Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. FA Profiles in Ricotta Cheese from Different Milks
2.2. Classification of Ricotta Cheeses According to the Type of Whey
2.3. Classification of PDO and Non-PDO Ricotta Cheeses
3. Materials and Methods
3.1. Ricotta Samples
3.2. Fatty Acid Extraction, FAME Preparation, and GC-FID Analyis
3.3. Chemometric Tools
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellassi, P.; Rocchetti, G.; Maldarizzi, G.; Braceschi, G.P.; Morelli, L.; Lucini, L.; Cappa, F. Case study on the microbiological quality, chemical and sensorial profiles of different dairy creams and ricotta cheese during shelf-life. Foods 2021, 10, 2722. [Google Scholar] [CrossRef]
- Miele, N.A.; Puleo, S.; Di Monaco, R.; Cavella, S.; Masi, P. Sensory profile of protected designation of origin water buffalo ricotta cheese by different sensory methodologies. J. Sens. Stud. 2021, 36, e12648. [Google Scholar] [CrossRef]
- Tripaldi, C.; Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Campagna, M.C.; Di Russo, C.; Zottola, T. Chemical and microbiological characteristics of homogenised ricotta cheese produced from buffalo whey. Ital. J. Food Sci. 2020, 32, 292–309. [Google Scholar] [CrossRef]
- Ribani, A.; Schiavo, G.; Utzeri, V.J.; Bertolini, F.; Geraci, C.; Bovo, S.; Fontanesi, L. Application of next generation semiconductor based sequencing for species identification in dairy products. Food Chem. 2018, 246, 90–98. [Google Scholar] [CrossRef]
- Fuselli, F.; Deluca, A.; Montepeloso, E.A.; Ibba, G.; Tidona, F.; Longo, L.; Marianella, R.M. Detection of fraudulent addition of bovine whey in water buffalo ricotta cheese by isoelectric focusing. J. Sci. Food Agric. 2015, 95, 2757–2762. [Google Scholar] [CrossRef]
- Russo, R.; Rega, C.; Chambery, A. Rapid detection of water buffalo ricotta adulteration or contamination by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 497–503. [Google Scholar] [CrossRef]
- Camerini, S.; Montepeloso, E.; Casella, M.; Crescenzi, M.; Marianella, R.M.; Fuselli, F. Mass spectrometry detection of fraudulent use of cow whey in water buffalo, sheep, or goat Italian ricotta cheese. Food Chem. 2016, 197, 1240–1248. [Google Scholar] [CrossRef]
- Araque, L.C.O.; Darré, M.; Ortiz, C.M.; Massolo, J.F.; Vicente, A.R. Quality and yield of Ricotta cheese as affected by milk fat content and coagulant type. Int. J. Dairy Technol. 2018, 71, 340–346. [Google Scholar] [CrossRef]
- Fusaro, I.; Giammarco, M.; Chincarini, M.; Odintsov Vaintrub, M.; Formigoni, A.; Mammi, L.M.E.; Vignola, G. Fatty acids, health indices and sensory properties of Ricotta cheese from sheep fed three different diets. Int. J. Dairy Technol. 2019, 72, 427–434. [Google Scholar] [CrossRef]
- Giuseppe, Z.; Manuela, G.; Marta, B.; Vincenzo, G. Application of artificial neural network on mono- and sesquiterpenes compounds determined by headspace solid-phase microextraction-gas chromatography-mass spectrometry for the Piedmont ricotta cheese traceability. J. Chromatogr. A 2005, 1071, 247–253. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends Food Sci. Technol. 2015, 46, 27–48. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Czyzak-Runowska, G.; Lipinska, P.; Wójtowski, J. Fatty acid profile of milk—A review. Bull. Vet. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Pegolo, S.; Stocco, G.; Mele, M.; Schiavon, S.; Bittante, G.; Cecchinato, A. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography. J. Dairy Sci. 2017, 100, 2564–2576. [Google Scholar] [CrossRef] [Green Version]
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, K.; Pyzel, B.; Horbańczuk, J.O. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Anim. Sci. Pap. Rep. 2009, 27, 311–320. [Google Scholar]
