Modulation in Techno-Functional, Textural Properties, In Vitro Starch Digestibility and Macromolecular–Structural Interactions of Pasta with Potato (Solanum tuberosum L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pasting Properties of the Blends
2.2. Functional Properties
2.3. Cooking Quality
2.4. Bioactive Constituents and Antioxidant Activity
2.5. In Vitro Starch Digestibility
2.6. Color Characteristics
2.7. Textural Pproperties
2.8. FTIR Molecular Interactions
2.9. Microstructure of Pasta
2.10. Sensory Evaluation
3. Materials and Methods
3.1. Preparation of Potato Flour and Potato Mash
3.2. Preparation of Potato-Flour- and Potato-Mash-Incorporated Functional Pasta
3.3. Pasting and Functional Properties of Pasta Blends
3.3.1. Pasting Properties
3.3.2. Functional Properties
3.3.3. Oil Absorption Capacity
3.4. Cooking Quality
3.5. Sensory Evaluation of Functional Pasta
3.6. Antioxidant Properties and Bioactive Components of Functional Pasta
3.7. In Vitro Starch Digestibility
3.8. Color Characteristics of Functional Pasta
3.9. Textural Attributes of Pasta
3.10. Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Functional Pasta
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Katan, M.B.; De Roos, N.M. Promises and problems of functional foods. Crit. Rev. Food Sci. Nutr. 2004, 44, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.L.; Ducreux, L.; Griffiths, D.W.; Stewart, D.; Davies, H.V.; Taylor, M.A. Carotenogenesis during tuber development and storage in potato. J. Exp. Bot. 2004, 55, 975–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibi, S.; Navarre, D.A.; Sun, X.; Du, M.; Rasco, B.; Zhu, M.J. Beneficial Effect of Potato Consumption on Gut Microbiota and Intestinal Epithelial Health. Am. J. Potato Res. 2019, 96, 170–176. [Google Scholar] [CrossRef]
- Sharma, R.; Dar, B.N.; Sharma, S.; Singh, B. In vitro digestibility, cooking quality, bio-functional composition, and sensory properties of pasta incorporated with potato and pigeonpea flour. Int. J. Gastron. Food Sci. 2021, 23, 100300. [Google Scholar] [CrossRef]
- Bártová, V.; Bárta, J.; Brabcová, A.; Zdráhal, Z.; Horáčková, V. Amino acid composition and nutritional value of four cultivated South American potato species. J. Food Compos. Anal. 2015, 40, 78–85. [Google Scholar] [CrossRef]
- Whitney, K.; Simsek, S. Potato flour as a functional ingredient in bread: Evaluation of bread quality and starch characteristics. Int. J. Food Sci. Technol. 2021, 56, 3651. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J.; Moughan, P.J.; Singh, H. Development and characterization of extruded snacks from New Zealand Taewa (Maori potato) flours. Food Res. Int. 2009, 42, 666–673. [Google Scholar] [CrossRef]
- Singh, B.; Rachna; Hussain, S.Z.; Sharma, S. Response Surface Analysis and Process Optimization of Twin Screw Extrusion Cooking of Potato-Based Snacks. J. Food Process. Preserv. 2015, 39, 270–281. [Google Scholar] [CrossRef]
