In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract
Abstract
:1. Introduction
2. Results
2.1. Aloysia Gratissima var. Gratissima
2.1.1. Effect of Oral Treatment with A. Gratissima var. Gratissima in the Tail Suspension Test
2.1.2. Effect of Oral Treatment with A. Gratissima var. Gratissima in the Forced Swimming Test
2.2. Aloysia Virgata var. Platyphylla
2.2.1. Effect of Oral Treatment with A. Virgata var. Platyphylla in the Tail Suspension Test
2.2.2. Effect of Oral Treatment with A. Virgata var. platyphylla in the Forced Swimming Test
2.2.3. Compound Identification by LCMS
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction
4.2. Animals
4.3. Reagents and Chemicals
4.4. Tail Suspension Test
4.5. Forced Swimming Test (FST) in Mice
4.6. LCMS Analysis
4.7. Statistical Analysis
4.8. Ethical Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, H.; Ahmad, S.; Shah, S.W.A.; Ullah, A.; Almehmadi, M.; Abdulaziz, O.; Allahyani, M.; Alsaiari, A.A.; Halawi, M.; Alamer, E. Investigation of Antistress and Antidepressant Activities of Synthetic Curcumin Analogues: Behavioral and Biomarker Approach. Biomedicines 2022, 10, 2385. [Google Scholar] [CrossRef]
- Depression and Other Common Mental Disorders Global Health Estimates. WHO/MSD/MER/2017.2. Available online: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf (accessed on 28 October 2022).
- COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- The Global Health Observatory. Estimated population-based prevalence of depression. Organización Mundial de la Salud. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/estimated-population-based-prevalence-of-depression (accessed on 10 May 2021).
- Daskalopoulou, M.; George, J.; Walters, K.; Osborn, D.P.; Batty, G.D.; Stogiannis, D.; Rapsomaniki, E.; Pujades-Rodriguez, M.; Denaxas, S.; Udumyan, R.; et al. Depression as a risk factor for the initial presentation of twelve cardiac, cerebrovascular, and peripheral arterial diseases: Data linkage study of 1.9 million women and men. PLoS ONE 2016, 11, e0153838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroll, B.; Chin, W.Y.; Martis, W.; Goodyear-Smith, F.; Mount, V.; Kingsford, D.; Humm, S.; Blashki, G.; Macgillivray, S. Antidepressants for treatment of depression in primary care: A systematic review and meta-analysis. J. Prim. Health Care 2016, 8, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, A.; Salanti, G.; Furukawa, T.A.; Egger, M.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Atkinson, L.; Chaimani, A.; Higgins, J.; et al. Antidepressants might work for people with major depression: Where do we go from here? Lancet Psychiatry 2018, 5, 461–463. [Google Scholar] [CrossRef]
- Ramic, E.; Prasko, S.; Gavran, L.; Spahic, E. Assessment of the antidepressant side effects occurrence in patients treated in primary care. Mater. Socio-Med. 2020, 32, 131–134. [Google Scholar] [CrossRef]
- Moragrega, I.; Ríos, J.L. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. Planta Med. 2021, 87, 656–685. [Google Scholar] [CrossRef]
- Moragrega, I.; Ríos, J.L. Medicinal plants in the treatment of depression. II: Evidence from clinical trials. Planta Med 2022, 88, 1092–1110. [Google Scholar] [CrossRef]
- Kenda, M.; Kočevar Glavač, N.; Nagy, M.; Sollner Dolenc, M. Medicinal plants used for anxiety, depression, or stress treatment: An update. Molecules 2022, 27, 6021. [Google Scholar] [CrossRef]