- Tudisco, R.; Calabrò, S.; Cutrignelli, M.I.; Moniello, G.; Grossi, M.; Gonzalez, O.J.; Piccolo, V.; Infascelli, F. Influence of organic systems on Stearoyl-CoA desaturase gene expression in goat milk. Small Rumin. Res. 2012, 106, S37–S42. [Google Scholar] [CrossRef]
- Stillwell, W. Membranes and Human Health. In An Introduction to Biological Membranes; Elsevier: Amsterdam, The Netherlands, 2016; pp. 521–537. [Google Scholar]
- Emken, E.A. Nutrition and Biochemistry of Trans and Positional Fatty Acid Isomers in Hydrogenated Oils. Annu. Rev. Nutr. 1984, 4, 339–376. [Google Scholar] [CrossRef]
- Krzanowski, W. Principles of Multivariate Analysis, 2nd ed.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Wold, S.; Johansson, E.; Cocchi, M. PLS—Partial least-squares projections to latent structures. In 3D QSAR Drug Design; Wiley & Sons: New York, NY, USA, 1993; pp. 523–550. [Google Scholar]
- Biancolillo, A.; Liland, K.H.; Måge, I.; Næs, T.; Bro, R. Variable selection in multi-block regression. Chemom. Intell. Lab. Syst. 2016, 156, 89–101. [Google Scholar] [CrossRef]
- De Jong, C.; Badings, H.T. Determination of free fatty acids in milk and cheese procedures for extraction, clean up, and capillary gas chromatographic analysis. J. High Resolut. Chromatogr. 1990, 13, 94–98. [Google Scholar] [CrossRef]
- ISO 12966-2: 2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Marini, F. Classification methods in chemometrics. Curr. Anal. Chem. 2010, 6, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. In Comprehensive Analytical Chemistry, 2nd ed.; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 265–299. ISBN 9780444640444. [Google Scholar]
- Roger, J.M.; Biancolillo, A.; Marini, F. Sequential preprocessing through ORThogonalization (SPORT) and its application to near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2020, 199, 103975. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M. SIMCA: A method for analysing chemical data in terms of similarity and analogy. In Chemometrics, Theory and Application; Kowalski, B.R., Ed.; American Chemical Society: Washington, DC, USA, 1977; pp. 243–282. [Google Scholar]
- Næs, T.; Tomic, O.; Mevik, B.-H.; Martens, H. Path modelling by sequential PLS regression. J. Chemom. 2011, 25, 28–40. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Biancolillo, A.; Måge, I.; Næs, T. Combining SO-PLS and linear discriminant analysis for multi-block classification. Chemom. Intell. Lab. Syst. 2015, 141, 58–67. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Biancolillo, A.; Næs, T. The Sequential and Orthogonalized PLS Regression for Multiblock Regression: Theory, Examples, and Extensions. In Data Fusion Methodology and Applications; Cocchi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 157–177. [Google Scholar]
- Jolliffe, I. Principal Component Analysis. In Encyclopedia of Statistics in Behavioral Science; American Cancer Society: Atlanta, GA, USA, 2005; ISBN 9780470013199. [Google Scholar]
- Hotelling, H. The Generalization of Student’s Ratio. Ann. Math. Stat. 1931, 2, 360–378. [Google Scholar] [CrossRef]
- Jackson, J.E.; Mudholkar, G.S. Control Procedures for Residuals Associated with Principal Component Analysis. Technometrics 1979, 21, 341–349. [Google Scholar] [CrossRef]
# | RT (min) | FA | Abbreviation | Sheep (Non-PDO) n = 78 | Sheep (Ricotta Romana PDO) n = 36 | Goat n = 36 | Cow n = 54 | Water Buffalo n = 36 |
---|---|---|---|---|---|---|---|---|
Mean A% ± SE | Mean A% ± SE | Mean A% ± SE | Mean A% ± SE | Mean A% ± SE | ||||