- Bao, H.; Zhou, J.; Yu, J.; Wang, S. Effect of Drying Methods on Properties of Potato Flour and Noodles Made with Potato Flour. Foods 2021, 10, 1115. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Ye, Y. Indirect prediction of 3D printability of mashed potatoes based on LF-NMR measurements. J. Food Eng. 2020, 287, 110137. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Yang, C. Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng. 2018, 220, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Burgos, V.E.; López, E.P.; Goldner, M.C.; Del Castillo, V.C. Physicochemical characterization and consumer response to new Andean ingredients-based fresh pasta: Gnocchi. Int. J. Gastron. Food Sci. 2019, 16, 100142. [Google Scholar] [CrossRef]
- Alessandrini, L.; Balestra, F.; Romani, S.; Rocculi, P.; Rosa, M.D. Physicochemical and sensory properties of fresh potato-based pasta (gnocchi). J. Food Sci. 2010, 75, S542–S547. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.; Lewandowicz, G.; Makowska, A.; Knoll, I.; Błaszczak, W.; Białas, W.; Kubiak, P. Pasta Fortified with Potato Juice: Structure, Quality, and Consumer Acceptance. J. Food Sci. 2015, 80, S1377–S1382. [Google Scholar] [CrossRef]
- Xu, F.; Hu, H.; Dai, X.; Liu, Q.; Huang, Y.; Zhang, H. Nutritional compositions of various potato noodles: Comparative analysis. Int. J. Agric. Biol. Eng. 2017, 10, 218–225. [Google Scholar]
- Noda, T.; Tsuda, S.; Mori, M.; Takigawa, S.; Matsuura-Endo, C.; Kim, S.J.; Hashimoto, N.; Yamauchi, H. Effect of Potato Starch Properties on Instant Noodle Quality in Wheat Flour and Potato Starch Blends. Starch—Stärke 2006, 58, 18–24. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Yamauchi, H.; Matsuura-Endo, C.; Takigawa, S.; Noda, T. Thermal analysis of mixtures of wheat flour and potato starches. Food Hydrocoll. 2008, 22, 499–504. [Google Scholar] [CrossRef]
- Liu, X.L.; Mu, T.H.; Sun, H.N.; Zhang, M.; Chen, J.W. Influence of potato flour on dough rheological properties and quality of steamed bread. J. Integr. Agric. 2016, 15, 2666–2676. [Google Scholar] [CrossRef] [Green Version]
- Bobade, H.; Singh, A.; Sharma, S.; Gupta, A.; Singh, B. Effect of extrusion conditions and honey on functionality and bioactive composition of whole wheat flour-based expanded snacks. J. Food Process. Preserv. 2022, 46, e16132. [Google Scholar] [CrossRef]
- Marti, A.; Pagani, M.A. What can play the role of gluten in gluten free pasta? Trends Food Sci. Technol. 2013, 31, 63–71. [Google Scholar] [CrossRef]
- Hager, A.S.; Lauck, F.; Zannini, E.; Arendt, E.K. Development of gluten-free fresh egg pasta based on oat and teff flour. Eur. Food Res. Technol. 2012, 235, 861–871. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, N.; Singh, A.; Singh, B. Stability of iron and vitamin A in pasta enriched with variable plant sources during processing and storage. J. Food Process. Preserv. 2021, 45, e15422. [Google Scholar] [CrossRef]
- D’Amico, S.; Mäschle, J.; Jekle, M.; Tömösközi, S.; Langó, B.; Schoenlechner, R. Effect of high temperature drying on gluten-free pasta properties. LWT Food Sci. Technol. 2015, 63, 391–399. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; De Simone, V.; De Leonardis, A.M.; Giovanniello, V.; Del Nobile, M.A.; Padalino, L.; Lecce, L.; Borrelli, G.M.; De Vita, P. Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chem. 2016, 205, 187–195. [Google Scholar]
