Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection
Abstract
:1. Introduction
2. Results
2.1. EA Is Not Cytotoxic to TZM-bl Cells
2.2. EA in Solution Inhibits HIV-1 Replication in Target Cells
2.3. EA Shows No Adverse Effects on Mucosal Innate Immunity
2.4. Gel Containing EA Inhibits HIV-1 Replication in Target Cells
2.5. Gel Containing EA Inhibits HIV-1 Integrase but Not Protease In Vitro
3. Discussion
4. Materials and Methods
4.1. EA Preparation
4.2. Cell Lines
4.3. Cytotoxicity Assay
4.4. HIV-1 Constructs
4.5. Exposure of TZM-bl Cells to HIV-1 Cells and EA
4.6. Cytokine Detection
4.7. Exposure of U87.CD4.CCR5 Cells to HIV-1 and Ellagel
4.8. HIV-1 Enzymes Activity Assays
4.8.1. HIV-1 Integrase Activity Assay
4.8.2. HIV-1 Protease Activity Assay
4.9. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNAIDS. UNAIDS 2021 Estimates; UNAIDS: Geneva, Switzerland, 2021. [Google Scholar]
- Grant, R.M.; Hecht, F.M.; Warmerdam, M.; Liu, L.; Liegler, T.; Petropoulos, C.J.; Hellmann, N.S.; Chesney, M.; Busch, M.P.; Kahn, J.O. Time trends in primary HIV-1 drug resistance among recently infected persons. JAMA 2002, 288, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.S.; Tubiana, R.; Katlama, C.; Calvez, V.; Ait Mohand, H.; Autran, B. Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease. Lancet 1998, 351, 1682–1686. [Google Scholar] [CrossRef]
- Siliciano, J.D.; Kajdas, J.; Finzi, D.; Quinn, T.C.; Chadwick, K.; Margolick, J.B.; Kovacs, C.; Gange, S.J.; Siliciano, R.F. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 2003, 9, 727–728. [Google Scholar] [CrossRef] [PubMed]
- Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Subhadhirasakul, S.; Tewtrakul, S. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg. Med. Chem. 2006, 14, 1710–1714. [Google Scholar] [CrossRef] [PubMed]
- Suedee, A.; Tewtrakul, S.; Panichayupakaranant, P. Anti-HIV-1 integrase activity of Mimusops elengi leaf extracts. Pharm. Biol. 2014, 52, 58–61. [Google Scholar] [CrossRef]
- Tewtrakul, S.; Itharat, A.; Rattanasuwan, P. Anti-HIV-1 protease- and HIV-1 integrase activities of Thai medicinal plants known as Hua-Khao-Yen. J. Ethnopharmacol. 2006, 105, 312–315. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Z.H.; Liu, J.K.; Zheng, Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antivir. Res. 2004, 64, 189–194. [Google Scholar] [CrossRef]
- Wang, R.R.; Gu, Q.; Wang, Y.H.; Zhang, X.M.; Yang, L.M.; Zhou, J.; Chen, J.J.; Zheng, Y.T. Anti-HIV-1 activities of compounds isolated from the medicinal plant Rhus chinensis. J. Ethnopharmacol. 2008, 117, 249–256. [Google Scholar] [CrossRef]
- Clifford, M.N.; Scalbert, A. Ellagitannins—Nature, occurrence and dietary burden. J. Sci. Food Agr. 2000, 80, 1118–1125. [Google Scholar] [CrossRef]
- Panichayupakaranant, P.; Tewtrakul, S.; Yuenyongsawad, S. Antibacterial, anti-inflammatory and anti-allergic activities of standardised pomegranate rind extract. Food Chem. 2010, 123, 400–403. [Google Scholar] [CrossRef]
- Rogerio, A.P.; Fontanari, C.; Borducchi, E.; Keller, A.C.; Russo, M.; Soares, E.G.; Albuquerque, D.A.; Faccioli, L.H. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur. J. Pharmacol. 2008, 580, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Tomas-Barberan, F.A.; Espin, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem. 2006, 17, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Mertens-Talcott, S.U.; Percival, S.S. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett. 2005, 218, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Promsong, A.; Chung, W.O.; Satthakarn, S.; Nittayananta, W. Ellagic acid modulates the expression of oral innate immune mediators: Potential role in mucosal protection. J. Oral Pathol. Med. 2015, 44, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Neurath, A.R.; Strick, N.; Li, Y.Y.; Debnath, A.K. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. Ann. N. Y. Acad. Sci. 2005, 1056, 311–327. [Google Scholar] [CrossRef]
