Preparation and Characterization of Water-borne Polyurethane Based on Benzotriazole as Pendant Group with Different N-Alkylated Chain Extenders and Its Application in Anticorrosion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Gel Contents
2.3. Electrochemical Corrosion Measurement
2.3.1. Potentiodynamic Polarization (PDP) Measurement
Short Term Corrosion Study (30 Min)
icorr(0)
Long Term Anti-Corrosion Study (3 Days)
2.3.2. Morphological Studies
2.3.3. Electrochemical Impedance Spectroscopy (EIS)
2.4. O2 Permeability
2.5. Thermomechanical Properties
3. Experimental
3.1. Materials
3.2. Gel Content
3.3. Synthesis of WPU-g-BTA
4. Conclusions
- The gel content of WPU-g-BTAs increased from 13.57% to 21.68% with increasing chain length from WPU-g-BTA-A to WPU-g-BTA-C. Further, increasing the chain length of WPU-g-BTAs significantly increased the crosslink density, thereby improving the thermal and mechanical properties.
- WPU-g-BTAs improved the corrosion resistance performance of the as synthesized material. The superior inhibition efficiency of 99.972% and 31.16% was achieved by WPU-g-BTA-C after 30 min and 3 days of immersion in 3.5 wt% NaCl (aq) respectively. Hence, WPU-g-BTA coatings are considered promising materials for anti-corrosion applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mahmoudian, M.; Nozad, E.; Kochameshki, M.G.; Enayati, M. Preparation and Investigation of Hybrid Self-Healing Coatings Containing Linseed Oil Loaded Nanocapsules, Potassium Ethyl Xanthate and Benzotriazole on Copper Surface. Prog. Org. Coat. 2018, 120, 167–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X. Facile Preparation of Homogenous Waterborne Poly(Urethane/Acrylate) Composites and the Correlation between Microstructure and Improved Properties. J. Appl. Polym. Sci. 2021, 138, 50111. [Google Scholar] [CrossRef]
- Mestry, S.U.; Khuntia, S.P.; Mhaske, S.T. Development of Waterborne Polyurethane Dispersions (WPUDs) from Novel Cardanol-Based Reactive Dispersing Agent. Polym. Bull. 2021, 78, 6819–6834. [Google Scholar] [CrossRef]
- Shan, C.; Ning, C.; Lou, J.; Xu, W.; Zhang, Y. Design and Preparation of UV-Curable Waterborne Polyurethane Based on Novel Fluorinated Chain Extender. Polym. Bull. 2021, 78, 2067–2083. [Google Scholar] [CrossRef]
- Wang, S.; Fang, Y.; He, H.; Zhang, L.; Li, C.; Ouyang, J. Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring. Adv. Funct. Mater. 2021, 31, 2007495. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, D.; Zheng, Y.; Zhao, L.; Xu, T.; Guo, Z.; Irfan Hussain, M.; Zeng, J.; Lou, L.; Sun, Y.; et al. A Novel Waterborne Polyurethane with Biodegradability and High Flexibility for 3D Printing. Biofabrication 2020, 12, 035015. [Google Scholar] [CrossRef]
- Lu, F.; Li, Z.; Kang, Y.; Su, Z.; Yu, R.; Zhang, S. Black Phosphorus Quantum Dots Encapsulated in Anionic Waterborne Polyurethane Nanoparticles for Enhancing Stability and Reactive Oxygen Species Generation for Cancer PDT/PTT Therapy. J. Mater. Chem. B 2020, 8, 10650–10661. [Google Scholar] [CrossRef]
- Jia, R.; Hui, Z.; Huang, Z.; Liu, X.; Zhao, C.; Wang, D.; Wu, D. Synthesis and Antibacterial Investigation of Cationic Waterborne Polyurethane Containing Siloxane. New J. Chem. 2020, 44, 19759–19768. [Google Scholar] [CrossRef]