- Ibitoye, W.O.; Afolabi, M.O.; Otegbayo, B.O.; Akintola, A.C. Preliminary Studies of the Chemical Composition and Sensory Properties of Sweet Potato Starch-Wheat Flour Blend Noodles. Niger. Food J. 2013, 31, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Witczak, M.; Ziobro, R.; Juszczak, L.; Korus, J. Starch and starch derivatives in gluten-free systems—A review. J. Cereal Sci. 2016, 67, 46–57. [Google Scholar]
- Singh, A.; Sharma, S.; Singh, B.; Kaur, G. In vitro nutrient digestibility and antioxidative properties of flour prepared from sorghum germinated at different conditions. J. Food Sci. Technol. 2019, 56, 3077–3089. [Google Scholar] [CrossRef]
- Jekle, M.; Mühlberger, K.; Becker, T. Starch–gluten interactions during gelatinization and its functionality in dough like model systems. Food Hydrocoll. 2016, 54, 196–201. [Google Scholar] [CrossRef]
- Joshi, M.; Aldred, P.; Panozzo, J.F.; Kasapis, S.; Adhikari, B. Rheological and microstructural characteristics of lentil starch–lentil protein composite pastes and gels. Food Hydrocoll. 2014, 35, 226–237. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, M.; Li, Y.; Xiong, L. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydr. Polym. 2014, 110, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, Y.; Zheng, Q. Rheological behaviors of doughs reconstituted from wheat gluten and starch. J. Food Sci. Technol. 2011, 48, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucsella, B.; Takács, Á.; Vizer, V.; Schwendener, U.; Tömösközi, S. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chem. 2016, 190, 990–996. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3051–3071. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, S.; Singh, B. Influence of grain activation conditions on functional characteristics of brown rice flour. Food Sci. Technol. Int. 2017, 23, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.F.; Sethi, S.; Joshi, A.; Singh, A.M.; Raigond, P.; Singh, M.K.; Yadav, R.K. Biochemical and functional attributes of raw and boiled potato flesh and peel powders for suitability in food applications. J. Food Sci. Technol. 2020, 57, 3955–3965. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant Starch—A Review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Ben Jeddou, K.; Bouaziz, F.; Zouari-Ellouzi, S.; Chaari, F.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R.; Nouri-Ellouz, O. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 2017, 217, 668–677. [Google Scholar] [CrossRef]
- Yadav, B.S. Effect of frying, baking and storage conditions on resistant starch content of foods. Br. Food J. 2011, 113, 710–719. [Google Scholar] [CrossRef]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties—A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.; Singh, B. Characterization of in vitro antioxidant activity, bioactive components, and nutrient digestibility in pigeon pea (Cajanus cajan) as influenced by germination time and temperature. J. Food Biochem. 2019, 43, e12706. [Google Scholar] [CrossRef] [PubMed]
- Onuegbu, N.C.; Nworah, K.O.; Essien, P.E.; Nwosu, J.N.; Ojukwu, M. Proximate, Functional and Anti-Nutritional Properties of Boiled Ukpo Seed (Mucuna flagellipes) Flour. Niger. Food J. 2013, 31, 1–5. [Google Scholar] [CrossRef]