- Promsong, A.; Chuenchitra, T.; Saipin, K.; Tewtrakul, S.; Panichayupakaranant, P.; Satthakarn, S.; Nittayananta, W. Ellagic acid inhibits HIV-1 infection in vitro: Potential role as a novel microbicide. Oral Dis. 2018, 24, 249–252. [Google Scholar] [CrossRef]
- Li, B.W.; Zhang, F.H.; Serrao, E.; Chen, H.; Sanchez, T.W.; Yang, L.M.; Neamati, N.; Zheng, Y.T.; Wang, H.; Long, Y.Q. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75. Bioorg. Med. Chem. 2014, 22, 3146–3158. [Google Scholar] [CrossRef]
- Lu, L.; Liu, S.W.; Jiang, S.B.; Wu, S.G. Tannin inhibits HIV-1 entry by targeting gp41. Acta Pharm. Sin. 2004, 25, 213–218. [Google Scholar]
- Cocchi, F.; Devico, A.L.; Garzinodemo, A.; Arya, S.K.; Gallo, R.C.; Lusso, P. Identification of Rantes, Mip-1-Alpha, and Mip-1-Beta as the Major Hiv-Suppressive Factors Produced by Cd8(+) T-Cells. Science 1995, 270, 1811–1815. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, T.H.; Paludan, S.R. Molecular pathways in virus-induced cytokine production. Microbiol. Mol. Biol. R. 2001, 65, 131. [Google Scholar] [CrossRef] [Green Version]
- Roux, P.; Alfieri, C.; Hrimech, M.; Cohen, E.A.; Tanner, J.E. Activation of transcription factors NF-kappa B and NF-IL-6 by human immunodeficiency virus type 1 protein R (Vpr) induces interieukin-8 expression. J. Virol. 2000, 74, 4658–4665. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Verma, A.S.; Patel, K.H.; Noel, R.; Rivera-Amill, V.; Silverstein, P.S.; Chaudhary, S.; Bhat, H.K.; Stamatatos, L.; Singh, D.P.; et al. HIV-1 gp120 Induces Expression of IL-6 through a Nuclear Factor-Kappa B-Dependent Mechanism: Suppression by gp120 Specific Small Interfering RNA. PLoS ONE 2011, 6, e21261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Akhter, S.; Chaudhuri, A.; Kanmogne, G.D. HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: Modulatory effects of STAT1 signaling. Microvasc. Res. 2009, 77, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinke, J.W.; Borish, L. 3. Cytokines and chemokines. J. Allergy Clin. Immunol 2006, 117, S441–S445. [Google Scholar] [CrossRef] [PubMed]
- Romier, B.; Van De Walle, J.; During, A.; Larondelle, Y.; Schneider, Y.J. Modulation of signalling nuclear factor-kappa B activation pathway by polyphenols in human intestinal Caco-2 cells. Brit. J. Nutr. 2008, 100, 542–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umesalma, S.; Sudhandiran, G. Differential Inhibitory Effects of the Polyphenol Ellagic Acid on Inflammatory Mediators NF-kappa B, iNOS, COX-2, TNF-alpha, and IL-6 in 1,2-Dimethylhydrazine-Induced Rat Colon Carcinogenesis. Basic Clin. Pharm. 2010, 107, 650–655. [Google Scholar] [CrossRef]
- Gurney, K.B.; Elliott, J.; Nassanian, H.; Song, C.; Soilleux, E.; McGowan, I.; Anton, P.A.; Lee, B. Binding and transfer of human immunodeficiency virus by DC-SIGN(+) cells in human rectal mucosa. J. Virol. 2005, 79, 5762–5773. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.H.; Wawer, M.J.; Brookmeyer, R.; Sewankambo, N.K.; Serwadda, D.; Wabwire-Mangen, F.; Lutalo, T.; Li, X.B.; van Cott, T.; Quinn, T.C.; et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 2001, 357, 1149–1153. [Google Scholar] [CrossRef]
