Electrochemically Activated Pencil Lead Electrode as a Sensitive Voltammetric Sensor to Determine Gallic Acid. Food Chem. 2022, 375, 131871. [Google Scholar] [CrossRef]
- Riber, J.; De La Fuente, C.; Vazquez, M.D.; Tascón, M.L.; Sánchez Batanero, P. Electrochemical Study of Antioxidants at a Polypyrrole Electrode Modified by a Nickel Phthalocyanine Complex. Application to Their HPLC Separation and to Their FIA System Detections. Talanta 2000, 52, 241–252. [Google Scholar] [CrossRef]
- Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Simultaneous Voltammetric Determination of Phenolic Antioxidants in Food Using a Boron-Doped Diamond Electrode. Food Chem. 2010, 123, 886–891. [Google Scholar] [CrossRef]
- Motia, S.; Bouchikhi, B.; El Bari, N. An Electrochemical Molecularly Imprinted Sensor Based on Chitosan Capped with Gold Nanoparticles and Its Application for Highly Sensitive Butylated Hydroxyanisole Analysis in Foodstuff Products. Talanta 2021, 223, 121689. [Google Scholar] [CrossRef]
- Fan, L.; Kan, X. Sensitive Detection of Butylated Hydroxyanisole Based on Free-Standing Paper Decorated with Gold and NiO Nanoparticles. Microchem. J. 2020, 159, 105511. [Google Scholar] [CrossRef]
Name | Formula | Chemical Structure | ADI (mg/kg by b.w.) | LD50 (mg/kg by b.w.) | log kow | pka |
---|---|---|---|---|---|---|
BHA | C11H16O2 | 0–0.5 | <2000 | 3.50 | 8.11 | |
BHT | C15H24O | 0–0.3 | <2000 | 5.19 | 12.80 | |
TBHQ | C10H14O2 | 0–0.7 | 955 | 2.26 | 10.80 | |
PG | C10H12O5 | 0–1.4 | NR | 1.78 | 7.94 | |
OG | C15H22O5 | NR | NR | 4.33 | 7.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves-Filho, D.; De Souza, D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules 2022, 27, 7137. https://doi.org/10.3390/molecules27207137
Gonçalves-Filho D, De Souza D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules. 2022; 27(20):7137. https://doi.org/10.3390/molecules27207137
Chicago/Turabian StyleGonçalves-Filho, Danielle, and Djenaine De Souza. 2022. "Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis?" Molecules 27, no. 20: 7137. https://doi.org/10.3390/molecules27207137
APA StyleGonçalves-Filho, D., & De Souza, D. (2022). Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules, 27(20), 7137. https://doi.org/10.3390/molecules27207137