- Saleh, M.; Lee, Y.; Obeidat, H. Effects of incorporating nonmodified sweet potato (Ipomoea batatas) flour on wheat pasta functional characteristics. J. Texture Stud. 2018, 49, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Wójtowicz, A.; Mościcki, L. Influence of legume type and addition level on quality characteristics, texture and microstructure of enriched precooked pasta. LWT Food Sci. Technol. 2014, 59, 1175–1185. [Google Scholar] [CrossRef]
- Menon, R.; Padmaja, G.; Sajeev, M.S.; Sheriff, J.T. Effect of Fortification with Different Starches on Starch Digestibility, Textural and Ultrastructural Characteristics of Sweet Potato paghetti. J. ROOT Crop. 2012, 38, 157. [Google Scholar]
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Takenaka, M.; Nanayama, K.; Isobe, S.; Murata, M. Changes in caffeic acid derivatives in sweet potato (Ipomoea batatas L.) during cooking and processing. Biosci. Biotechnol. Biochem. 2006, 70, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.H.; Chang, C.L.; Hsu, H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar] [CrossRef]
- Perla, V.; Holm, D.G.; Jayanty, S.S. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT Food Sci. Technol. 2012, 45, 161–171. [Google Scholar] [CrossRef]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Jayanty, S.S.; Diganta, K.; Raven, B. Effects of Cooking Methods on Nutritional Content in Potato Tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Petrie, J.R.; Motoi, L.; Morgenstern, M.P.; Sutton, K.H.; Mishra, S.; Simmons, L.D. Effect of Structural and Physicochemical Characteristics of the Protein Matrix in Pasta on In Vitro Starch Digestibility. Food Biophys. 2008, 3, 229–234. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, F.; Guo, P.; Dong, S.; Li, H. Effect of wheat flour substitution with potato pulp on dough rheology, the quality of steamed bread and in vitro starch digestibility. LWT 2019, 111, 527–533. [Google Scholar] [CrossRef]
- Menon, R.; Padmaja, G.; Sajeev, M.S. Ultrastructural and Starch Digestibility Characteristics of Sweet Potato Spaghetti: Effects of Edible Gums and Fibers. Int. J. Food Prop. 2015, 18, 1231–1247. [Google Scholar] [CrossRef]
- Raigond, P.; Singh, B.; Dutt, S.; Dalamu; Joshi, A. Potential of Indian potatoes for the management of hyperglycemia. Indian J. Hortic. 2017, 74, 103–108. [Google Scholar] [CrossRef]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Suzuki, T.; Hashimoto, N.; Kottearachchi, N.S.; Yamauchi, H.; Zaidul, I.S.M. Factors affecting the digestibility of raw and gelatinized potato starches. Food Chem. 2008, 110, 465–470. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, A.; Surasani, V.K.R.; Sharma, S. Influence of supplementation with pangas protein isolates on textural attributes and sensory acceptability of semolina pasta. J. Food Meas. Charact. 2021, 15, 1317–1326. [Google Scholar] [CrossRef]
- Reddy Surasani, V.K.; Singh, A.; Gupta, A.; Sharma, S. Functionality and cooking characteristics of pasta supplemented with protein isolate from pangas processing waste. LWT 2019, 111, 443–448. [Google Scholar] [CrossRef]
