A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Description of HL
2.2. Characterization of Metal Complexes
2.2.1. FTIR Spectra
Compound | υ(H2O, OH, NH) | υ(C=O) | υ(C=N) | υ NO3 | υ M-O | υ M-N |
---|---|---|---|---|---|---|
HL | 3500–2900 m, br | 1622 w | 1576 s | --- | --- | --- |
[Cu(L)(H2O)]Cl.H2O | 3740–3000 m, br | 1627 w | 1539 sh | --- | 653 w | 580 w |
[Ni(L)2] | 3800–3030 m, br | 1603 w | 1520 sh | --- | 612 w | 584 w |
[Co(L)2]1/2H2O | 3830–2990 m, br | 1632 w | 1530 sh | --- | 608 w | 545 w |
[Gd(L)2(H2O)2](NO3).3/2H2O | 3800–2990 m, br | 1612 w | 1528 sh | 1384 s | 641 w | 584 w |
[Sm(L)2(H2O)2](NO3).2H2O | 3700–3100 m, br | 1609 w | 1539 sh | 1384 s | 588 w | 578 w |
2.2.2. Thermal Analysis
2.2.3. Thermodynamic and Kinetic Parameters
- The slight variation in ΔS* revealed the near constancy of the disorder through the thermal decomposition reactions. The structure of the activated complexes is more ordered than that of the reactants, and the negative values show that the reactions are slower than usual.
- The Cu complex produced the highest pre-exponential factor (Z) for the ligand decomposition (6.41 × 1010 s−1) in addition to the most significant Ea (184.05 J/mol);
- The selected decomposition steps have negative ΔH*, indicating these processes’ exothermic behavior.
- ΔG* has a positive value for all complexes under consideration, with three exceptions with negative values, cited in Table 4. The positive values revealed the non-spontaneous behavior according to the ΔG* concept.
- The moderate Ea value hints at these compounds’ reactivity in thermal decomposition reactions.
2.2.4. UV-Vis Spectra and Magnetic Moment
2.3. Computational Chemistry and Molecular Modeling
2.3.1. The Surface Characteristics of the Formed Compounds
2.3.2. The Ligand Properties and Density Function Theory (DFT)
Calculation of the Parent Drug’s Density Function
Calculation of the Density Function for Hydrazide Ibuprofen (HI)
Calculation of the Density Function for HL Ligand
- The essential equations for defining the transition from the ground state to the next give a solid foundation for determining non-local, local, and global hardness and the role of softness;
- The soft-soft and hard-hard interactions between two systems provide an optimum hardness;
- It has been proven that the estimate system’s ground-state energy decreases as its hardness increases.
2.4. Applications and Docking
2.4.1. Docking Studies between Ibuprofen and Its Derivatives and COX2 (PDB Code: 5IKT)
Ibuprofen with COX2 Docking (PDB Code: 5IKT)
Docking of Hydrazide Ibuprofen (HI) with COX2 (PDB Code: 5IKT)
Docking of HL Ligand with COX2 (PDB Code: 5IKT)
2.4.2. Molecular Docking of the Metal Complexes Derivatives from HL Ligand
Molecular Docking of the Co, Cu, Ni, Gd, and Sm Complexes
2.5. In Silico Physicochemical Descriptors, Pharmacokinetic Properties, and Bioactivity Prediction
Compound | Molecular Weight (g/mol) | Heavy Atoms | Rotatable Bonds | H-Bond Donors | H-Bond Acceptors | Fraction Csp3 | Solubility LogS (Silicos-IT) (Water) | XLogP3 | WLOGP | Molar Refractivity | TPSA (Å2) | GI Absorption | BBB Permeant | P-gp substrate | Log Kp (cm/s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ibuprofen | 206.28 | 15 | 4 | 1 | 2 | 0.46 | −3.44 | 3.50 | 3.07 | 62.18 | 37.30 | High | Yes | No | −5.07 |
HL | 324.42 | 24 | 7 | 2 | 3 | 0.30 | −6.07 | 5.47 | 3.84 | 98.41 | 61.69 | High | Yes | No | −4.40 |
L-Co | 723.77 | 50 | 8 | 1 | 7 | 0.35 | −11.8 | 11.17 | 7.29 | 203.71 | 77.35 | High | No | Yes | −2.78 |
2.6. In Vitro Anti-Inflammatory Activity
2.6.1. Cyclooxygenase Inhibition Assay
2.6.2. Western Blot Analysis
2.6.3. Cell Viability Using MTT Assay