- Yeh, J.-M.; Yao, C.-T.; Hsieh, C.-F.; Lin, L.-H.; Chen, P.-L.; Wu, J.-C.; Yang, H.-C.; Wu, C.-P. Preparation, Characterization and Electrochemical Corrosion Studies on Environmentally Friendly Waterborne Polyurethane/Na+-MMT Clay Nanocomposite Coatings. Eur. Polym. J. 2008, 44, 3046–3056. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, M.; Gu, Y.; Chen, Y. WPU/CB/GO Nanocomposites: In Situ Polymerization Preparation, Thermal, and Anticorrosion Performance Evaluation. J. Appl. Polym. Sci. 2020, 137, 48716. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, W.; Liang, L.; Yang, M.; Wang, S.; Shi, H.; Xie, Y.; Pi, K. Application of Polyether Amine Intercalated Graphene Oxide as Filler for Enhancing Hydrophobicity, Thermal Stability, Mechanical and Anti-Corrosion Properties of Waterborne Polyurethane. Diam. Relat. Mater. 2020, 109, 108077. [Google Scholar] [CrossRef]
- Gao, X.; Bilal, M.; Ali, N.; Yun, S.; Wang, J.; Ni, L.; Cai, P. Two-Dimensional Nanosheets Functionalized Water-Borne Polyurethane Nanocomposites with Improved Mechanical and Anti-Corrosion Properties. Inorg. Nano-Met. Chem. 2020, 50, 1358–1366. [Google Scholar] [CrossRef]
- Larraza, I.; Alonso-Lerma, B.; Gonzalez, K.; Gabilondo, N.; Perez-Jimenez, R.; Corcuera, M.A.; Arbelaiz, A.; Eceiza, A. Waterborne Polyurethane and Graphene/Graphene Oxide-Based Nanocomposites: Reinforcement and Electrical Conductivity. Express Polym. Lett. 2020, 14, 1018–1033. [Google Scholar] [CrossRef]
- Sheng, X.; Li, S.; Huang, H.; Zhao, Y.; Chen, Y.; Zhang, L.; Xie, D. Anticorrosive and UV-Blocking Waterborne Polyurethane Composite Coating Containing Novel Two-Dimensional Ti3C2 MXene Nanosheets. J. Mater. Sci. 2021, 56, 4212–4224. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, J.; Hu, B.; Yuan, J.; Wang, J.; Zhu, L.; Pan, M. Dispersity Control and Anti-Corrosive Performance of Graphene Oxide Modified by Functionalized Nanosilica in Waterborne Polyurethane. Nanotechnology 2020, 31, 205708. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Lv, L.; Du, W.; Fang, W.; Wang, Y. Improving the Tribological and Anticorrosion Performance of Waterborne Polyurethane Coating by the Synergistic Effect between Modified Graphene Oxide and Polytetrafluoroethylene. Nanomaterials 2020, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, R.; Kiani, G.; Karimzad Ghavidel, A.; Rashidi, A. Improving Environmental Protection of Waterborne Polyurethane Coating by Adding TiO2/Polyaniline/HNT/CNT Nanocomposite. Environ. Sci. Pollut. Res. 2020, 27, 6438–6448. [Google Scholar] [CrossRef]
- Wang, F.; Feng, L.; Huang, Y.; Shen, W.; Ma, H. Effect of the Gradient Distribution of Multiwalled Carbon Nanotubes on the Bond Strength and Corrosion Resistance of Waterborne Polyurethane Conductive Nanocomposites. Prog. Org. Coat. 2020, 140, 105507. [Google Scholar] [CrossRef]
- Liang, H.; Li, Y.; Huang, S.; Huang, K.; Zeng, X.; Dong, Q.; Liu, C.; Feng, P.; Zhang, C. Tailoring the Performance of Vegetable Oil-Based Waterborne Polyurethanes through Incorporation of Rigid Cyclic Rings into Soft Polymer Networks. ACS Sustain. Chem. Eng. 2020, 8, 914–925. [Google Scholar] [CrossRef]
- Khan, P.F.; Shanthi, V.; Babu, R.K.; Muralidharan, S.; Barik, R.C. Effect of Benzotriazole on Corrosion Inhibition of Copper under Flow Conditions. J. Environ. Chem. Eng. 2015, 3, 10–19. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, M.; Wu, Q.; Zhou, X.; Ge, X. Microencapsulation of UV-Curable Self-Healing Agent for Smart Anticorrosive Coating. Chin. J. Chem. Phys. 2014, 27, 607–615. [Google Scholar] [CrossRef]