- Kosović, I.; Jukić, M.; Jozinović, A.; Ačkar, D.; Koceva Komlenić, D. Influence of chestnut flour addition on quality characteristics of pasta made on extruder and minipress. Czech J. Food Sci. 2016, 34, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Sun, C.; He, F.; Tian, J. Textural Characteristics and Sensory Evaluation of Cooked Dry Chinese Noodles Based on Wheat-Sweet Potato Composite Flour. Int. J. Food Prop. 2010, 13, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Galvez, F.C.F.; Resurreccion, A.V.A.; Ware, G.O. Process Variables, Gelatinized Starch and Moisture Effects on Physical Properties of Mungbean Noodles. J. Food Sci. 1994, 59, 378–381. [Google Scholar] [CrossRef]
- Nawaz, A.; Xiong, Z.; Li, Q.; Xiong, H.; Liu, J.; Chen, L.; Wang, P.; Walayat, N.; Irshad, S.; Regenstein, J.M. Effect of wheat flour replacement with potato powder on dough rheology, physiochemical and microstructural properties of instant noodles. J. Food Process. Preserv. 2019, 43, e13995. [Google Scholar] [CrossRef]
- Kolarič, L.; Minarovičová, L.; Lauková, M.; Karovičová, J.; Kohajdová, Z. Pasta noodles enriched with sweet potato starch: Impact on quality parameters and resistant starch content. J. Texture Stud. 2020, 51, 464–474. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference ΔE—A survey. Mach. Graph. Vis. Int. J. 2011, 20, 383–411. [Google Scholar]
- Ahmad, N.; Ur-Rehman, S.; Shabbir, M.A.; Abdullah; Shehzad, M.A.; Ud-Din, Z.; Roberts, T.H. Fortification of durum wheat semolina with detoxified matri (Lathyrus sativus) flour to improve the nutritional properties of pasta. J. Food Sci. Technol. 2018, 55, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- Lisiecka, K.; Wójtowicz, A.; Dziki, D.; Gawlik-Dziki, U. The influence of Cistus incanus L. leaves on wheat pasta quality. J. Food Sci. Technol. 2019, 56, 4311–4322. [Google Scholar] [CrossRef] [Green Version]
- Linlaud, N.E.; Puppo, M.C.; Ferrero, C. Effect of Hydrocolloids on Water Absorption of Wheat Flour and Farinograph and Textural Characteristics of Dough. Cereal Chem. 2009, 86, 376–382. [Google Scholar] [CrossRef]
- Pu, H.; Wei, J.; Wang, L.; Huang, J.; Chen, X.; Luo, C.; Liu, S.; Zhang, H. Effects of potato/wheat flours ratio on mixing properties of dough and quality of noodles. J. Cereal Sci. 2017, 76, 236–242. [Google Scholar] [CrossRef]
- Bashir, K.; Aggarwal, M. Effects of gamma irradiation on the physicochemical, thermal and functional properties of chickpea flour. LWT Food Sci. Technol. 2016, 69, 614–622. [Google Scholar] [CrossRef]
- Kataria, A.; Sharma, S.; Singh, A.; Singh, B. Effect of hydrothermal and thermal processing on the antioxidative, antinutritional and functional characteristics of Salvia hispanica. J. Food Meas. Charact. 2021, 16, 332–343. [Google Scholar] [CrossRef]
- Kamble, D.B.; Singh, R.; Rani, S.; Pratap, D. Physicochemical properties, in vitro digestibility and structural attributes of okara-enriched functional pasta. J. Food Process. Preserv. 2019, 43, e14232. [Google Scholar] [CrossRef]
- Zhang, K.; Tian, Y.; Liu, C.; Xue, W. Effects of temperature and shear on the structural, thermal and pasting properties of different potato flour. BMC Chem. 2020, 14, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gull, A.; Prasad, K.; Kumar, P. Nutritional, antioxidant, microstructural and pasting properties of functional pasta. J. Saudi Soc. Agric. Sci. 2018, 17, 147–153. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the AACC, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