2.7. DNA Interaction
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Synthesis
3.3.1. Ethyl 2-(4-Isobutyl Phenyl) Propanoate (IE) Synthesis
3.3.2. 2-(4-Isobutylphenyl) Propane Hydrazide (HI) Synthesis
3.3.3. Ibuprofen and Salicylaldehyde Hydrazone (HL) Synthesis
3.3.4. Metal Complex Synthesis
3.4. In Vitro Anti-Inflammatory Activity
3.4.1. Enzyme-Linked Immunosorbent Assay (ELISA)
3.4.2. Western Blot Analysis
3.4.3. Cell Viability Using MTT Assay
3.5. DNA Interaction
Ultraviolet-Visible Absorption Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orlando, B.J.; Lucido, M.J.; Malkowski, M.G. The structure of ibuprofen bound to cyclooxygenase-2. J. Struct. Biol. 2015, 189, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition, Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [Green Version]
- Bonabello, A.; Galmozzi, M.; Canaparo, R.; Isaia, G.C.; Serpe, L.; Muntoni, E.; Zara, G.P. Dexibuprofen (S(+)-isomer ibuprofen) reduces gastric damage and improves analgesic and antiinflammatory effects in rodents. Anesth. Analg. 2003, 97, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Palkar, M.B.; Singhai, A.S.; Ronad, P.M.; Vishwanathswamy, A.; Boreddy, T.S.; Veerapur, V.P.; Shaikh, M.S.; Rane, R.A.; Karpoormath, R. Synthesis, pharmacological screening and in silico studies of new class of Diclofenac analogues as a promising anti-inflammatory agents. Bioorgan. Med. Chem. 2014, 22, 2855–2866. [Google Scholar] [CrossRef]
- Amir, M.; Kumar, H.; Javed, S.A. Synthesis and pharmacological evaluation of condensed heterocyclic 6-substituted-1, 2, 4-triazolo [3, 4-b]-1, 3, 4-thiadiazole derivatives of naproxen. Bioorgan. Med. Chem. Lett. 2007, 17, 4504–4508. [Google Scholar] [CrossRef]
- Kadhim, M.; Ghanim, H. Synthesis And Identification 1-3 Diazepine From Ibuprofen. Int. J. Sci. Technol. Res. 2014, 3, 213–217. [Google Scholar]
- Aziz, A.A.A.; Salem, A.N.M.; Sayed, M.A.; Aboaly, M.M. Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M (II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2). J. Mol. Struct. 2012, 1010, 130–138. [Google Scholar] [CrossRef]
- Etcheverry, S.B.; Barrio, D.A.; Cortizo, A.M.; Williams, P.A.M. Three new vanadyl (IV) complexes with non-steroidal anti-inflammatory drugs (Ibuprofen, Naproxen and Tolmetin). Bioactivity on osteoblast-like cells in culture. J. Inorg. Biochem. 2002, 88, 94–100. [Google Scholar] [CrossRef] [Green Version]
- e Silva, I.M.P.; Profirio, D.D.M.; de Paiva, R.E.F.; Lancellotti, M.; Formiga, A.L.B.; Corbi, P.P. A silver complex with ibuprofen: Synthesis, solid state characterization, DFT calculations and antibacterial assays. J. Mol. Struct. 2013, 1049, 1–6. [Google Scholar] [CrossRef]
- El-Sharief, M.A.S.; Abbas, S.Y.; El-Bayouki, K.A.; El-Gammal, E.W. Synthesis of thiosemicarbazones derived from N-(4-hippuric acid) thiosemicarbazide and different carbonyl compounds as antimicrobial agents. Eur. J. Med. Chem. 2013, 67, 263–268. [Google Scholar] [CrossRef]
- Marchandin, H.; Godreuil, S.; Darbas, H.; Jean-Pierre, H.; Jumas-Bilak, E.; Chanal, C.; Bonnet, R. Extended-spectrum β-lactamase TEM-24 in an Aeromonas clinical strain: Acquisition from the prevalent Enterobacter aerogenes clone in France. Antimicrob. Agents Chemother. 2003, 47, 3994–3995. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, M.T.; El-Sayed, W.A.; El-Ashry, E.S.H. Synthesis and antiviral evaluation of some sugar arylglycinoylhydrazones and their oxadiazoline derivatives. Arch. der Pharm. Int. J. Pharm. Med. Chem. 2006, 339, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Walcourt, A.; Loyevsky, M.; Lovejoy, D.B.; Gordeuk, V.R.; Richardson, D.R. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and-sensitive parasites. Int. J. Biochem. Cell Biol. 2004, 36, 401–407. [Google Scholar] [CrossRef]
