Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pescarmona, P.P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Curr. Opin. Green Sustain. Chem. 2021, 29, 100457. [Google Scholar] [CrossRef]
- Kamphuis, A.J.; Picchioni, F.; Pescarmona, P.P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications. Green Chem. 2019, 21, 406–448. [Google Scholar] [CrossRef] [Green Version]
- Maltby, K.A.; Hutchby, M.; Plucinski, P.; Davidson, M.G.; Hintermair, U. Selective Catalytic Synthesis of 1,2- and 8,9-Cyclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes. Chem.-A Eur. J. 2020, 26, 7405–7415. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.; Liu, H.; He, D. Transformation of CO2 and glycerol to glycerol carbonate over CeO2–ZrO2 solid solution—Effect of Zr doping. Biomass Bioenergy 2018, 118, 74–83. [Google Scholar] [CrossRef]
- Razali, N.; McGregor, J. Improving product yield in the direct carboxylation of glycerol with CO2 through the tailored selection of dehydrating agents. Catalysts. 2021, 11, 138. [Google Scholar] [CrossRef]
- Rozulan, N.; Halim, S.A.; Razali, N.; Lam, S.S. A review on direct carboxylation of glycerol waste to glycerol carbonate and its applications. Biomass Convers. Biorefinery 2022, 12, 4665–4682. [Google Scholar] [CrossRef]
- Duan, C.; Yu, Y.; Hu, H. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ. 2022, 7, 3–15. [Google Scholar] [CrossRef]
- Xiang, W.; Sun, Z.; Wu, Y.; He, L.; Liu, C. Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition. Catal. Today 2020, 339, 337–343. [Google Scholar] [CrossRef]
- Zhou, K.; Mousavi, B.; Luo, Z.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A. 2017, 5, 952–957. [Google Scholar] [CrossRef]
- Kuruppathparambil, R.R.; Jose, T.; Babu, R.; Hwang, G.Y.; Kathalikkattil, A.C.; Kim, D.W.; Park, D.W. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Appl. Catal. B Environ. 2016, 182, 562–569. [Google Scholar] [CrossRef]
- Caló, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett. 2002, 4, 2561–2563. [Google Scholar] [CrossRef]
- Mazo, P.; Rios, L. Carbonation of epoxidized soybean oil improved by the addition of water. J. Am. Oil Chem. Soc. 2013, 90, 725–730. [Google Scholar] [CrossRef]
- Anderson, C.E.; Vagin, S.I.; Xia, W.; Jin, H.; Rieger, B. Cobaltoporphyrin-catalyzed CO2/epoxide copolymerization: Selectivity control by molecular design. Macromolecules 2012, 45, 6840–6849. [Google Scholar] [CrossRef]
- Sugimoto, H.; Kuroda, K. The cobalt porphyrin–Lewis base system: A highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions. Macromolecules 2008, 41, 312–317. [Google Scholar] [CrossRef]
- Udayakumar, S.; Lee, M.K.; Shim, H.L.; Park, S.W.; Park, D.W. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catal. Commun. 2009, 10, 659–664. [Google Scholar] [CrossRef]
- Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartorio, R. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett. 2003, 44, 2931–2934. [Google Scholar] [CrossRef]
- Aprile, C.; Giacalone, F.; Agrigento, P.; Liotta, L.F.; Martens, J.A.; Pescarmona, P.P.; Gruttadauria, M. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions. ChemSusChe 2011, 4, 1830–1837. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal. Today 2013, 200, 117–124. [Google Scholar] [CrossRef]
- Taherimehr, M.; Van de Voorde, B.; Wee, L.H.; Martens, J.A.; De Vos, D.E.; Pescarmona, P.P. Strategies for Enhancing the Catalytic Performance of Metal–Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates. ChemSusChem 2017, 10, 1283–1291. [Google Scholar] [CrossRef]
- Zalomaeva, O.V.; Maksimchuk, N.V.; Chibiryaev, A.M.; Kovalenko, K.A.; Fedin, V.P.; Balzhinimaev, B.S. Synthesis of cyclic carbonates from epoxides or olefins and CO2 catalyzed by metal-organic frameworks and quaternary ammonium salts. J. Energy Chem. 2013, 22, 130–135. [Google Scholar] [CrossRef]
- Ramos-Fernández, E.V.; Serrano-Ruiz, J.C.; Sepúlveda-Escribano, A.; Narciso, J.; Ferrando-Soria, J.; Pardo, E. CHAPTER 9 Metal Organic Frameworks: From Material Chemistry to Catalytic Applications. In Heterogeneous Catalysis for Energy Applications; Reina, T.R., Odriozola, J.A., Eds.; The Royal Society of Chemistry: London, UK, 2020; pp. 235–303. ISBN 978-1-78801-718-3. [Google Scholar]
- Delgado-Marín, J.J.; Izan, D.P.; Molina-Sabio, M.; Ramos-Fernandez, E.V.; Narciso, J. New Generation of MOF-Monoliths Based on Metal Foams. Molecules 2022, 27, 1968. [Google Scholar] [CrossRef] [PubMed]
- Ronda-Lloret, M.; Pellicer-Carreño, I.; Grau-Atienza, A.; Boada, R.; Diaz-Moreno, S.; Narciso-Romero, J.; Serrano-Ruiz, J.C.; Sepúlveda-Escribano, A.; Ramos-Fernandez, E.V. Mixed-Valence Ce/Zr Metal-Organic Frameworks: Controlling the Oxidation State of Cerium in One-Pot Synthesis Approach. Adv. Funct. Mater. 2021, 31, 2102582. [Google Scholar] [CrossRef]