- Vittinghoff, E.; Douglas, J.; Judson, F.; McKirnan, D.; MacQueen, K.; Buchbinder, S.P. Per-contact risk of human immunodeficiency virus transmission between male sexual partners. Am. J. Epidemiol. 1999, 150, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, M.; Favia, A.; Lisco, A.; Caputi Iambrenghi, O.; Fiore, J.R.; Pastore, G. In vitro productive infection of non polarised cervical and rectal biopsies by syncytium-inducing and non syncytium inducing primary HIV-1 isolates. New Microbiol. 2004, 27, 71–74. [Google Scholar]
- Björndal, A.; Deng, H.; Jansson, M.; Fiore, J.R.; Colognesi, C.; Karlsson, A.; Albert, J.; Scarlatti, G.; Littman, D.R.; Fenyö, E.M. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J. Virol. 1997, 71, 7478–7487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Princen, K.; Hatse, S.; Vermeire, K.; De Clercq, E.; Schols, D. Establishment of a novel CCR5 and CXCR4 expressing CD4+ cell line which is highly sensitive to HIV and suitable for high-throughput evaluation of CCR5 and CXCR4 antagonists. Retrovirology 2004, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Gornalusse, G.G.; Vojtech, L.N.; Levy, C.N.; Hughes, S.M.; Kim, Y.; Valdez, R.; Pandey, U.; Ochsenbauer, C.; Astronomo, R.; McElrath, J.; et al. Buprenorphine Increases HIV-1 Infection In Vitro but Does Not Reactivate HIV-1 from Latency. Viruses 2021, 13, 1472. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.M.; Gornalusse, G.; Whitmore, L.S.; Newhouse, D.; Tisoncik-Go, J.; Smith, E.; Ochsenbauer, C.; Hladik, F.; Gale, M., Jr. Innate immune regulation in HIV latency models. Retrovirology 2022, 19, 15. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Kameoka, M.; Kawata, S.S.; Iwabe, Y.; Mizuta, H.; Tokunaga, K.; Fujino, M.; Natori, Y.; Yura, Y.; Ikuta, K. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome. Virology 2008, 373, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Utachee, P.; Jinnopat, P.; Isarangkura-na-ayuthaya, P.; de Silva, U.C.; Nakamura, S.; Siripanyaphinyo, U.; Wichukchinda, N.; Tokunaga, K.; Yasunaga, T.; Sawanpanyalert, P.; et al. Phenotypic studies on recombinant human immunodeficiency virus type 1 (HIV-1) containing CRF01_AE env gene derived from HIV-1-infected patient, residing in central Thailand. Microbes Infect. 2009, 11, 334–343. [Google Scholar] [CrossRef]
- Tewtrakul, S.; Miyashiro, H.; Yoshinaga, T.; Fujiwara, T.; Tomimori, T.; Kizu, H.; Miyaichi, Y. Inhibitory effects of flavonoids on human immunodeficiency virus type-I integrase. J. Tradit. Med. 2001, 18, 229–238. [Google Scholar]
- Tewtrakul, S.; Nakamura, N.; Hattori, M.; Fujiwara, T.; Supavita, T. Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem. Pharm. Bull. 2002, 50, 630–635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nittayananta, W.; Promsong, A.; Levy, C.; Hladik, F.; Chaitaveep, N.; Ungphaiboon, S.; Tewtrakul, S.; Satthakarn, S. Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection. Molecules 2022, 27, 7941. https://doi.org/10.3390/molecules27227941
Nittayananta W, Promsong A, Levy C, Hladik F, Chaitaveep N, Ungphaiboon S, Tewtrakul S, Satthakarn S. Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection. Molecules. 2022; 27(22):7941. https://doi.org/10.3390/molecules27227941
Chicago/Turabian StyleNittayananta, Wipawee, Aornrutai Promsong, Claire Levy, Florian Hladik, Nithinart Chaitaveep, Suwipa Ungphaiboon, Supinya Tewtrakul, and Surada Satthakarn. 2022. "Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection" Molecules 27, no. 22: 7941. https://doi.org/10.3390/molecules27227941
APA StyleNittayananta, W., Promsong, A., Levy, C., Hladik, F., Chaitaveep, N., Ungphaiboon, S., Tewtrakul, S., & Satthakarn, S. (2022). Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection. Molecules, 27(22), 7941. https://doi.org/10.3390/molecules27227941