- Chavarria, G.E.; Horsman, M.R.; Arispe, W.M.; Kumar, G.K.; Chen, S.-E.; Strecker, T.E.; Parker, E.N.; Chaplin, D.J.; Pinney, K.G.; Trawick, M.L. Initial evaluation of the antitumour activity of KGP94, a functionalized benzophenone thiosemicarbazone inhibitor of Cathepsin L. Eur. J. Med. Chem. 2012, 58, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Savini, L.; Chiasserini, L.; Travagli, V.; Pellerano, C.; Novellino, E.; Cosentino, S.; Pisano, M.B. New α-(N)-heterocyclichydrazones: Evaluation of anticancer, anti-HIV and antimicrobial activity. Eur. J. Med. Chem. 2004, 39, 113–122. [Google Scholar] [CrossRef]
- Bijev, A. New heterocyclic hydrazones in the search for antitubercular agents: Synthesis and in vitro evaluations. Lett. Drug Des. Discov. 2006, 3, 506–512. [Google Scholar] [CrossRef]
- Imramovský, A.; Polanc, S.; Vinšová, J.; Kočevar, M.; Jampílek, J.; Rečková, Z.; Kaustová, J. A new modification of anti-tubercular active molecules. Bioorgan. Med. Chem. 2007, 15, 2551–2559. [Google Scholar] [CrossRef]
- Janin, Y.L. Antituberculosis drugs: Ten years of research. Bioorgan. Med. Chem. 2007, 15, 2479–2513. [Google Scholar] [CrossRef]
- Ali, S.M.M.; Jesmin, M.; Azad, M.A.K.; Islam, M.K.; Zahan, R. Anti-inflammatory and analgesic activities of acetophenone semicarbazone and benzophenone semicarbazone. Asian Pac. J. Trop. Biomed. 2012, 2, S1036–S1039. [Google Scholar] [CrossRef] [Green Version]
- Dimmock, J.R.; Vashishtha, S.C.; Stables, J.P. Anticonvulsant properties of various acetylhydrazones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds. Eur. J. Med. Chem. 2000, 35, 241–248. [Google Scholar] [CrossRef]
- Silva, G.A.; Costa, L.M.; Brito, F.C.; Miranda, A.L.; Barreiro, E.J.; Fraga, C.A. New class of potent antinociceptive and antiplatelet 10H-phenothiazine-1-acylhydrazone derivatives. Bioorgan. Med. Chem. 2004, 12, 3149–3158. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dhar, D.N.; Saxena, P. Applications of Metal Complexes of Schiff Bases—A Review; CSIR: New Delhi, India, 2009. [Google Scholar]
- Mohamed, S.K.; Albayati, M.; Omara, W.A.; Abdelhamid, A.A.; Potgeiter, H.; Hameed, A.S.; Al-Janabi, K.M. Functionalization of Ibuprofen Core Structure Compound: Part 1 Synthesis of Potential Chemotherapeutic Agents Incorporated Ibuprofen Substructure and Their in vitro Antimicrobial Study. J. Chem. Pharm. Res. 2012, 4, 3505–3517. [Google Scholar]
- Desai, S.R.; Desai, V.G.; Pissurlenkar, R.R. Design, Synthesis and molecular docking studies of new Azomethine derivatives as promising anti-inflammatory agents. Bioorgan. Chem. 2022, 120, 105595. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, S.I.; Arshad, N.; Channar, P.A.; Perveen, F.; Saeed, A.; Larik, F.A.; Javeed, A. Synthesis, theoretical, spectroscopic and electrochemical DNA binding investigations of 1, 3, 4-thiadiazole derivatives of ibuprofen and ciprofloxacin: Cancer cell line studies. J. Photochem. Photobiol. B Biol. 2018, 189, 104–118. [Google Scholar] [CrossRef]
- Przybylski, P.; Huczyński, A.W.; Pyta, K.K.; Brzezinski, B.; Bartl, F. Biological properties of Schiff bases and azo derivatives of phenols. Curr. Org. Chem. 2009, 13, 124–148. [Google Scholar] [CrossRef]
- Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules 2013, 18, 12264–12289. [Google Scholar] [CrossRef]
- Bayrak, H.; Demirbas, A.; Karaoglu, S.A.; Demirbas, N. Synthesis of some new 1, 2, 4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009, 44, 1057–1066. [Google Scholar] [CrossRef]