Blends | Levels (%) | Pasting Temperature (°C) | Peak Viscosity (mPa⋅s) | Hold Viscosity (mPa⋅s) | Final Viscosity (mPa⋅s) | Breakdown Viscosity (mPa⋅s) | Setback Viscosity (mPa⋅s) |
---|---|---|---|---|---|---|---|
Semolina | - | 94.2 ± 0.3 a | 648 ± 09 f | 538 ± 08 f | 1722 ± 17 f | 90 ± 03 g | 1164 ± 18 a |
Potato flour | 20 | 93.7 ± 0.3 b | 1144 ± 32 d | 951 ± 12 c | 1977 ± 19 c | 193 ± 06 e | 1132 ± 11 b |
30 | 92.3 ± 0.2 d | 1339 ± 13 b | 1146 ± 11 b | 2183 ± 11 b | 243 ± 10 d | 1069 ± 21 d | |
40 | 91.1 ± 0.3 e | 1514 ± 07 a | 1167 ± 03 a | 2236 ± 10 a | 327 ± 16 c | 831 ± 19 f | |
Potato mash | 08 | 93.1 ± 0.1 c | 774 ± 09 e | 642 ± 12 e | 1814 ± 09 e | 132 ± 08 f | 1102 ± 15 c |
16 | 91.9 ± 0.1 d | 1201 ± 11 c | 848 ± 03 d | 1876 ± 05 d | 347 ± 04 b | 1097 ±11 c | |
24 | 91.1 ± 0.2 e | 1219 ± 07 c | 854 ± 05 d | 1891 ± 16 d | 371 ± 07 a | 1028 ± 08 e |
Blends | Levels (%) | Water Absorption Capacity (g/g) | Water Solubility Index (g/g) | Oil Absorption Capacity (g/g) |
---|---|---|---|---|
Semolina | - | 2.33 ± 0.03 c | 0.09 ± 0.01 cd | 1.86 ± 0.02 d |
Potato flour pasta | 20 | 2.37 ± 0.01 c | 0.11 ± 0.02 bc | 1.98 ± 0.01 b |
30 | 2.42 ± 0.02 bc | 0.12 ± 0.01 ab | 1.99 ± 0.01 ab | |
40 | 2.52 ± 0.03 b | 0.14 ± 0.01 a | 2.02 ± 0.04 a | |
Potato mash pasta | 08 | 2.61 ± 0.07 a | 0.08 ± 0.01 d | 1.92 ± 0.02 c |
16 | 2.39 ± 0.14 c | 0.07 ± 0.02 de | 1.89 ± 0.01 cd | |
24 | 2.32 ± 0.01 c | 0.05 ± 0.02 e | 1.89 ± 0.01 cd |
Type of Pasta | Levels (%) | Minimum Cooking Time (Min) | Water Absorption (%) | Volume Expansion (mL/g) | Cooking Loss (%) |
---|---|---|---|---|---|
Control | - | 6.30 ± 0.04 a | 212.95 ± 2.11 f | 1.79 ± 0.01 f | 5.02 ± 0.09 c |
Potato flour pasta | 20 | 6.00 ± 0.02 b | 221.22 ± 1.34 e | 1.92 ± 0.04 d | 6.06 ± 1.67 bc |
30 | 5.29 ± 0.07 d | 251.36 ± 1.28 b | 2.18 ± 0.01 b | 7.34 ± 1.98 b | |
40 | 4.51 ± 0.01 f | 271.51 ± 2.83 a | 2.32 ± 0.05 a | 10.44 ± 0.27 a | |
Potato mash pasta | 08 | 5.57 ± 0.04 c | 241.26 ± 2.21 d | 1.85 ± 0.02 e | 4.35 ± 0.14 cd |
16 | 5.05 ± 0.02 e | 243.56 ± 3.05 cd | 1.91 ± 0.10 d | 3.71 ± 0.47 d | |
24 | 4.40 ± 0.03 g | 247.43 ± 2.05 bc | 2.01 ± 0.04 c | 3.02 ± 0.11 d |
Type of Pasta | Levels (%) | Total Phenol Content (mg GAE/g) | Flavonoids (mg QE/100 g) | Antioxidant Activity (%DPPH RAS) | Starch Digestibility | |
---|---|---|---|---|---|---|
Uncooked | Cooked | |||||
Control | - | 1.13 ± 0.06 g | 10.18 ± 0.82 g | 19.11 ± 0.04 f | 56.92 ± 0.98 a | 71.25 ± 0.03 a |
Potato flour pasta | 20 | 2.28 ± 0.08 c | 15.41 ± 0.26 c | 25.75 ± 0.13 c | 38.03 ± 0.50 e | 69.20 ± 0.24 b |
30 | 2.51 ± 0.13 b | 18.01 ± 0.11 b | 26.12 ± 0.09 b | 37.03 ± 0.18 ef | 68.16 ± 0.12 c | |
40 | 2.79 ± 0.12 a | 19.15 ± 0.06 a | 28.19 ± 0.06 a | 36.25 ± 0.52 f | 67.44 ± 0.08 d | |
Potato mash pasta | 08 | 1.28 ± 0.02 f | 11.01 ± 0.03 f | 19.81 ± 0.25 f | 50.76 ± 1.43 b | 65.23 ± 0.23 e |
16 | 1.42 ± 0.03 e | 12.54 ± 0.17 e | 20.66 ± 0.13 e | 45.03 ± 1.38 c | 61.46 ± 0.17 f | |
24 | 1.71 ± 0.01 d | 13.92 ± 0.27 d | 21.62 ± 0.28 d | 40.88 ± 0.81 d | 59.15 ± 0.12 g |
Type of Pasta | Levels (%) | Color Characteristics | |||
---|---|---|---|---|---|
