Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Different Processing Methods on Saponin Formation in Radish
2.2. Saponin Content as Affected by Different Thermal Processing
2.3. Kinetics of Saponins’ Formation at Different Thermal Treatment Temperatures
2.4. Identification of the Saponin Composition in TPR
3. Materials and Methods
3.1. Plant Material and Chemical Reagents
3.2. Sample Processing and Preparation of Extracts
3.3. Evaluation of Saponin Content and Kinetics of the Formation of Saponins
3.4. Analytical Mass Spectrometry
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gutiérrez, R.M.P.; Perez, R.L. Raphanus sativus (Radish): Their chemistry and biology. Sci. World J. 2004, 4, 811. [Google Scholar] [CrossRef] [PubMed]
- Banihani, S.A. Radish (Raphanus sativus) and diabetes. Nutrients 2017, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Yan, Y.; Zhou, Y.; Duan, Y.; Zeng, S.; Wang, X.; Lin, W.; Ou, C.; Zhou, J.; Xu, Z. Sulforaphane: Expected to Become a Novel Antitumor Compound. Oncol. Res. 2020, 28, 439. [Google Scholar] [CrossRef]
- Manivannan, A.; Kim, J.-H.; Kim, D.-S.; Lee, E.-S.; Lee, H.-E. Deciphering the nutraceutical potential of Raphanus sativus—A comprehensive overview. Nutrients 2019, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Okada, M.; Sagesaka, Y. Screening of dried plant seed extracts for adiponectin production activity and tumor necrosis factor-alpha inhibitory activity on 3T3-L1 adipocytes. Plant Foods Hum. Nutr. 2010, 65, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, H.; Li, B.; Shao, H.; Yu, X.; Miao, Z.; Zhang, L.; Zhu, L.; Sheng, H. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. J. Ethnopharmacol. 2022, 294, 115387. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.D.; Shim, S.Y. Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection. Foods 2022, 11, 1910. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vertedor, D.; Garrido, M.; Pariente, J.A.; Espino, J.; Delgado-Adámez, J. Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value. Phytother. Res. 2016, 30, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Mechi, D.; Fernández, A.; Baccouri, B.; Abaza, L.; Martín-Vertedor, D. Addition of ‘Chetoui’ olive leaf extract to reduce acrylamide in Californian-style black olive. Food Biosci. 2022, 50, 102080. [Google Scholar] [CrossRef]
- Schaide, T.; Cabrera-Bañegil, M.; Pérez-Nevado, F.; Esperilla, A.; Martín-Vertedor, D. Effect of olive leaf extract combined with Saccharomyces cerevisiae in the fermentation process of table olives. J. Food Sci. Technol. 2019, 56, 3001–3013. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Li, Z.; Qing, Z.; Sheng, M.; Qu, Q.; Shi, Y.; Yang, J.; Lv, L.; Dai, X.; Shi, X. Saponin surfactants used in drug delivery systems: A new application for natural medicine components. Int. J. Pharm. 2021, 603, 120709. [Google Scholar] [CrossRef]
- Janjua, S.; Shahid, M. Phytochemical analysis and in vitro antibacterial activity of root peel extract of Raphanus sativus L. var niger. Adv. Med. Plant Res. 2013, 1, 1–7. [Google Scholar]
- Haque, M.; Islam, J.; Rahaman, A.; Selina, F.A.; Azizur, M.; Rahman, M.H.; Hossain, S. Raphanus sativus ameliorates atherogeneic lipid profiles in hypercholesterolemic rats and hypercholesterolemia-associated peroxidative liver damage. J. J. Adv. Chem. 2014, 7, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Anggraini, F.; Satari, M.H.; Mariam, M.S. Bacterial inhibition test of methanolic extracts of strawberry (Fragraia x ananassa Duchesne), lime (Citrus aurantifolia), and radish (Raphanus sativus L.), towards Streptococcus sanguis ATCC 10556. Padjadjaran J. Dent. 2018, 30, 98–102. [Google Scholar] [CrossRef]
