New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutritional Evaluation of the Smoothies
2.2. Identification of Polar Compounds by HPLC-ESI-TOF-MS
2.3. Quatification of Phenolic Compounds by HPLC-ESI-TOF-MS
2.4. Vitamin C Content of Smoothies by HPLC-UV/VIS
2.5. Antioxidant Activity of Smoothies by DPPH and FRAP Assays
2.6. Clustering Analysis
3. Materials and Methods
3.1. Chemicals and Samples
3.2. Determination pH and Soluble Solids
3.3. Determination of Polar Compounds by HPLC-ESI-TOF-MS
3.4. Determination of Vitamin C Content by HPLC-UV/VIS
3.5. Antioxidant Assays: DPPH and FRAP
3.6. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trichopoulou, A.; Lagiou, P. Healthy traditional Mediterranean diet: An expression of culture, history, and lifestyle. Nutr. Rev. 1997, 55, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean diet and health outcomes in the SUN cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020, 19, 1029–1039. [Google Scholar] [CrossRef] [Green Version]
- Pressler, M.; Devinsky, J.; Duster, M.; Lee, J.H.; Glick, C.S.; Wiener, S.; Laze, J.; Friedman, D.; Roberts, T.; Devinsky, O. Dietary Transitions and Health Outcomes in Four Populations—Systematic Review. Front. Nutr. 2022, 9, 748305. [Google Scholar] [CrossRef]
- Kyriacou, A.; Evans, J.M.M.; Economides, N.; Kyriacou, A. Adherence to the Mediterranean diet by the Greek and Cypriot population: A systematic review. Eur. J. Public Health 2015, 25, 1012–1018. [Google Scholar] [CrossRef] [Green Version]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean diet among adults in Mediterranean countries: A systematic literature review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Nyberg, S.T.; Batty, G.D.; Pentti, J.; Virtanen, M.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; Heikkilä, K.; Jokela, M.; Knutsson, A.; et al. Obesity and loss of disease-free years owing to major non-communicable diseases: A multicohort study. Lancet Public Health 2018, 3, e490–e497. [Google Scholar] [CrossRef] [Green Version]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Janssen, F.; Trias-Llimós, S.; Kunst, A.E. The combined impact of smoking, obesity and alcohol on life-expectancy trends in Europe. Int. J. Epidemiol. 2021, 50, 931–941. [Google Scholar] [CrossRef]
- Hirashiki, A.; Shimizu, A.; Nomoto, K.; Kokubo, M.; Suzuki, N.; Arai, H. Systematic Review of the Effectiveness of Community Intervention and Health Promotion Programs for the Prevention of Non-Communicable Diseases in Japan and Other East and Southeast Asian Countries. Circ. Rep. 2022, 4, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Angiolillo, L.; Del Nobile, M.A.; Conte, A. The extraction of bioactive compounds from food residues using microwaves. Curr. Opin. Food Sci. 2015, 5, 93–98. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Navarrete, N.; del Mar Camacho Vidal, M.; José Martínez Lahuerta, J. Los compuestos bioactivos de las frutas y sus efectos en la salud. Act. Diet. 2008, 12, 64–68. [Google Scholar] [CrossRef]
- Pattern, H.P.D.; Bo, C.D.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar]
- Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 2019, 19, 271–282. [Google Scholar] [CrossRef]
- Gordon, D.S.; Rudinsky, A.J.; Guillaumin, J.; Parker, V.J.; Creighton, K.J. Vitamin C in Health and Disease: A Companion Animal Focus. Top. Companion Anim. Med. 2020, 39, 100432. [Google Scholar] [CrossRef] [PubMed]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin c—Sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [Green Version]
- Dowling, D.D.; Duerbeck, J.M. Vitamin C: Promises Not Kept. Obstet. Gynecol. Surv. 2016, 71, 792–793. [Google Scholar] [CrossRef]
- WHO. Healthy Diet; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 24 November 2022).