- Tan, B.; Lan, W.; Zhang, S.; Deng, H.; Qiang, Y.; Fu, A.; Ran, Y.; Xiong, J.; Marzouki, R.; Li, W. Passiflora Edulia Sims Leaves Extract as Renewable and Degradable Inhibitor for Copper in Sulfuric Acid Solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128892. [Google Scholar] [CrossRef]
- Guo, L.; Kaya, S.; Obot, I.B.; Zheng, X.; Qiang, Y. Toward Understanding the Anticorrosive Mechanism of Some Thiourea Derivatives for Carbon Steel Corrosion: A Combined DFT and Molecular Dynamics Investigation. J. Colloid Interface Sci. 2017, 506, 478–485. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, Y.; Li, B.; Song, L.; Guo, Z. Self-Healing Effect of Graphene@PANI Loaded with Benzotriazole for Carbon Steel. Corros. Sci. 2020, 163, 108246. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, M.; Xu, Y.; Zhang, Z.; Ge, X. The Fabrication and Corrosion Resistance of Benzotriazole-Loaded Raspberry-like Hollow Polymeric Microspheres. Surf. Coat. Technol. 2014, 238, 15–26. [Google Scholar] [CrossRef]
- Abdullayev, E.; Abbasov, V.; Tursunbayeva, A.; Portnov, V.; Ibrahimov, H.; Mukhtarova, G.; Lvov, Y. Self-Healing Coatings Based on Halloysite Clay Polymer Composites for Protection of Copper Alloys. ACS Appl. Mater. Interfaces 2013, 5, 4464–4471. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Wang, J.; Cui, X.; Zhou, Q.; Qi, T.; Li, G.L. Smart-Sensing Polymer Coatings with Autonomously Reporting Corrosion Dynamics of Self-Healing Systems. Adv. Mater. Interfaces 2019, 6, 1900055. [Google Scholar] [CrossRef]
- Jafari, A.H.; Hosseini, S.M.A.; Jamalizadeh, E. Investigation of Smart Nanocapsules Containing Inhibitors for Corrosion Protection of Copper. Electrochim. Acta 2010, 55, 9004–9009. [Google Scholar] [CrossRef]
- Chen, T.; Fu, J. PH-Responsive Nanovalves Based on Hollow Mesoporous Silica Spheres for Controlled Release of Corrosion Inhibitor. Nanotechnology 2012, 23, 235605. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. Springerplus 2013, 2, 398. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Le, X.H.; Dao, P.H.; Decker, C.; Nguyen-Tri, P. Stability of Acrylic Polyurethane Coatings under Accelerated Aging Tests and Natural Outdoor Exposure: The Critical Role of the Used Photo-Stabilizers. Prog. Org. Coat. 2018, 124, 137–146. [Google Scholar] [CrossRef]
- Nikafshar, S.; Zabihi, O.; Ahmadi, M.; Mirmohseni, A.; Taseidifar, M.; Naebe, M. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber. Materials 2017, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Saadat-Monfared, A.; Mohseni, M. Polyurethane Nanocomposite Films Containing Nano-Cerium Oxide as UV Absorber; Part 2: Structural and Mechanical Studies upon UV Exposure. Colloids Surf. A Physicochem. Eng. Asp. 2014, 441, 752–757. [Google Scholar] [CrossRef]
- Rashvand, M.; Ranjbar, Z.; Rastegar, S. Preserving Anti-Corrosion Properties of Epoxy Based Coatings Simultaneously Exposed to Humidity and UV-Radiation Using Nano Zinc Oxide. J. Electrochem. Soc. 2012, 159, C129–C132. [Google Scholar] [CrossRef] [Green Version]
- Dhoke, S.K.; Khanna, A.S. Study on Electrochemical Behavior of Nano-ZnO Modified Alkyd-Based Waterborne Coatings. J. Appl. Polym. Sci. 2009, 113, 2232–2237. [Google Scholar] [CrossRef]