- Ramos-Fernandez, E.V.; Redondo-Murcia, A.; Grau-Atienza, A.; Sepúlveda-Escribano, A.; Narciso, J. Clean production of Zeolitic Imidazolate Framework 8 using Zamak residues as metal precursor and substrate. J. Clean. Prod. 2020, 260, 121081. [Google Scholar] [CrossRef]
- Beyzavi, M.H.; Stephenson, C.J.; Liu, Y.; Karagiaridi, O.; Hupp, J.T.; Farha, O.K. Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy Res. 2015, 2, 63. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, W.; Hudson, B.S.; Zubieta, J. Hydrothermal and Structural Chemistry of the Zinc(II)- and Cadmium(II)-1,2,4-Triazolate Systems. Inorg. Chem. 2007, 46, 4887–4904. [Google Scholar] [CrossRef] [PubMed]
- Oullette, W.; Prosvirin, A.V.; Valeich, J.; Dunbar, K.R.; Zubieta, J. Hydrothermal Synthesis, Structural Chemistry, and Magnetic Properties of Materials of the MII/Triazolate/Anion Family, Where MII = Mn, Fe, and Ni. Inorg. Chem. 2007, 46, 9067–9082. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, G.N.; Dvurechenskaya, E.G.; Ganina, O.G.; Alonso, F.; Beletskaya, I.P. Solvent-free Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Reusable Alumina-supported Zinc Dichloride. Appl. Catal. B: Environ. 2019, 254, 380–390. [Google Scholar] [CrossRef]
- Kuruppathparambil, R.R.; Babu, R.; Jeong, H.M.; Hwang, G.Y.; Jeong, G.S.; Kim, M.I.; Kim, D.W.; Park, D.W. A Solid SolutionZeolitic Imidazolate Framework as a Room Temperature Efficient Catalyst for the Chemical Fixation of CO2. Green Chem. 2016, 18, 6349–6356. [Google Scholar] [CrossRef]
- Mousavi, B.; Chaemchuen, S.; Moosavi, B.; Luo, Z.; Gholampour, N.; Verpoort, F. Zeolitic Imidazole Framework-67 as an Efficient Heterogeneous Catalyst for the Conversion of CO2 to Cyclic Carbonates. New J. Chem. 2016, 40, 5170–5176. [Google Scholar] [CrossRef]
- Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A.A.; Bats, N. Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. J. Am. Chem. Soc. 2010, 132, 12365–12377. [Google Scholar] [CrossRef]
- Blackman, A. Reactions of Coordinated ligands. Adv. Heterocycl. Chem. 1993, 58, 123–170. [Google Scholar]
- Cox, J.R.; Woodcock, S.; Hillier, I.H.; Vincent, M.A. Tautomerism of 1,2,3- and 1,2,4-Triazole in the Gas Phase and In Aqueous Solution: A Combined ab Initio Quantum Mechanics and Free Energy Perturbation Study. J. Phys. Chem. 1990, 94, 5499–5501. [Google Scholar] [CrossRef]
- Lunazi, L.; Parisi, F.; Macciantelli, D. Conformational studies by dynamic nuclear magnetic resonance spectroscopy. Part 27. Kinetics and mechanism of annular tautomerism in isomeric triazoles. J. Chem. Soc. Perkin Trans. 2 1984, 6, 1025–1028. [Google Scholar] [CrossRef]
- Garrat, P.J. Comprehensive Heterocyclic Chemistry II; Katrizky, A.R., Rees, C.W., Scriven, E.F.V., Storr, R.C., Eds.; Pergamon: Exeter, UK, 1996; Volume 4, p. 135. [Google Scholar]
- Narciso, J.; Ramos-Fernandez, E.V.; Delgado-Marín, J.J.; Affolter, C.W.; Olsbye, U.; Redekop, E.A. New route for the synthesis of Co-MOF from metal substrates. Microporous Mesoporous Mater. 2021, 324, 111310. [Google Scholar] [CrossRef]
- Villalgordo-Hernández, D.; Grau-Atienza, A.; García-Marín, A.A.; Ramos-Fernández, E.V.; Narciso, J. Manufacture of Carbon Materials with High Nitrogen Content. Materials 2022, 15, 2415. [Google Scholar] [CrossRef]
Sample | BET (m2/g) | Micropore Volume (cm3/g) | Pore Volume (cm3/g) |
---|---|---|---|
ZIF-8 | 1551 | 0.55 | 0.58 |
ZIF-8-m | 942 | 0.35 | 0.37 |
ZIF-67 | 1833 | 0.70 | 0.72 |
ZIF-67-m | 914 | 0.36 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Marín, J.J.; Martín-García, I.; Villalgordo-Hernández, D.; Alonso, F.; Ramos-Fernández, E.V.; Narciso, J. Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules 2022, 27, 7791. https://doi.org/10.3390/molecules27227791
Delgado-Marín JJ, Martín-García I, Villalgordo-Hernández D, Alonso F, Ramos-Fernández EV, Narciso J. Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules. 2022; 27(22):7791. https://doi.org/10.3390/molecules27227791
Chicago/Turabian StyleDelgado-Marín, José J., Iris Martín-García, David Villalgordo-Hernández, Francisco Alonso, Enrique V. Ramos-Fernández, and Javier Narciso. 2022. "Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs" Molecules 27, no. 22: 7791. https://doi.org/10.3390/molecules27227791
APA StyleDelgado-Marín, J. J., Martín-García, I., Villalgordo-Hernández, D., Alonso, F., Ramos-Fernández, E. V., & Narciso, J. (2022). Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules, 27(22), 7791. https://doi.org/10.3390/molecules27227791