- Aboelmagd, A.; Salem, E.M.; Ali, I.A.; Gomaab, M.S. Synthesis of quinazolindionyl amino acid and hydrazone derivatives as possible antitumour agents. Org. Chem. 2018, III, 20–35. [Google Scholar]
- Aboelmagd, A.; Salem, E.M.; Ali, I.A.; Gomaab, M.S. Synthesis of quinazolindionyl amino acid and dipeptide derivatives as possible antitumour agents. Org. Chem. 2019, V. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Duczmal, K.; Darowska, M. Experimental (FT-IR) and theoretical (DFT-IR) studies of keto–enol tautomerism in pyruvic acid. Vib. Spectrosc. 2005, 39, 37–45. [Google Scholar] [CrossRef]
- Abbas, A.M.; Fisal, S.R.; Orabi, A.S. Novel β-lactam antibiotic derivative and its complexes: DFT, frontier energy levels, DNA interaction, docking, physicochemical and antimicrobial properties. J. Mol. Struct. 2020, 1218, 128487. [Google Scholar] [CrossRef]
- Morgan, S.M.; Diab, M.; El-Sonbati, A. Supramolecular assembly of hydrogen bonding, ESR studies and theoretical calculations of Cu (II) complexes. Appl. Organomet. Chem. 2018, 32, e4504. [Google Scholar] [CrossRef]
- Varghese, H.T.; Panicker, C.Y.; Philip, D.; Mannekutla, J.R.; Inamdar, S. IR, Raman and SERS studies of methyl salicylate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, C.; Cao, C. Substituent effects on the stretching vibration of C=N in multi-substituted benzylideneanilines. J. Phys. Org. Chem. 2019, 32, e3969. [Google Scholar] [CrossRef]
- Montazerozohori, M.; Musavi, S.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 389–396. [Google Scholar] [CrossRef]
- Kandil, S.S.; El-Hefnawy, G.B.; Baker, E.A. Thermal and spectral studies of 5-(phenylazo)-2-thiohydantoin and 5-(2-hydroxyphenylazo)-2-thiohydantoin complexes of cobalt (II), nickel (II) and copper (II). Thermochim. Acta 2004, 414, 105–113. [Google Scholar] [CrossRef]
- Chang, E.L.; Simmers, C.; Knight, D.A. Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 2010, 3, 1711–1728. [Google Scholar] [CrossRef] [Green Version]
- Orabi, A.S. Complexes derived from some biologically active ligands. J. Coord. Chem. 2008, 61, 1294–1305. [Google Scholar] [CrossRef]
- Lal, R.A.; Singh, M.N.; Das, S. Complexes of Uranyl Nitrate, Uranyl Acetate, Uranyl Thiocyanate and Uranyl Chloride with Benzoyl, Salicyloyl and Isonicotinoyl Hydrazines. Synth. React. Inorg. Metal-Org. Chem. 1986, 16, 513–525. [Google Scholar] [CrossRef]
- di Stefano, R.; Scopelliti, M.; Pellerito, C.; Fiore, T.; Vitturi, R.; Colomba, M.; Gianguzza, P.; Stocco, G.; Consiglio, M.; Pellerito, L. Organometallic complexes with biological molecules: XVII. Triorganotin (IV) complexes with amoxicillin and ampicillin. J. Inorg. Biochem. 2002, 89, 279–292. [Google Scholar] [CrossRef]
- Bravo, A.; Anacona, J. Synthesis and characterization of metal complexes with ampicillin. J. Coord. Chem. 1998, 44, 173–182. [Google Scholar] [CrossRef]
- El-Gamel, N.E. Metal chelates of ampicillin versus amoxicillin: Synthesis, structural investigation, and biological studies. J. Coord. Chem. 2010, 63, 534–543. [Google Scholar] [CrossRef]
- Wyllie, G.R.; Munro, O.Q.; Schulz, C.E.; Scheidt, W.R. Structural and physical characterization of (nitrato) iron (III) porphyrinates [Fe (por)(NO3)]–Variable coordination of nitrate. Polyhedron 2007, 26, 4664–4672. [Google Scholar] [CrossRef]
- Barszcz, B. Coordination properties of didentate N, O heterocyclic alcohols and aldehydes towards Cu (II), Co (II), Zn (II) and Cd (II) ions in the solid state and aqueous solution. Coord. Chem. Rev. 2005, 249, 2259–2276. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Chandran, A.; Varghese, H.T.; Panicker, C.Y.; van Alsenoy, C.; Rajendran, G. FT-IR and computational study of (E)-N-carbamimidoyl-4-((2-formylbenzylidene) amino) benzene sulfonamide. J. Mol. Struct. 2011, 1001, 29–35. [Google Scholar] [CrossRef]