- Fechine, G.J.; Rabello, M.; Souto-Maior, G.J. The Effect of Ultraviolet Stabilizers on the Photodegradation of Poly(Ethylene Terephthalate). Polym. Degrad. Stab. 2002, 75, 153–159. [Google Scholar] [CrossRef]
- Haacke, G.; Longordo, E.; Brinen, J.S.; Andrawes, F.F.; Campbell, B.H. Chemisorption and Physical Adsorption of Light Stabilizers on Pigment and Ultrafine Particles in Coatings. J. Coat. Technol. 1999, 71, 87–94. [Google Scholar] [CrossRef]
- Yaneff, P.V.; Adamsons, K.; Cliff, N.; Kanouni, M. Migration of Reactable UVAs and HALS in Automotive Plastic Coatings. J. Coat. Technol. Res. 2004, 1, 201–212. [Google Scholar] [CrossRef]
- Liang, Z.; Zhu, J.; Li, F.; Wu, Z.; Liu, Y.; Xiong, D. Synthesis and Properties of Self-Crosslinking Waterborne Polyurethane with Side Chain for Water-Based Varnish. Prog. Org. Coat. 2021, 150, 105972. [Google Scholar] [CrossRef]
- Yen, M.-S.; Tsai, P.-Y.; Hong, P.-D. The Solution Properties and Membrane Properties of Polydimethylsiloxane Waterborne Polyurethane Blended with the Waterborne Polyurethanes of Various Kinds of Soft Segments. Colloids Surf. A Physicochem. Eng. Asp. 2006, 279, 1–9. [Google Scholar] [CrossRef]
- Lei, L.; Xia, Z.; Lin, X.; Yang, T.; Zhong, L. Synthesis and Adhesion Properties of Waterborne Polyurethane Dispersions with Long-Branched Aliphatic Chains. J. Appl. Polym. Sci. 2014, 132, 41688. [Google Scholar] [CrossRef]
- Zhang, P.; Tian, S.; Fan, H.; Chen, Y.; Yan, J. Flame Retardancy and Hydrolysis Resistance of Waterborne Polyurethane Bearing Organophosphate Moieties Lateral Chain. Prog. Org. Coat. 2015, 89, 170–180. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, Y.; Ou, C.; Xia, Z.; Zhong, L. Synthesis and Characterization of Waterborne Polyurethanes with Alkoxy Silane Groups in the Side Chains for Potential Application in Waterborne Ink. Prog. Org. Coat. 2016, 92, 85–94. [Google Scholar] [CrossRef]
- Sheikhy, H.; Shahidzadeh, M.; Ramezanzadeh, B.; Noroozi, F. Studying the Effects of Chain Extenders Chemical Structures on the Adhesion and Mechanical Properties of a Polyurethane Adhesive. J. Ind. Eng. Chem. 2013, 19, 1949–1955. [Google Scholar] [CrossRef]
- Lyu, J.; Xu, K.; Zhang, N.; Lu, C.; Zhang, Q.; Yu, L.; Feng, F.; Li, X. In Situ Incorporation of Diamino Silane Group into Waterborne Polyurethane for Enhancing Surface Hydrophobicity of Coating. Molecules 2019, 24, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-I.; Kim, S.-H.; Lee, D.-S. Synthesis and Characterization of Healable Waterborne Polyurethanes with Cystamine Chain Extenders. Molecules 2019, 24, 1492. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, Z.; Fan, H.; Tian, S.; Chen, Y.; Yan, J. Waterborne Polyurethane Conjugated with Novel Diol Chain-Extender Bearing Cyclic Phosphoramidate Lateral Group: Synthesis, Flammability and Thermal Degradation Mechanism. RSC Adv. 2016, 6, 56610–56622. [Google Scholar] [CrossRef]
- Wang, G.; Ma, G.; Hou, C.; Guan, T.; Ling, L.; Wang, B. Preparation and Properties of Waterborne Polyurethane/Nanosilica Composites: A Diol as Extender with Triethoxysilane Group. J. Appl. Polym. Sci. 2014, 131, 40526. [Google Scholar] [CrossRef]
- Li, Q.; Guo, L.; Qiu, T.; Xiao, W.; Du, D.; Li, X. Synthesis of Waterborne Polyurethane Containing Alkoxysilane Side Groups and the Properties of the Hybrid Coating Films. Appl. Surf. Sci. 2016, 377, 66–74. [Google Scholar] [CrossRef]