L* | a* | b* | (ΔE) | ||
Control | - | 57.08 ± 0.42 a | −1.57 ± 0.32 f | 4.43 ± 0.15 f | - |
Potato flour pasta | 20 | 46.48 ± 0.61 de | 0.20 ± 0.44 c | 9.92 ± 0.09 c | 17.02 ± 0.08 c |
30 | 43.15 ± 1.15 e | 0.89 ± 0.08 b | 10.54 ± 0.11 b | 18.13 ± 0.42 b | |
40 | 42.36 ± 0.18 e | 2.65 ± 0.14 a | 14.87 ± 0.07 a | 20.10 ± 0.61 a | |
Potato mash pasta | 8 | 54.49 ± 0.49 b | −1.38 ± 1.14 e | 5.58 ± 0.02 d | 11.22 ± 0.26 f |
16 | 50.84 ± 0.42 c | −1.17 ± 0.3 1d | 5.60 ± 0.15 de | 12.69 ± 0.43 e | |
24 | 48.46 ± 0.28 d | −1.14 ± 0.07 d | 5.71 ± 0.21 e | 13.46 ± 0.18 d |
Type of Pasta | Levels (%) | Uncooked | Cooked | ||
---|---|---|---|---|---|
Firmness | Toughness | Firmness | Toughness | ||
Control | - | 3.74 ± 0.13 c | 0.94 ± 0.50 f | 0.26 ± 0.02 c | 0.29 ± 0.01 e |
Potato flour pasta | 20 | 2.16 ± 0.24 e | 1.08 ± 0.39 e | 0.10 ± 0.01 f | 0.31 ± 0.01 d |
30 | 2.48 ± 0.70 de | 1.56 ± 0.03 c | 0.16 ± 0.01 de | 0.35 ± 0.03 c | |
40 | 2.85 ± 0.72 d | 1.75 ± 0.66 b | 0.17 ± 0.01 d | 0.47 ± 0.02 ab | |
Potato mash pasta | 8 | 5.15 ± 0.90 b | 1.10 ± 0.06 e | 0.28 ± 0.01 c | 0.33 ± 0.03 cd |
16 | 5.73 ± 0.28 a | 1.38 ± 0.12 d | 0.35 ± 0.03 ab | 0.44 ± 0.02b | |
24 | 5.83 ± 0.47 a | 2.08 ± 0.98 a | 0.39 ± 0.04 a | 0.48 ± 0.01 a |
Type of Pasta | Levels (%) | Appearance | Flavor | Texture | Overall Acceptability |
---|---|---|---|---|---|
Control | - | 8.7 ± 0.46 a | 8.8 ± 0.40 a | 8.7 ± 0.46 a | 8.7 ± 0.46 a |
Potato flour pasta | 20 | 8.5 ± 0.50 a | 8.0 ± 0.45 ab | 8.2 ± 0.40 bc | 8.2 ± 0.40 a |
30 | 8.4 ± 0.49 a | 8.2 ± 0.60 ab | 7.9 ± 0.70 bc | 8.1 ± 0.30 a | |
40 | 7.7 ± 0.64 b | 6.5 ± 0.46 c | 7.4 ± 0.49 d | 6.8 ± 0.75 b | |
Potato mash pasta | 08 | 8.5 ± 0.50 a | 8.3 ± 0.46 ab | 8.4 ± 0.49 ab | 8.3 ± 0.46 a |
16 | 8.3 ± 0.64 a | 8.5 ± 0.50 a | 8.3 ± 0.46 ab | 8.3 ± 0.46 a | |
24 | 8.2 ± 0.75 ab | 7.5 ± 0.67 b | 7.8 ± 0.60 cd | 7.0 ± 0.89 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Malhotra, N.; Singh, A.; Sharma, R.; Domínguez, R.; Lorenzo, J.M. Modulation in Techno-Functional, Textural Properties, In Vitro Starch Digestibility and Macromolecular–Structural Interactions of Pasta with Potato (Solanum tuberosum L.). Molecules 2022, 27, 7835. https://doi.org/10.3390/molecules27227835
Sharma S, Malhotra N, Singh A, Sharma R, Domínguez R, Lorenzo JM. Modulation in Techno-Functional, Textural Properties, In Vitro Starch Digestibility and Macromolecular–Structural Interactions of Pasta with Potato (Solanum tuberosum L.). Molecules. 2022; 27(22):7835. https://doi.org/10.3390/molecules27227835
Chicago/Turabian StyleSharma, Savita, Nancy Malhotra, Arashdeep Singh, Rajan Sharma, Rubén Domínguez, and José Manuel Lorenzo. 2022. "Modulation in Techno-Functional, Textural Properties, In Vitro Starch Digestibility and Macromolecular–Structural Interactions of Pasta with Potato (Solanum tuberosum L.)" Molecules 27, no. 22: 7835. https://doi.org/10.3390/molecules27227835
APA StyleSharma, S., Malhotra, N., Singh, A., Sharma, R., Domínguez, R., & Lorenzo, J. M. (2022). Modulation in Techno-Functional, Textural Properties, In Vitro Starch Digestibility and Macromolecular–Structural Interactions of Pasta with Potato (Solanum tuberosum L.). Molecules, 27(22), 7835. https://doi.org/10.3390/molecules27227835