- Cavalcante, E.; Costa, G.F.; Nishijo, H.; Caixeta, L.F.; Aversi-Ferreira, T.A. The confrontation between ethnopharmacology and pharmacological tests of medicinal plants associated with mental and neurological disorders. Evid. Based Complement Altern. Med. 2018, 7686913. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Rep. 2017, 50, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozioma, E.O.J.; Chinwe, O.A.N. Herbal medicines in African traditional medicine. Herb. Med. 2019, 10, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Costa de Melo, N.; Sánchez-Ortiz, B.L.; Dos Santos Sampaio, T.I.; Matias Pereira, A.C.; Pinheiro da Silva Neto, F.L.; Ribeiro da Silva, H.; Alves Soares Cruz, R.; Keita, H.; Soares Pereira, A.M.; Tavares Carvalho, J.C. Anxiolytic and Antidepressant Effects of the Hydroethanolic Extract from the Leaves of Aloysia polystachya (Griseb.) Moldenke: A Study on Zebrafish (Danio rerio). Pharmaceuticals 2019, 12, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellión-Ibarrola, M.C.; Ibarrola, D.A.; Montalbetti, Y.; Kennedy, M.L.; Heinichen, O.; Campuzano, M.; Ferro, E.A.; Alvarenga, N.; Tortoriello, J.; De Lima, T.C.; et al. The antidepressant-like effects of Aloysia polystachya (griseb.) Moldenke (verbenaceae) in mice. Phytomedicine 2008, 15, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Díaz-Véliz, G.; Millán, R.; Lungenstrass, H.; Quirós, S.; Coto-Morales, T.; Hellión-Ibarrola, M.C. Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol. Biochem. Behav. 2005, 82, 373–378. [Google Scholar] [CrossRef]
- Zeni, A.; Zomkowski, A.; Maraschin, M.; Tasca, C.; Rodrigues, A. Evidence of the involvement of the monoaminergic systems in the antidepressant-like effect of Aloysia gratissima. J. Ethnopharmacol. 2013, 148, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Zeni, A.L.; Zomkowski, A.D.; Dal-Cim, T.; Maraschin, M.; Rodrigues, A.L.; Tasca, C.I. Antidepressant-like and neuroprotective effects of Aloysia gratissima: Investigation of involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway. J. Ethnopharmacol. 2011, 137, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, M.L.; Taboada, T.; Snead, E.; Diarte, E.M.G.; Coronel, C.M.; Arrúa, W.; Heinechen, O.; Montalbetti, Y.; Hellion-Ibarrola, M.C.; Ibarrola, D.A.; et al. Evaluation of methanol extract of Aloysia gratissima var. gratissima leaves on behavior and anxiety in mice. Int. J. Pharm. Sci. Res. 2021, 12, 3858–3865. [Google Scholar] [CrossRef]
- Ricciardi, G.A.L.; Torres, A.M.; van Baren, C.; Lira, P.D.L.; Ricciardi, A.I.A.; Dellacassa, E.; Lorenzo, D.; Bandoni, A. Essential oil of Aloysia virgata var. platyphylla (Briquet) Moldenke from Corrientes (Argentina). Flavour. Fragr. J. 2005, 20, 645–649. [Google Scholar] [CrossRef]
- Pascual, M.E.; Slowing, K.; Carretero, E.; Sánchez Mata, D.; Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 2001, 76, 201–214. [Google Scholar] [CrossRef]
- Wasowski, C.; Marder, M. Central nervous system activities of two diterpenes isolated from Aloysia virgata. Phytomedicine 2011, 18, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Vandresen, F.; Schmitt, E.; Kato, L.; de Oliveira, C.M.A.; Amado, C.A.B.; da Silva, C.C. Constituintes químicos e avaliação das atividades antibacteriana e antiedematogênica de Aloysia gratissima (Gillies & Hook.) Tronc. e Aloysia virgata (Ruiz & Pav.) Pers., Verbenaceae. Rev. Bras. Farmacogn 2010, 20, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Skaltsa, H.; Shammas, G. Flavonoids from Lippia citriodora. Planta Med. 1988, 54, 465. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.M.; Mahmod, A.I.; Afifi, F.U.; Talib, W.H. Antioxidant and Antiproliferation Activities of Lemon Verbena (Aloysia citrodora): An in vitro and in vivo study. Plants 2022, 11, 785. [Google Scholar] [CrossRef]
- Can, A.; Dao, D.T.; Terrillion, C.E.; Piantadosi, S.C.; Bhat, S.; Gould, T.D. The tail suspension test. J. Vis. Exp. 2012, 59, 3769. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.P.R.; Vieira, C.; Bohner, L.O.L.; Silva, C.F.; Santos, E.C.d.S.; De Lima, T.C.M.; Oliveira, C.L. A proposal for refining the forced swim test in Swiss mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Costall, B.; Eniojukan, J.F.; Naylor, R.J. Spontaneous climbing behaviour of mice, its measurement and dopaminergic involvement. Eur. J. Pharmacol. 1982, 85, 125–132. [Google Scholar] [CrossRef]