- Carlin, R.L. Inorganic Electronic Spectroscopy (Lever, ABP); ACS Publications: Washington, DC, USA, 1969. [Google Scholar]
- Masoud, M.S.; El-Enein, S.A.A.; Ayad, M.E.; Goher, A.S. Spectral and magnetic properties of phenylazo-6-aminouracil complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 77–87. [Google Scholar] [CrossRef]
- Ahmed, A.; Lal, R.A. Synthesis, characterization and electrochemical studies of copper (II) complexes derived from succinoyl-and adipoyldihydrazones. Arab. J. Chem. 2017, 10, S901–S908. [Google Scholar] [CrossRef] [Green Version]
- Kandil, S.S. Cobalt(II), nickel(II) and copper(II) complexes of 4-(sulfonylazido)phenylazopyrazolones. Transit. Met. Chem. 1998, 23, 461–465. [Google Scholar] [CrossRef]
- Hamer, A.M.; Livingstone, S.E. The magnetic moments and electronic spectra of lanthanide chelates of 2-thenoyltrifluoroacetone. Transit. Met. Chem. 1983, 8, 298–304. [Google Scholar] [CrossRef]
- Abbas, A.M.; Fisal, S.R.; Orabi, A.S. Enhancement of the biochemical activity of some market antibiotics by chemical modification: Synthesis, characterization, and biochemical evaluation. J. Chin. Chem. Soc. 2021, 68, 131–149. [Google Scholar] [CrossRef]
- Tong, M.M.; Brewer, D. Nature of the Coordination Bond in Metal Complexes of Substituted Pyridine Derivatives. VI. Electronic Spectra of Some Complexes of Copper (II). Can. J. Chem. 1971, 49, 102–104. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.M.; Fisal, S.R.; Radwan, A.; Makhlouf, M.; Orabi, A.S. Novel action for ampicillin derivative and its complexes: Physicochemical, thermal analysis, DNA interaction, docking with FabH protein, in silico, and in vitro studies. J. Mol. Liquids 2022, 351, 118333. [Google Scholar] [CrossRef]
- Hisaindee, S.; Al-Kaabi, L.; Ajeb, S.; Torky, Y.; Iratni, R.; Saleh, N.i.; AbuQamar, S.F. Antipathogenic effects of structurally-related Schiff base derivatives: Structure–activity relationship. Arab. J. Chem. 2015, 8, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, P.; Tyagi, M.; Agrawal, S.; Chandra, S.; Ojha, H.; Pathak, M. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 171, 246–257. [Google Scholar] [CrossRef]
- Cory, M.; McKee, D.D.; Kagan, J.; Henry, D.; Miller, J.A. Design, synthesis, and DNA binding properties of bifunctional intercalators. Comparison of polymethylene and diphenyl ether chains connecting phenanthridine. J. Am. Chem. Soc. 1985, 107, 2528–2536. [Google Scholar] [CrossRef]
- Mathew, B.; Adeniyi, A.A.; Joy, M.; Mathew, G.E.; Singh-Pillay, A.; Sudarsanakumar, C.; Soliman, M.E.; Suresh, J. Anti-oxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J. Mol. Struct. 2017, 1146, 301–308. [Google Scholar] [CrossRef]
- Gázquez, J.L. Hardness and Softness in Density Functional Theory, Chemical Hardness; Springer: Berlin/Heidelberg, Germany, 1993; pp. 27–43. [Google Scholar]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Cryst. 2002, 40, 82–92. [Google Scholar]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol− water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Kishk, S.M.; McLean, K.J.; Sood, S.; Helal, M.A.; Gomaa, M.S.; Salama, I.; Mostafa, S.M.; de Carvalho, L.P.S.; Munro, A.W.; Simons, C. Synthesis and biological evaluation of novel cYY analogues targeting Mycobacterium tuberculosis CYP121A1. Bioorgan. Med. Chem. 2019, 27, 1546–1561. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.; Tang, Y. A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. ACS Publ. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.A.D. Pharmacokinetic study with computational tools in the medicinal chemistry course. Braz. J. Pharm. Sci. 2011, 47, 797–805. [Google Scholar] [CrossRef]