- Khakimov, B.; Kuzina, V.; Erthmann, P.Ø.; Fukushima, E.O.; Augustin, J.M.; Olsen, C.E.; Scholtalbers, J.; Volpin, H.; Andersen, S.B.; Hauser, T.P. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J. 2015, 84, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.J.; Nielsen, J.; Staerk, D. New resistance-correlated saponins from the insect-resistant crucifer Barbarea vulgaris. J. Agric. Food Chem. 2010, 58, 5509–5514. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Chang, Y.H. Physicochemical and antioxidant properties of methanol extract from Maca (Lepidium meyenii Walp.) leaves and roots. Food Sci. Technol. 2019, 39, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Del Hierro, J.N.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Dong, L.; Huang, F.; Liu, L. Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT 2019, 114, 108381. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Yu, X.; Yao, Y.; Ren, G. Evaluation of Antibacterial and Anti-inflammatory Activities of Less Polar Ginsenosides Produced from Polar Ginsenosides by Heat-transformation. J. Agric. Food Chem. 2013, 61, 12274–12282. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Zhao, L.; Wang, Y.; Hou, Z.; Zhang, F.; Yang, X. Reducing the damage of quinoa saponins on human gastric mucosal cells by a heating process. Food Sci. Nutr. 2020, 8, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.H.; Yin, H.L.; Chen, L.; Tian, Y.; Liu, S.J.; Zhang, G.J.; Chen, H.W.; Jin, H.; Li, B.; Dong, J.X. Three spirostanol saponins and a flavane-O-glucoside from the fresh rhizomes of Tupistra chinensis. Fitoterapia 2015, 102, 102–108. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2016, 96, 2366–2372. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Lai, Y.-J.; Wang, R.; Lo, Y.-C.; Chiu, C.-H. The Effect of Thermal Processing on the Saponin Profiles of Momordica charantia L. J. Food Qual. 2020, 2020, 8862020. [Google Scholar] [CrossRef]
- Shi, J.; Xue, S.J.; Ma, Y.; Li, D.; Kakuda, Y.; Lan, Y. Kinetic study of saponins B stability in navy beans under different processing conditions. J. Food Eng. 2009, 93, 59–65. [Google Scholar] [CrossRef]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [Green Version]
- Naqash, S.; Naik, H.R.; Hussain, S.; Makroo, H.; Dar, B. Effect of thermal treatment on physicochemical, phytochemical, and microbiological characteristics of brown Spanish onion paste. Qual. Assur. Saf. Crops Foods 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Gong, H.; Wu, C.-e.; Kou, X.-H.; Fan, G.-J.; Li, T.-T.; Wang, J.-H.; Wang, T. Impact of thermal processing methods on the composition and content of 4′-O-methylpyridoxine analogues in Ginkgo biloba seeds. Qual. Assur. Saf. Crops Foods 2020, 12, 102–110. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yamabe, N.; Choi, P.; Lee, J.W.; Ham, J.; Kang, K.S. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. J. Agric. Food Chem. 2013, 61, 9185–9191. [Google Scholar] [CrossRef]
- Xu, X.F.; Gao, Y.; Xu, S.Y.; Liu, H.; Xue, X.; Zhang, Y.; Zhang, H.; Liu, M.N.; Xiong, H.; Lin, R.C. Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng. J. Ginseng Res. 2018, 42, 277–287. [Google Scholar] [CrossRef]
- Srichamnong, W.; Ting, P.; Pitchakarn, P.; Nuchuchua, O.; Temviriyanukul, P. Safety assessment of Plukenetia volubilis (Inca peanut) seeds, leaves, and their products. Food Sci. Nutr. 2018, 6, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hou, C.-Y.; Lin, M.-C.; Chao Kai, C.; Patel, A.; Dong, C.-D.; Chen, Y.-A.; Wu, J.-T.; Hsieh, C.-W. Efficient thermal treatment of radish (Raphanus sativus) for enhancing its bioactive compounds. J. Food Sci. Technol. 2022, 103, 1–9. [Google Scholar] [CrossRef]
- Bento, J.A.C.; Ribeiro, P.R.V.; Alexandre e Silva, L.M.; Alves Filho, E.G.; Bassinello, P.Z.; de Brito, E.S.; Caliari, M.; Soares Júnior, M.S. Chemical profile of colorful bean (Phaseolus vulgaris L.) flours: Changes influenced by the cooking method. Food Chem. 2021, 356, 129718. [Google Scholar] [CrossRef]
- Kenar, J.A.; Felker, F.C.; Singh, M.; Byars, J.A.; Berhow, M.A.; Bowman, M.J.; Winkler-Moser, J.K. Comparison of composition and physical properties of soluble and insoluble navy bean flour components after jet-cooking, soaking, and cooking. LWT 2020, 130, 109765. [Google Scholar] [CrossRef]