- Moroni, P.; O’Leary, N.; Filloy, J. Species delimitation in the Aloysia gratissima complex (Verbenaceae) following the phylogenetic species concept. Bot. J. Linn. Soc. 2016, 180, 193–212. [Google Scholar] [CrossRef]
- Earnheart, J.C.; Schweizer, C.; Crestani, F.; Iwasato, T.; Itohara, S.; Mohler, H.; Lüscher, B. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J. Neurosci. 2007, 27, 3845–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef] [PubMed]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Campuzano-Bublitz, M.A.; Diarte, E.M.G.; Snead, E.; Taboada, T.; Kennedy, M.L. Anxiolytic-like activity of Aloysia virgata var. platyphylla leaves extract in mice. Vitae 2022, 29, 1–8. [Google Scholar] [CrossRef]
- Bondy, B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin. Neurosci. 2002, 4, 7–20. [Google Scholar] [CrossRef]
- Burgos, C.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C.; Acero, N. Neuroprotective potential of verbascoside isolated from Acanthus mollis L. leaves through its enzymatic inhibition and free radical scavenging ability. Antioxidants 2020, 9, 1207. [Google Scholar] [CrossRef]
- Pereira, A.M.S.; Guimarães, C.C.; Pereira, S.I.V.; Crevelin, E.J.; Pinto, G.H.T.; Morel, L.J.F.; Bertoni, B.W.; França, S.C.; Taleb-Contini, S.H. Isolation and identification of phenylethanoid glycosides from Aloysia polystachya and its activity as inhibitors of monoamine oxidase-A. Planta Med. Int. Open 2019, 6, e1–e6. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.J.; Zhao, Y.M.; Zhang, Y.Z.; Li, Y.F. Japonicins A and B from the flowers of Inula japonica. J. Asian Nat. Prod. Res. 2006, 8, 385–390. [Google Scholar] [CrossRef]
- National Research Councill. Guide for the Care and Use of Laboratory Animals, 8th ed.; The national Academies Press: Washington, DC, USA, 2011; 220p, Available online: https://www.nap.edu/read/12910/chapter/1 (accessed on 17 September 2021). [CrossRef]
Three Doses in 24 h | 7 Days of Treatment | |||
---|---|---|---|---|
Treatment | Swimming (s) | Climbing (s) | Swimming (s) | Climbing (s) |
Veh. | 120.8 ± 21.4 | 1.5 ± 2.8 | 54.3 ± 38.9 | 6.3 ± 5.9 |
Im. | 197.2 ± 19.0 | 2.0 ± 3.5 | 191.8 ± 22.5 | 7.7 ± 8.7 |
Agg 50 | 149.5 ± 44.9 | 4.7 ± 4.8 | 174.8 ± 30.1 | 8.2 ± 7.6 |
Agg 100 | 153.2 ± 25.4 | 3.5 ± 6.2 | 176.3 ± 32.3 | 3.3 ± 6.2 |
Agg 200 | 180.3 ± 29.8 | 1.3 ± 1.3 | 192.7 ± 16.7 | 3.2 ± 2.8 |
Agg 400 | 162.7 ± 36.3 | 1.3 ± 1.5 | 182.8 ± 19.1 | 7.7 ± 3.9 |
Three Doses in 24 h | 7 Days of Treatment | |||
---|---|---|---|---|
Treatment | Swimming (s) | Climbing (s) | Swimming (s) | Climbing (s) |
Veh. | 120.3 ± 20.8 | 1.5 ± 2.8 | 54.3 ± 38.9 | 6.3 ± 5.9 |
Im. | 197.2 ± 19.0 | 2.0 ± 3.5 | 191.8 ± 22.5 | 7.7 ± 8.7 |
Avp 50 | 193.0 ± 29.7 | 1.7 ± 0.0 | 214.2 ± 21.4 | 3.7 ± 3.5 |
Avp 100 | 185.5 ± 42.6 | 0.8 ± 0.0 | 212.0 ± 10.0 | 4.2 ± 3.9 |
Avp 200 | 195.7 ± 14.2 | 1.7 ± 0.0 | 195.2 ± 13.3 | 14.8 ± 7.9 |
Avp 400 | 188.8 ± 12.4 | 0.3 ± 0.0 | 222.0 ± 15.3 | 12.2 ± 12.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taboada, T.; Alvarenga, N.L.; Galeano, A.K.; Arrúa, W.J.; Campuzano-Bublitz, M.A.; Kennedy, M.L. In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract. Molecules 2022, 27, 7828. https://doi.org/10.3390/molecules27227828
Taboada T, Alvarenga NL, Galeano AK, Arrúa WJ, Campuzano-Bublitz MA, Kennedy ML. In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract. Molecules. 2022; 27(22):7828. https://doi.org/10.3390/molecules27227828
Chicago/Turabian StyleTaboada, Teresa, Nelson L. Alvarenga, Antonia K. Galeano, Wilfrido J. Arrúa, Miguel A. Campuzano-Bublitz, and María L. Kennedy. 2022. "In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract" Molecules 27, no. 22: 7828. https://doi.org/10.3390/molecules27227828
APA StyleTaboada, T., Alvarenga, N. L., Galeano, A. K., Arrúa, W. J., Campuzano-Bublitz, M. A., & Kennedy, M. L. (2022). In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract. Molecules, 27(22), 7828. https://doi.org/10.3390/molecules27227828