Maternal Physiological Variations Induced by Chronic Gestational Hypoxia: 1H NMR-Based Metabolomics Study
Abstract
:1. Introduction
2. Results
2.1. HNMR-Based Metabolomics Analysis of Plasma
2.1.1. Plasma Metabolic Profiling during Different Periods of Pregnancy under Hypoxic Conditions
2.1.2. Plasma Metabolic Trajectories at Different Stages of Pregnancy under Hypoxic Conditions
2.1.3. Plasma Physiological and Metabolic Changes Induced by Hypoxia during Pregnancy
2.2. 1HNMR-Based Metabolomics Analysis of Urine
2.2.1. Urine Metabolic Profiling during Different Stages of Pregnancy under Hypoxic Conditions
2.2.2. Urine Metabolic Trajectories during Different Stages of Pregnancy under Hypoxic Conditions
2.2.3. Urine Physiological and Metabolic Changes Induced by Hypoxia during Pregnancy
2.3. Metabolite Changes in Plasma and Urine and the Associated Pathways
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Animal Model Establishment
4.2.1. Pregnant Rat Model
4.2.2. Establishment of Chronic Hypoxia Animal Model
4.3. Sample Collection
4.4. Nuclear Magnetic Resonance (NMR) Analysis
4.4.1. Plasma Samples
4.4.2. Urine Samples
4.5. Spectra Processing and Statistical Analysis
4.5.1. Spectra Processing
4.5.2. Multivariate Analysis
4.6. Pathway Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fajersztajn, L.; Veras, M.M. Hypoxia: From Placental Development to Fetal Programming. Birth Defects Res. 2017, 109, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, S.; Delpishe, A.; Azami, M.; Hafezi Ahmadi, M.R.; Sayehmiri, K. Maternal Anemia during pregnancy and infant low birth weight: A systematic review and Meta-analysis. Int. J. Reprod. BioMed. 2017, 15, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lao, T.T. Obstetric care for women with thalassemia. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 39, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, A.R. Sickle Cell Disease in Pregnancy. South Med. J. 2016, 109, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Stanek, J. Hypoxic patterns of placental injury: A review. Arch. Pathol. Lab. Med. 2013, 137, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Hutter, D.; Kingdom, J.; Jaeggi, E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: A review. Int. J. Pediatr. 2010, 2010, 401323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimball, R.; Wayment, M.; Merrill, D.; Wahlquist, T.; Reynolds, P.R.; Arroyo, J.A. Hypoxia reduces placental mTOR activation in a hypoxia-induced model of intrauterine growth restriction (IUGR). Physiol. Rep. 2015, 3, e12651. [Google Scholar] [CrossRef] [PubMed]
- van Patot, M.C.; Ebensperger, G.; Gassmann, M.; Llanos, A.J. The hypoxic placenta. High Alt. Med. Biol. 2012, 13, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Challis, J.R.; Lockwood, C.J.; Myatt, L.; Norman, J.E.; Strauss, J.F., 3rd; Petraglia, F. Inflammation and pregnancy. Reprod. Sci. 2009, 16, 206–215. [Google Scholar] [CrossRef]
- Husslein, H.; Moswitzer, B.; Leipold, H.; Moertl, M.; Worda, C. Low placental weight and risk for fetal distress at birth. J. Perinat. Med. 2012, 40, 693–695. [Google Scholar] [CrossRef]