- Lee, I.H.; Bae, S.Y.; Kim, B.K. Biodegradable Waterborne Polyurethane with Modified Hydroxyethylcellulose. Express Polym. Lett. 2018, 12, 836–843. [Google Scholar] [CrossRef]
- Shahriari, L.; Mohseni, M.; Yahyaei, H. The Effect of Cross-Linking Density on Water Vapor and Oxygen Permeability of Hybrid UV Cured Nano Coatings. Prog. Org. Coat. 2019, 134, 66–77. [Google Scholar] [CrossRef]
- Deyab, M.A.; Essehli, R.; El Bali, B.; Lachkar, M. Fabrication and Evaluation of Rb2Co(H2P2O7)2·2H2O/Waterborne Polyurethane Nanocomposite Coating for Corrosion Protection Aspects. RSC Adv. 2017, 7, 55074–55080. [Google Scholar] [CrossRef]
Sample Code | WPU-g-BTA-A | WPU-g-BTA-B | WPU-g-BTA-C | |
---|---|---|---|---|
Gel content | Tube (g) | 13.7608 | 13.7386 | 13.7784 |
Sample (g) | 0.6671 | 0.6675 | 0.6674 | |
THF (g) | 20.171 | 20.0265 | 20.0255 | |
After drying (g) | 13.8513 | 13.864 | 13.9231 | |
Gel Content (%) | 13.57 | 18.79 | 21.68 | |
Gas permeability | O2 (barrer) | 1.758322 | 1.045648 | 0.984704 |
Thermal Stability | Td(5%) | 252.75 | 257.47 | 257.47 |
Td(10%) | 288.26 | 292.41 | 295.69 | |
Char yield % | 3 | 1.6 | 0.21 | |
DMA | Stress (kgf/cm2) | 51.19 | 47.56 | 50.41 |
Elongation (%) | 178.85 | 224.66 | 283.41 | |
100% modulus (kgf/cm2) | 42.15 | 44.12 | 46.51 |
Sample Code | CRS | WPU-g-BTA-A | WPU-g-BTA-B | WPU-g-BTA-C | |
---|---|---|---|---|---|
Coating thickness | (μm) | 60 ± 2 | 60 ± 2 | 60 ± 2 | 60 ± 2 |
Electrochemical parameters | Ecorr (V) | −0.81121 | −0.3311 | −0.25208 | −0.19831 |
icorr (μA/cm2) | 71.773 | 0.079 | 0.068 | 0.020 | |
IE % | - | 99.889 | 99.905 | 99.972 | |
EIS (Nyquist) | Z’ (kΩ) | 0.16 | 978.84 | 1552.69 | 2055.23 |
-Z’’ (kΩ) | 0.09 | 346.95 | 462.90 | 582.83 | |
BODE | log(Z) | 2.22 | 5.99 | 6.21 | 6.33 |
Sample Code | Ecorr (V) | icorr (µA.cm−2) | Rp (kΩ) | PEF % |
---|---|---|---|---|
CRS | −0.634 | 4.98 | 2.587 | - |
WPU-g-BTA-A | −0.633 | 4.17 | 3.065 | 16.16 |
WPU-g-BTA-B | −0.576 | 4.08 | 2.349 | 18.13 |
WPU-g-BTA-C | −0.550 | 3.41 | 3.127 | 31.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibi, A.; Tsai, E.; Lan, Y.-X.; Chang, K.-C.; Yeh, J.-M. Preparation and Characterization of Water-borne Polyurethane Based on Benzotriazole as Pendant Group with Different N-Alkylated Chain Extenders and Its Application in Anticorrosion. Molecules 2022, 27, 7581. https://doi.org/10.3390/molecules27217581
Bibi A, Tsai E, Lan Y-X, Chang K-C, Yeh J-M. Preparation and Characterization of Water-borne Polyurethane Based on Benzotriazole as Pendant Group with Different N-Alkylated Chain Extenders and Its Application in Anticorrosion. Molecules. 2022; 27(21):7581. https://doi.org/10.3390/molecules27217581
Chicago/Turabian StyleBibi, Aamna, Ethan Tsai, Yun-Xiang Lan, Kung-Chin Chang, and Jui-Ming Yeh. 2022. "Preparation and Characterization of Water-borne Polyurethane Based on Benzotriazole as Pendant Group with Different N-Alkylated Chain Extenders and Its Application in Anticorrosion" Molecules 27, no. 21: 7581. https://doi.org/10.3390/molecules27217581
APA StyleBibi, A., Tsai, E., Lan, Y. -X., Chang, K. -C., & Yeh, J. -M. (2022). Preparation and Characterization of Water-borne Polyurethane Based on Benzotriazole as Pendant Group with Different N-Alkylated Chain Extenders and Its Application in Anticorrosion. Molecules, 27(21), 7581. https://doi.org/10.3390/molecules27217581