- Baldini, M.; Belicchi-Ferrari, M.; Bisceglie, F.; Pelosi, G.; Pinelli, S.; Tarasconi, P. Cu (II) complexes with heterocyclic substituted thiosemicarbazones: The case of 5-formyluracil. Synthesis, characterization, X-ray structures, DNA interaction studies, and biological activity. Inorg. Chem. 2003, 42, 2049–2055. [Google Scholar] [CrossRef]
- Kundu, B.K.; Pragti; Ranjith, W.A.C.; Shankar, U.; Kannan, R.R.; Mobin, S.M.; Bandyopadhyay, A.; Mukhopadhyay, S. Cancer-Targeted Chitosan–Biotin-Conjugated Mesoporous Silica Nanoparticles as Carriers of Zinc Complexes to Achieve Enhanced Chemotherapy In Vitro and In Vivo. ACS Appl. Bio Mater. 2022, 5, 190–204. [Google Scholar] [CrossRef]
- Kundu, B.K.; Upadhyay, S.N.; Sinha, N.; Ganguly, R.; Grabchev, I.; Pakhira, S.; Mukhopadhyay, S. Pyrene-based fluorescent Ru (II)-arene complexes for significant biological applications: Catalytic potential, DNA/protein binding, two photon cell imaging and in vitro cytotoxicity. Dalton Trans. 2022, 51, 3937–3953. [Google Scholar]
- Kundu, B.K.; Mobin, S.M.; Mukhopadhyay, S. Studies on the influence of the nuclearity of zinc (ii) hemi-salen complexes on some pivotal biological applications. Dalton Trans. 2020, 49, 15481–15503. [Google Scholar] [CrossRef]
- Lee, R.H.; Griswold, E.; Kleinberg, J. Studies on the stepwise controlled decomposition of 2,2’-bipyridine complexes of cobalt (II) and nickel (II) chlorides. Inorg. Chem. 1964, 3, 1278–1283. [Google Scholar] [CrossRef]
- Kansara, S.; Pandit, R.; Bhawe, V. Synthesis of some new Ibuprofen derivatives containing chief heterocyclic moiety like s-Triazine and evaluated for their analgesic activity. Rasayan J. Chem. 2009, 2, 699–705. [Google Scholar]
- Vasincu, I.M.; Apotrosoaei, M.; Panzariu, A.-T.; Buron, F.; Routier, S.; Profire, L. Synthesis and biological evaluation of new 1, 3-thiazolidine-4-one derivatives of 2-(4-isobutylphenyl) propionic acid. Molecules 2014, 19, 15005–15025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pânzariu, A.-T.; Apotrosoaei, M.; Vasincu, I.M.; Drăgan, M.; Constantin, S.; Buron, F.; Routier, S.; Profire, L.; Tuchilus, C. Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivatives of nitro-l-arginine methyl ester. Chem. Cent. J. 2016, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.; Palmeira, A.; Ramos, I.I.; Carneiro, C.; Afonso, C.; Tiritan, M.E.; Cidade, H.; Pinto, P.C.; Saraiva, M.; Reis, S. Chiral derivatives of xanthones: Investigation of the effect of enantioselectivity on inhibition of cyclooxygenases (COX-1 and COX-2) and binding interaction with human serum albumin. Pharmaceuticals 2017, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COX (Ovine/Human) Inhibitor Screening Assay Kit|Cayman Chemical. Available online: https://www.caymanchem.com/product/560131 (accessed on 25 April 2021).
- Mahmood, T.; Yang, P.-C. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012, 4, 429. [Google Scholar] [PubMed]
- Kurien, B.T.; Scofield, R.H. Western Blotting: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Khan, M.; Bajpai, V.; Kang, S. Visual experiment MTT assay to evaluate the cytotoxicity potential of a drug. Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar]
- Morgan, D.M. Tetrazolium (MTT) Assay for Cellular Viability and Activity, Polyamine Protocols; Springer: Berlin/Heidelberg, Germany, 1998; pp. 179–184. [Google Scholar]