1 | 2.55 | butanoic acid | C4:0 | 4.94 ± 0.26 | 3.25 ± 0.10 | 3.16 ± 0.19 | 5.69 ± 0.27 | 5.56 ± 0.25 |
2 | 3.65 | caproic acid | C6:0 | 4.10 ± 0.19 | 2.83 ± 0.03 | 3.47 ± 0.18 | 3.90 ± 0.29 | 3.29 ± 0.47 |
3 | 5.51 | caprylic acid | C8:0 | 4.09 ± 0.17 | 3.07 ± 0.04 | 4.11 ± 0.17 | 2.16 ± 0.08 | 1.41 ± 0.07 |
4 | 7.65 | capric acid | C10:0 | 12.67 ± 0.42 | 9.75 ± 0.15 | 14.60 ± 0.52 | 5.19 ± 0.16 | 2.87 ± 0.11 |
5 | 9.67 | lauric acid | C12:0 | 7.10 ± 0.19 | 5.66 ± 0.09 | 6.76 ± 0.27 | 5.59 ± 0.18 | 3.59 ± 0.11 |
6 | 10.60 | tridecanoic acid | C13:0 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.11 ± 0.01 | 0.09 ± 0.01 |
7 | 11.50 | myristic acid | C14:0 | 15.45 ± 0.55 | 13.02 ± 0.08 | 13.91 ± 0.19 | 16.65 ± 0.20 | 14.70 ± 0.23 |
8 | 12.12 | myristoleic acid | C14:1-(9Z) | 0.63 ± 0.02 | 0.75 ± 0.02 | 0.23 ± 0.03 | 1.45 ± 0.06 | 0.87 ± 0.03 |
9 | 12.35 | pentadecanoic acid | C15:0 | 1.24 ± 0.03 | 1.30 ± 0.02 | 1.10 ± 0.06 | 1.42 ± 0.03 | 1.42 ± 0.02 |
10 | 13.31 | palmitic acid | C16:0 | 25.06 ± 0.49 | 26.17 ± 0.14 | 26.93 ± 0.54 | 32.77 ± 0.39 | 36.47 ± 0.31 |
11 | 13.91 | palmitoleic acid | C16:1-(9Z) | 0.70 ± 0.03 | 0.69 ± 0.03 | 0.54 ± 0.05 | 1.48 ± 0.06 | 1.91 ± 0.11 |
12 | 14.30 | margaric acid | C17:0 | 0.52 ± 0.02 | 0.73 ± 0.13 | 0.51 ± 0.04 | 0.44 ± 0.02 | 0.52 ± 0.02 |
13 | 15.55 | stearic acid | C18:0 | 7.32 ± 0.26 | 9.89 ± 0.21 | 6.18 ± 0.21 | 6.92 ± 0.27 | 9.64 ± 0.28 |
14 | 16.09 | elaidic acid | C18:1-(9E) | 1.23 ± 0.08 | 3.61 ± 0.05 | 0.31 ± 0.04 | 1.26 ± 0.39 | 0.59 ± 0.04 |
15 | 16.32 | oleic acid | C18:1-(9Z) | 12.27 ± 0.40 | 15.49 ± 0.17 | 16.29 ± 0.68 | 13.45 ± 0.50 | 15.69 ± 0.41 |
16 | 17.68 | linoleic acid | C18:2-(9Z,12Z) | 1.68 ± 0.23 | 1.43 ± 0.03 | 1.30 ± 0.10 | 1.22 ± 0.06 | 1.01 ± 0.04 |
17 | 18.86 | arachidic acid | C20:0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.02 ± 0.01 | n.d. | 0.09 ± 0.01 |
18 | 19.72 | alpha-linolenic acid | C18:3-(9Z,12Z,15Z) | 0.45 ± 0.04 | 0.80 ± 0.04 | 0.38 ± 0.14 | 0.12 ± 0.03 | 0.08 ± 0.01 |
19 | 20.22 | cis-11-eicosenoic acid | C20:1-(11Z) | 0.40 ± 0.08 | 1.32 ± 0.05 | 0.12 ± 0.03 | 0.17 ± 0.02 | 0.16 ± 0.02 |
20 | 23.60 | behenic acid | C22:0 | 0.016 ± 0.004 | 0.02 ± 0.01 | n.d. | n.d. | 0.017 ± 0.005 |
21 | 24.32 | erucic acid | C22:1-(13Z) | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | n.d. | 0.04 ± 0.01 |
22 | 26.52 | lignoceric acid | C24:0 | 0.02 ± 0.01 | 0.07 ± 0.05 | n.d. | n.d. | 0.008 ± 0.003 |
LVs (X1, X2) | CCRcv (%) | |||
---|---|---|---|---|
Class Sheep | Class Cow | Class Goat | Class Buffalo | |
4, 3 | 98.6 | 94.1 | 100.0 | 100.0 |
Pretreatment | PCs | Sensitivity | Specificity | Efficiency |
---|---|---|---|---|
Mean-centring | 1 | 85.7 | 99.7 | 92.4 |
Autoscaling | 1 | 85.7 | 99.7 | 92.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biancolillo, A.; Reale, S.; Foschi, M.; Bertini, E.; Antonelli, L.; D’Archivio, A.A. Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics. Molecules 2022, 27, 7401. https://doi.org/10.3390/molecules27217401
Biancolillo A, Reale S, Foschi M, Bertini E, Antonelli L, D’Archivio AA. Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics. Molecules. 2022; 27(21):7401. https://doi.org/10.3390/molecules27217401
Chicago/Turabian StyleBiancolillo, Alessandra, Samantha Reale, Martina Foschi, Emanuele Bertini, Lavinia Antonelli, and Angelo Antonio D’Archivio. 2022. "Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics" Molecules 27, no. 21: 7401. https://doi.org/10.3390/molecules27217401
APA StyleBiancolillo, A., Reale, S., Foschi, M., Bertini, E., Antonelli, L., & D’Archivio, A. A. (2022). Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics. Molecules, 27(21), 7401. https://doi.org/10.3390/molecules27217401