- Jan, K.-C.; Wang, T.-Y.; Hwang, L.S.; Gavahian, M. Biotransformation of sesaminol triglycoside by intestinal microflora of swine supplemented with probiotic or antibiotic diet. Qual. Assur. Saf. Crops Foods 2022, 14, 19–29. [Google Scholar] [CrossRef]
- Li, W.; Pang, X.; Xiao, J.; Wang, X.; He, R.; Zhao, X. Degradation kinetics of pelargonidin-3-(p-coumaroyl)diglucoside-5-(malonyl)glucoside and pelargonidin-3-(feruloyl)diglucoside-5-(malonyl)glucoside in red radish during air-impingement jet drying. LWT 2020, 127, 109390. [Google Scholar] [CrossRef]
- Thuy Linh, N.T.; Manh Ha, N.; Son, N.T. Genus Tupistra: A comprehensive review of phytochemistry and pharmacological activity. Nat. Prod. Commun. 2022, 17, 1934578X221074851. [Google Scholar] [CrossRef]
- Singla, R.K.; He, X.; Chopra, H.; Tsagkaris, C.; Shen, L.; Kamal, M.A.; Shen, B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front. Pharmacol. 2021, 12, 758159. [Google Scholar] [CrossRef]
- Huang, X.F.; Lin, Y.Y.; Kong, L.Y. Steroids from the roots of Asparagus officinalis and their cytotoxic activity. J. Integr. Plant Biol. 2008, 50, 717–722. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, X.; Ding, X.; Chen, X.; Lv, L.; Li, Y.; Chai, Y. Comparative pharmacokinetics of timosaponin B-II and timosaponin A-III after oral administration of Zhimu-Baihe herb-pair, Zhimu extract, free timosaponin B-II and free timosaponin A-III to rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 926, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med. 1976, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Molaveisi, M.; Beigbabaei, A.; Akbari, E.; Noghabi, M.S.; Mohamadi, M. Kinetics of temperature effect on antioxidant activity, phenolic compounds and color of Iranian jujube honey. Heliyon 2019, 5, e01129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleri, F.D.; Chen, G.; Li, X.; Guo, M. Comparative Analysis of Saponins from Different Phytolaccaceae Species and Their Antiproliferative Activities. Molecules 2017, 22, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.-Q.; Dong, X.; Yin, X.; Fan, Y.; Fan, Y.; Mao, C.; Zhou, W. A mass spectrometry database for identification of saponins in plants. J. Chromatogr. A 2020, 1625, 461296. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Processing Temperature (°C) | Time (Days) | Saponins Content (mg g−1) |
---|---|---|---|
CPR A | 25 | 7 | 6.50 ± 1.46 e |
CPR B | 25 | 3650 | 23.11 ± 1.22 c |
CPR C | 25 | 7300 | 18.37 ± 1.11 d |
TPR | 70 | 30 | 24.24 ± 1.01 bc |
80 | 30 | 23.33 ± 2.32 c |
Zero-Order Equation | First-Order Equation | Second-Order Equation | |||||
---|---|---|---|---|---|---|---|
Treatment | k | R2 | k | R2 | k | R2 | |
Saponins content | 70 °C | 0.1820 | 0.7181 | 0.0050 | 0.7507 | −0.0001 | 0.7821 |
80 °C | –0.5044 | 0.7126 | −0.0188 | 0.6787 | 0.0007 | 0.6351 | |
90 °C | –0.8579 | 0.1054 | −0.0387 | 0.4314 | 0.0019 | 0.7930 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Hou, C.-Y.; Hsu, H.-Y.; Hazeena, S.H.; Santoso, S.P.; Yu, C.-C.; Chang, C.-K.; Gavahian, M.; Hsieh, C.-W. Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions. Molecules 2022, 27, 8125. https://doi.org/10.3390/molecules27238125
Yang M, Hou C-Y, Hsu H-Y, Hazeena SH, Santoso SP, Yu C-C, Chang C-K, Gavahian M, Hsieh C-W. Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions. Molecules. 2022; 27(23):8125. https://doi.org/10.3390/molecules27238125
Chicago/Turabian StyleYang, Min, Chih-Yao Hou, Hsien-Yi Hsu, Sulfath Hakkim Hazeena, Shella Permatasari Santoso, Cheng-Chia Yu, Chao-Kai Chang, Mohsen Gavahian, and Chang-Wei Hsieh. 2022. "Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions" Molecules 27, no. 23: 8125. https://doi.org/10.3390/molecules27238125
APA StyleYang, M., Hou, C. -Y., Hsu, H. -Y., Hazeena, S. H., Santoso, S. P., Yu, C. -C., Chang, C. -K., Gavahian, M., & Hsieh, C. -W. (2022). Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions. Molecules, 27(23), 8125. https://doi.org/10.3390/molecules27238125