- Mahendru, A.A.; Lees, C.C. Is intrapartum fetal blood sampling a gold standard diagnostic tool for fetal distress? Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 156, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.J.; Campbell, M.E.; McMillen, I.C.; Davidge, S.T. Differential effects of maternal hypoxia or nutrient restriction on carotid and femoral vascular function in neonatal rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R360–R367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picart-Armada, S.; Fernández-Albert, F.; Vinaixa, M.; Yanes, O.; Perera-Lluna, A. FELLA: An R package to enrich metabolomics data. BMC Bioinform. 2018, 19, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Shi, X.; Dai, T.; Shen, G.; Feng, J. Recoupled-STOCSY-based co-expression network analysis to extract phenotype-driven metabolite modules in NMR-based metabolomics dataset. Anal. Chim. Acta 2022, 1197, 339528. [Google Scholar] [CrossRef]
- Diaz, S.O.; Pinto, J.; Graça, G.; Duarte, I.F.; Barros, A.S.; Galhano, E.; Pita, C.; Almeida, M.D.; Goodfellow, B.J.; Carreira, I.M.; et al. Metabolic biomarkers of prenatal disorders: An exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J. Proteome Res. 2011, 10, 3732–3742. [Google Scholar] [CrossRef]
- Graca, G.; Duarte, I.F.; Barros, A.S.; Goodfellow, B.J.; Diaz, S.O.; Pinto, J.; Carreira, I.M.; Galhano, E.; Pita, C.; Gil, A.M. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: A nuclear magnetic resonance metabonomic study. J. Proteome Res. 2010, 9, 6016–6024. [Google Scholar] [CrossRef]
- Atzori, L.; Antonucci, R.; Barberini, L.; Locci, E.; Marincola, F.C.; Scano, P.; Cortesi, P.; Agostiniani, R.; Defraia, R.; Weljie, A.; et al. 1H NMR-based metabolomic analysis of urine from preterm and term neonates. Front. Biosci. 2011, 3, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Graça, G.; Duarte, I.F.; Barros, A.S.; Goodfellow, B.J.; Diaz, S.; Carreira, I.M.; Couceiro, A.B.; Galhano, E.; Gil, A.M. (1)H NMR based metabonomics of human amniotic fluid for the metabolic characterization of fetus malformations. J. Proteome Res. 2009, 8, 4144–4150. [Google Scholar] [CrossRef]
- Dunwoodie, S.L. The role of hypoxia in development of the Mammalian embryo. Dev. Cell 2009, 17, 755–773. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Zhu, R.; Zhang, L. Gestational hypoxia up-regulates protein kinase C and inhibits calcium-activated potassium channels in ovine uterine arteries. Int. J. Med. Sci. 2014, 11, 886–892. [Google Scholar] [CrossRef]
- Dasgupta, C.; Chen, M.; Zhang, H.; Yang, S.; Zhang, L. Chronic hypoxia during gestation causes epigenetic repression of the estrogen receptor-alpha gene in ovine uterine arteries via heightened promoter methylation. Hypertension 2012, 60, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamenter, M.E.; Dzal, Y.A.; Thompson, W.A.; Milsom, W.K. Do naked mole rats accumulate a metabolic acidosis or an oxygen debt in severe hypoxia? J. Exp. Biol. 2019, 222, jeb191197. [Google Scholar] [CrossRef] [Green Version]
- Siendones, E.; Ballesteros, M.; Navas, P. Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. J. Clin. Med. 2018, 7, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monni, G.; Atzori, L.; Corda, V.; Dessolis, F.; Iuculano, A.; Hurt, K.J.; Murgia, F. Metabolomics in Prenatal Medicine: A Review. Front. Med. 2021, 645118. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Rasmussen, M.L.; Piening, B.; Shen, X.; Chen, S.; Röst, H.; Snyder, J.K.; Tibshirani, R.; Skotte, L.; Lee, N.C.; et al. Metabolic Dynamics and Prediction of Gestational Age and Time to Delivery in Pregnant Women. Cell 2020, 181, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