- ElKhazendar, M.; Chalak, J.; El-Huneidi, W.; Vinod, A.; Abdel-Rahman, W.M.; Abu-Gharbieh, E. Antiproliferative and proapoptotic activities of ferulic acid in breast and liver cancer cell lines. Trop. J. Pharm. Res. 2019, 18, 2571–2576. [Google Scholar]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the mtt assay. Cold Spring Harb. Protoc. 2018, 2018, pdb.prot095505. [Google Scholar] [CrossRef]
- Fernandes, T.J.; Costa, J.; Oliveira, M.B.P.; Mafra, I. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches. Food Chem. 2018, 245, 1034–1041. [Google Scholar] [CrossRef]
- Kumar, C.; Asuncion, E.H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J. Am. Chem. Soc. 1993, 115, 8547–8553. [Google Scholar] [CrossRef]
- León, M.J.; Galisteo, C.; Ventosa, A.; Sánchez-Porro, C. Spiribacter aquaticus Leon et al. 2017 is a later heterotypic synonym of Spiribacter roseus Leon et al. 2016. Reclassification of Halopeptonella vilamensis Menes et al. 2016 as Spiribacter vilamensis comb. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 2873–2878. [Google Scholar] [CrossRef]
Compound | Molecular Weight | Color | Melting Point (°C) | Ω * (µS) | CHNM% | |||||
---|---|---|---|---|---|---|---|---|---|---|
C% | H% | N% | M% ** | |||||||
Calc. Found | Calc. Found | Calc. Found | A | B | Calc. | |||||
HL(C20H24N2 O2) | 324.42 | Canary-yellow | 159 | --- | 74.05 74.10 | 7.46 7.51 | 8.63 8.55 | --- | --- | --- |
[Cu(L)(H2O)]Cl.H2O | 458.48 | Dirty green | >280 | 40 | 52.40 52.42 | 5.94 5.32 | 6.11 5.92 | 13.23 | 13.71 | 13.86 |
[Ni(L)2] | 705.53 | Apple green | >280 | 8 | 68.10 68.22 | 6.57 6.62 | 7.94 7.89 | 8.20 | 8.09 | 8.32 |
[Co(L)2]1/2H2O | 714.78 | Brick brown | >280 | 10 | 66.36 66.42 | 6.72 6.73 | 7.83 7.72 | 8.03 | 8.24 | 8.14 |
[Gd(L)2(H2O)2](NO3).3/2H2O | 929.16 | Buff | >280 | 100 | 51.66 50.35 | 5.38 5.89 | 7.52 7.42 | --- | 16.16 | 16.45 |
[Sm(L)2(H2O)2](NO3).2H2O | 931.25 | Yellow-orange | >280 | 108 | 51.55 51.60 | 5.80 5.85 | 7.52 7.48 | --- | 16.03 | 16.14 |
Compound | Temp. Range °C | DTG Temp. °C | Mass Loss % | Operation | Expected Products | Residue | M % | |
---|---|---|---|---|---|---|---|---|
Found | Calcd. | (Calcd.) Found | ||||||
[Cu(L)(H2O)]Cl·H2O | 22–110 | 69 | 3.68 | 3.93 | Dehydration | H2O | CuO (16.71) 17.1 | 13.17 |
120–350 | 250 | 46.62 | 46.45 | Coordination sphere + ligand decomposition | H2O + HCl + 0.48 L | |||
350–800 | 606 | 32.8 | 32.66 | Final decomposition | 0.46 L | |||
[Ni(L)2] | 50–291 | 234 | 15.35 | 15.67 | ligand decomposition | 0.17 L | NiO (10.55) 10.30 | 8.09 |
300–396 | 338, 371 | 46.25 | 46.21 | ligand decomposition | 0.51 L | |||
398–800 | 449 | 28.4 | 28.26 | Final decomposition | 0.31 L | |||
[Co(L)2]·1/2H2O | 51–170 | 64 | 1.25 | 1.31 | Dehydration | 1/2H2O | CoO (10.9) 10.62 | 8.24 |
319–358 | 337 | 40.58 | 40.71 | ligand decomposition | 0.43 L | |||
453–800 | 473 | 46.63 | 46.39 | Final decomposition | 0.49 L | |||
[Gd(L)2(H2O)2](NO3)·3/2H2O | 24–134 | 73 | 2.83 | 2.91 | Dehydration | 3/2H2O | GdO 0.17 L ligand residue (30.88) 29.47 | 16.16 |
134–244 | 190 | 3.9 | 3.76 | Coordination sphere | 2H2O | |||
250–448 | 330, 405 | 32.1 | 32.5 | NO3 liberation + ligand decomposition | HNO3 + 0.37 L | |||
452–761 | 510, 630 | 29.7 | 30.03 | Final decomposition | 0.43 L | |||
[Sm(L)2(H2O)2](NO3) ·2H2O | 30–171 | 83 | 3.65 | 3.87 | Dehydration | 2H2O | SmO 0.11 ligand residue (23.81) 24.31 | 16.03 |
174–338 | 329 | 27.49 | 27.56 | Coordination sphere + ligand decomposition | 2H2O + 0.34 L | |||
438–477 | 441 | 23.37 | 23.38 | NO3 liberation + ligand decomposition | HNO3 + 0.24 L | |||
482–492 | 499 | 21.21 | 21.58 | Final decomposition | 0.31 L |
Complex | Step | R2 | Order (n) | Ts (K) | ΔEa (J/mol) | Z (s−1) | ΔS* (J/K.mol) | ΔH* (kJ/mol) | ΔG* (kJ/mol) |
---|---|---|---|---|---|---|---|---|---|