Metabolites | C8–H8 | C11–H11 | C14–H14 | C17–H17 | C20–H20 | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | Fold Change | r | Fold Change | r | Fold Change | r | Fold Change | r | Fold Change | |
3-Hydroxybutyrate | / | 0.998 | −0.821 | 0.715 | −0.865 | 0.548 | −0.881 | 0.415 | −0.797 | 0.755 |
Acetoacetate | / | 1.23 | / | 0.791 | / | 0.522 | −0.797 | 0.475 | −0.712 | 0.704 |
Acetate | / | 1.021 | −0.688 | 0.845 | −0.792 | 0.856 | / | 0.844 | / | 0.925 |
Acetone | / | 1.416 | / | 0.972 | −0.822 | 0.743 | −0.814 | 0.446 | −0.706 | 0.829 |
Benzoate | −0.675 | 0.907 | / | 0.905 | / | 0.92 | / | 0.58 | / | 1.08 |
cis-Aconitate | 0.738 | 0.974 | / | 1.09 | / | 1.237 | / | 1.578 | / | 0.208 |
Choline | / | 0.91 | −0.886 | 0.923 | −0.72 | 0.82 | / | 0.927 | −0.777 | 1.011 |
Citrate | / | 0.862 | −0.785 | 0.848 | −0.804 | 0.818 | −0.791 | 0.954 | / | 0.973 |
Creatine | / | 0.818 | / | 0.843 | −0.689 | 0.734 | / | 0.857 | / | 1.148 |
Cytidine | / | 0.899 | −0.698 | 0.863 | −0.722 | 0.728 | / | 1.349 | / | 1.082 |
Deoxyguanosine | / | 0.975 | −0.676 | 0.776 | / | 0.724 | / | 1.543 | 0.804 | 1.786 |
N,N-Dimethylglycin | / | 0.987 | −0.835 | 0.846 | / | 0.871 | / | 0.972 | / | 1.006 |
Ethanolamine | / | 0.917 | −0.782 | 0.918 | / | 0.996 | / | 1.185 | / | 1.122 |
Fumarate | / | 0.551 | / | 0.129 | / | 0.126 | / | 0.043 | 0.741 | 1.729 |
Glutamine | −0.718 | 0.961 | −0.815 | 0.919 | / | 0.925 | −0.831 | 0.894 | / | 1.053 |
Glycerol | / | 0.926 | −0.781 | 0.918 | −0.853 | 0.862 | / | 0.932 | / | 1.038 |
Isobutyrate | / | 1.054 | / | 0.862 | −0.782 | 0.807 | −0.693 | 0.8 | / | 1.055 |
Isoleucine | / | 1.08 | / | 0.966 | / | 0.968 | −0.831 | 0.872 | −0.827 | 0.906 |
Lipid | 0.726 | / | −0.764 | / | −0.827 | / | / | / | −0.702 | / |
VLDL | 0.681 | / | / | / | / | / | / | / | −0.909 | / |
LDL | / | / | / | / | / | / | / | / | −0.884 | / |
Lactate | / | 0.927 | / | 0.793 | / | 1.036 | / | 0.811 | 0.834 | 1.132 |
Leucine | 0.691 | 1.087 | / | 0.996 | / | 0.995 | −0.805 | 0.815 | −0.8 | 0.979 |
Lysine | / | 1.096 | −0.92 | 0.818 | −0.774 | 0.887 | −0.809 | 0.784 | / | 0.934 |
Methionine | / | 0.944 | −0.916 | 0.839 | −0.797 | 0.909 | / | 0.902 | / | 1.002 |
Phenylalanine | / | 0.969 | −0.785 | 0.892 | −0.778 | 0.85 | −0.766 | 0.745 | / | 0.967 |
Sarcosine | / | 0.971 | −0.718 | 0.898 | −0.772 | 0.916 | / | 0.956 | / | 1.007 |
Serine | / | 0.95 | −0.686 | 0.896 | −0.764 | 0.855 | / | 0.972 | / | 0.947 |
Threonine | / | 1.01 | / | 0.964 | −0.907 | 0.834 | / | 0.982 | −0.754 | 0.961 |
Valine | 0.844 | 1.108 | / | 0.915 | / | 1.014 | −0.817 | 0.874 | / | 0.994 |
Cells are color-coded according to the fold-change; red indicates increased and blue indicates decreased in each group. Color bar: | ||||||||||
Metabolites | C8–H8 | C11–H11 | C14–H14 | C17–H17 | C20–H20 | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | Fold Change | r | Fold Change | r | Fold Change | r | Fold Change | r | Fold Change | |
1-Methylhistidine | −0.807 | 0.867 | / | 0.862 | / | 1.058 | / | 1.044 | / | 0.792 |
2-Hydroxybutyrate | / | 0.949 | / | 1.076 | −0.841 | 0.976 | −0.89 | 0.939 | 0.92 | 1.255 |
3-Hydroxybutyrate | / | 0.978 | / | 0.981 | −0.892 | 0.851 | −0.89 | 0.783 | −0.853 | 1.045 |