[Cu(L)(H2O)]Cl.2H2O | Final ligand Degradation | 0.95 | 2.00 | 876 | 184.05 | 6.41 × 1010 | −46.99 | −6.849 | 34.31 |
[Ni(L)2] | Final ligand Degradation | 0.95 | 2.00 | 721 | 74.83 | 1.07 × 105 | −156.00 | −5.919 | 63.97 |
[Co(L)2]1/2H2O | Final ligand Degradation | 0.99 | 2.00 | 745 | 104.97 | 1.31 × 107 | −116.29 | −6.089 | 80.55 |
[Gd(L)2(H2O)2](NO3).3H2O | ligand degradation | 0.97 | 0.66 | 608 | 102.48 | 5.22 × 106 | −122.26 | −4.952 | 69.38 |
[Sm(L)2(H2O)2](NO3).3/2H2O | NO3 liberation + ligand degradation | 0.99 | 2.00 | 721 | 136.10 | 2.24 × 1010 | −54.12 | −5.858 | 33.16 |
Ligand | Active Lone Pair Map | Lipophilic and Hydrophilic Map |
---|---|---|
HI | ||
HL |
Ibuprofen | Ligand Sites | Receptor Sites | Type of the Interaction | Bond Distance (Å) | Binding Energy (kcal/mol) | The Total Free-Binding Energy (kcal/mol) |
---|---|---|---|---|---|---|
O(14) | THR 212 | H-donor | 2.85 | −2.9 | −5.33 |
Ligand | Ligand Sites | Receptor Sites | Type of the Interaction | Distance of Bond (Å) | Binding Energy (kcal/mol) | Total Free Binding Energy (kcal/mol) |
---|---|---|---|---|---|---|
O(15) | THR 212 | H-accept or H-donor | 3.05 | −2.7 | −5.65 | |
N(16) | PHE 210 | 3.01 | −1.9 |
Ligand | Ligand Sites | Receptor Sites | Interaction Type | Distance (Å) | Energy of Binding (kcal/mol) | The Energy of Total Free Binding (kcal/mol) |
---|---|---|---|---|---|---|
O(1) | HIS 388 | H- donor | 2.87 | −1 | −7.52 | |
C(12) | HIS 386 | H-pi | 4.34 | −0.8 |
Compound | PDB 5IKT (Homo Sapiens) S-Value (Kcal/mol) |
---|---|
Ibuprofen | −5.33 |
HI | −5.65 |
HL | −7.52 |
Compound | Sites of Ligand | Receptor Sites | Interaction Kind | Bond Distance (Å) | Binding Energy (kcal/mol) | The Energy of Total Free Binding (kcal/mol) |
---|---|---|---|---|---|---|
HL | O(1) | HIS 388 | H-donor | 2.87 | −1 | −7.52 |
C(12) | HIS 386 | H-pi | 4.34 | −0.8 | ||
Co-L | N(11) | HIS 214 | H-acceptor | 2.97 | −1.12 | −9.41 |
Cu-L | O(1) | HIS 388 | H-donor | 2.97 | −4.6 | −8.09 |
Ph | HIS 386 | H-pi | 4.39 | −1.6 | ||
Ni-L | Ph | HIS 214 | H-pi | 3.55 | −0.8 | −9.51 |
Ph | HIS 386 | H-pi | 4.19 | −0.6 | ||
Gd-L | N(10) | HIS 214 | H-acceptor | 3.18 | −2.3 | −8.05 |
Ph | LYS 211 | H-pi | 4.15 | −1 | ||
Ph | HIS 386 | pi-pi | 3.94 | 0 | ||
Sm-L | Ph | HIS 386 | H-pi | 4.28 | −0.8 | −10.04 |
Ph | HIS 217 | H-pi | 3.79 | −0.6 | ||
Ph | GLN 203 | H-pi | 4.47 | −0.6 |
Compound | IC50 (µM) a | ||
---|---|---|---|
COX-1 | COX-2 | COX-2 SI b | |
HI | 7.5 | 4.3 | 1.7 |
HL | 8.6 | 4.9 | 1.8 |
Ibuprofen | 12.9 | 31.4 | 0.4 |
Indomethacin | 0.4 | 0.1 | 5.0 |
Diclofenac sodium | 3.8 | 0.8 | 4.5 |
Compound No. | Fibroblast Cells |
---|---|
HL | 4.13 |
HI | 3.9 |
Ibuprofen | 30.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.M.; Aboelmagd, A.; Kishk, S.M.; Nasrallah, H.H.; Boyd, W.C.; Kalil, H.; Orabi, A.S. A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction. Molecules 2022, 27, 7540. https://doi.org/10.3390/molecules27217540
Abbas AM, Aboelmagd A, Kishk SM, Nasrallah HH, Boyd WC, Kalil H, Orabi AS. A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction. Molecules. 2022; 27(21):7540. https://doi.org/10.3390/molecules27217540
Chicago/Turabian StyleAbbas, Abbas M., Ahmed Aboelmagd, Safaa M. Kishk, Hossam H. Nasrallah, Warren Christopher Boyd, Haitham Kalil, and Adel S. Orabi. 2022. "A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction" Molecules 27, no. 21: 7540. https://doi.org/10.3390/molecules27217540
APA StyleAbbas, A. M., Aboelmagd, A., Kishk, S. M., Nasrallah, H. H., Boyd, W. C., Kalil, H., & Orabi, A. S. (2022). A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction. Molecules, 27(21), 7540. https://doi.org/10.3390/molecules27217540