Acetoacetate | / | 0.922 | / | 1.004 | −0.861 | 0.753 | −0.867 | 0.67 | / | 1.165 |
Acetone | −0.901 | 0.783 | / | 1.03 | −0.903 | 0.668 | −0.965 | 0.563 | / | 1.213 |
Allantoin | / | 1.071 | −0.673 | 0.814 | / | 1.047 | / | 1.195 | / | 0.911 |
Aminoadipate | −0.887 | 0.661 | / | 1.106 | −0.898 | 0.685 | −0.814 | 0.724 | / | 1.259 |
Benzoate | / | 0.84 | −0.805 | 0.846 | −0.746 | 0.786 | −0.806 | 0.825 | / | 1.027 |
Butyrate | / | 0.777 | / | 0.947 | −0.849 | 0.805 | −0.922 | 0.751 | 0.829 | 1.362 |
cis-Aconitate | / | 1.152 | −0.724 | 0.518 | / | 1.284 | / | 0.65 | −0.678 | 0.422 |
Citrate | / | 1.86 | 0.831 | 1.815 | / | 1.292 | / | 0.882 | / | 0.817 |
Fumarate | −0.882 | 0.367 | / | 0.672 | / | 0.543 | / | 0.45 | / | 1.13 |
Glycine | / | 1.12 | / | 1.082 | / | 1.208 | / | 1.064 | 0.811 | 1.143 |
Hippurate | / | 1.035 | / | 1.053 | 0.729 | 1.437 | 0.923 | 1.487 | −0.807 | 0.76 |
Hydroxypyruvate | / | 1.088 | / | 0.909 | / | 1.235 | / | 1.123 | −0.812 | 0.822 |
Lactate | −0.897 | 0.695 | / | 1.201 | −0.888 | 0.713 | −0.956 | 0.589 | / | 0.986 |
Malate | 0.891 | 1.23 | / | 0.905 | / | 1.189 | 0.917 | 1.308 | −0.915 | 0.72 |
Maleicate | / | 0.937 | −0.835 | 0.778 | / | 0.969 | / | 1.221 | / | 0.972 |
N,N-Dimethylglycine | −0.942 | 0.713 | / | 1.14 | / | 0.692 | / | 0.847 | / | 1.932 |
N-Acetylaspartate | 0.809 | 1 | / | 0.965 | / | 1.095 | / | 1.114 | 0.87 | 1.08 |
N-Acetylglutamate | / | 0.916 | / | 1.141 | / | 0.979 | −0.926 | 0.965 | / | 1.125 |
ortho-Hydroxyphenylacetate | / | 0.902 | / | 0.953 | / | 0.909 | / | 0.905 | −0.686 | 0.647 |
Phenylacetylglycine | 0.786 | 1.178 | −0.845 | 0.787 | −0.813 | 1.086 | −0.858 | 0.971 | / | 0.905 |
Picolinate | / | 0.934 | / | 1.014 | −0.706 | 1.087 | 0.789 | 1.346 | 0.785 | 1.011 |
Succinate | / | 1.151 | / | 1.35 | / | 1.16 | / | 0.908 | −0.736 | 0.764 |
Taurine | / | 0.827 | / | 0.761 | / | 0.884 | / | 0.984 | 0.868 | 1.467 |
Trigonelline | / | 1.176 | 0.764 | 1.425 | / | 1.428 | / | 1.875 | −0.842 | 0.777 |
Urocanate | −0.793 | 0.552 | / | 1.012 | / | 0.796 | / | 0.907 | / | 0.913 |
α-Ketoglutarate | 0.718 | 1.612 | 0.859 | 1.998 | / | 1.29 | / | 0.879 | / | 0.981 |
Cells have been color-coded according to the fold-change; red indicates increased and blue indicates decreased in each group. Color bar: | ||||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.-X.; Chen, Q.-F.; Fan, Y.-F.; Qin, Y.; Zhang, X.-Q.; Zhong, H.-X. Maternal Physiological Variations Induced by Chronic Gestational Hypoxia: 1H NMR-Based Metabolomics Study. Molecules 2022, 27, 8013. https://doi.org/10.3390/molecules27228013
Xie J-X, Chen Q-F, Fan Y-F, Qin Y, Zhang X-Q, Zhong H-X. Maternal Physiological Variations Induced by Chronic Gestational Hypoxia: 1H NMR-Based Metabolomics Study. Molecules. 2022; 27(22):8013. https://doi.org/10.3390/molecules27228013
Chicago/Turabian StyleXie, Jing-Xian, Qiu-Fang Chen, Yan-Feng Fan, Yao Qin, Xue-Qin Zhang, and Hong-Xiu Zhong. 2022. "Maternal Physiological Variations Induced by Chronic Gestational Hypoxia: 1H NMR-Based Metabolomics Study" Molecules 27, no. 22: 8013. https://doi.org/10.3390/molecules27228013
APA StyleXie, J.-X., Chen, Q.-F., Fan, Y.-F., Qin, Y., Zhang, X.-Q., & Zhong, H.-X. (2022). Maternal Physiological Variations Induced by Chronic Gestational Hypoxia: 1H NMR-Based Metabolomics Study. Molecules, 27(22), 8013. https://doi.org/10.3390/molecules27228013