- Van de Velde, F.; Vignatti, C.; Paula Méndez-Galarraga, M.; Gomila, M.; Fenoglio, C.; Donda Zbinden, M.; Élida Pirovani, M. Intestinal and colonic bioaccessibility of phenolic compounds from fruit smoothies as affected by the thermal processing and the storage conditions. Food Res. Int. 2022, 155, 111086. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Minervini, G.; Rizzello, C.G.; De Angelis, M.; Gobbetti, M. Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiol. 2011, 28, 1062–1071. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Martínez-Hernández, G.B.; Aguayo, E.; Gómez, P.A.; Castillejo, N.; Arjmandi, M.; Formica-Oliveira, C.; González-Tejedor, G.; Otón, M.; Pedreño, J.L.; et al. Smoothies: Nueva moda saludable de consumo de productos hortofrutícolas con elevado valor nutritivo. Retos tecnológicos para la industria. CTC Aliment. Rev. Sobre Agroaliment. Ind. Afines 2016, 65, 4–10. [Google Scholar]
- Cano-Lamadrid, M.; Tkacz, K.; Turkiewicz, I.P.; Clemente-Villalba, J.; Sánchez-Rodríguez, L.; Lipan, L.; García-García, E.; Carbonell-Barrachina, Á.A.; Wojdyło, A. How a Spanish group of millennial generation perceives the commercial novel smoothies? Foods 2020, 9, 1213. [Google Scholar] [CrossRef]
- Castillejo, N.; Martínez-Hernández, G.B.; Gómez, P.A.; Artés, F.; Artés-Hernández, F. Red fresh vegetables smoothies with extended shelf life as an innovative source of health-promoting compounds. J. Food Sci. Technol. 2016, 53, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Verástegui, L.L.; Martínez-Hernández, G.B.; Castillejo, N.; Gómez, P.A.; Artés, F.; Artés-Hernández, F. Bioactive Compounds and Enzymatic Activity of Red Vegetable Smoothies During Storage. Food Bioprocess Technol. 2015, 9, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Petruzzi, L.; Campaniello, D.; Speranza, B.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Compr. Rev. Food Sci. Food Saf. 2017, 16, 668–691. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Santos, J.M.; Breitkreitz, M.C.; Ferreira, J.M.S.; Lins, P.M.P.; Farias, S.C.; de Morais, D.R.; Eberlin, M.N.; Bottoli, C.B.G. Characterization of the lipid profile from coconut (Cocos nucifera L.) oil of different varieties by electrospray ionization mass spectrometry associated with principal component analysis and independent component analysis. Food Res. Int. 2019, 123, 189–197. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; Kandiah, P.; Sukeri, S. The effects of fruit smoothies on enamel erosion. Eur. Arch. Paediatr. Dent. 2014, 15, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wang, Y.; Wang, S.; Liao, X. A Comparative Study of Changes in Microbiological Quality and Physicochemical Properties of N2-Infused and N2-Degassed Banana Smoothies After High Pressure Processing. Food Bioprocess Technol. 2015, 8, 333–342. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Nowicka, P.; Hernández, F.; Carbonell-Barrachina, A.; Wojdyło, A. Quality of new healthy smoothies based on pomegranate and minor Mediterranean fruits. Acta Hortic. 2019, 1254, 283–288. [Google Scholar] [CrossRef]
- de Moura, S.C.S.R.; Vissotto, F.Z.; Berbari, S.A.G.; Souza, E.D.C.G.; Toti, F.G.P.; Alves Júnior, P. Characterization and evaluation of stability of bioactive compounds in fruit smoothies. Food Sci. Technol. 2017, 37, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Nowicka, P. Anti-diabetic, anti-cholinesterase, and antioxidant potential, chemical composition and sensory evaluation of novel sea buckthorn-based smoothies. Food Chem. 2021, 338, 128105. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Teleszko, M. Effect of mixing different kinds of fruit juice with sour cherry puree on nutritional properties. J. Food Sci. Technol. 2017, 54, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, L.; Zhang, Q.; Zi, X.; Lv, R.; Tang, J.; Zhou, H. Impacts of Citric Acid and Malic Acid on Fermentation Quality and Bacterial Community of Cassava Foliage Silage. Front. Microbiol. 2020, 11, 595622. [Google Scholar] [CrossRef]
- Ricciutelli, M.; Moretti, S.; Galarini, R.; Sagratini, G.; Mari, M.; Lucarini, S.; Vittori, S.; Caprioli, G. Identification and quantification of new isomers of isopropyl-malic acid in wine by LC-IT and LC-Q-Orbitrap. Food Chem. 2019, 294, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT 2019, 111, 337–344. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M’hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Schieber, A.; Keller, P.; Carle, R. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J. Chromatogr. A 2001, 910, 265–273. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef]
- Meinhart, A.D.; Damin, F.M.; Caldeirão, L.; de Jesus Filho, M.; da Silva, L.C.; da Silva Constant, L.; Filho, J.T.; Wagner, R.; Godoy, H.T. Chlorogenic and caffeic acids in 64 fruits consumed in Brazil. Food Chem. 2019, 286, 51–63. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Egüés, I.; Hernandez-Ramos, F.; Rivilla, I.; Labidi, J. Optimization of ultrasound assisted extraction of bioactive compounds from apple pomace. Molecules 2021, 26, 3783. [Google Scholar] [CrossRef]
- Razola-Díaz, M.D.C.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; García-Villanova, B.; Verardo, V. Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods 2021, 10, 1120. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W.; Galletta, G.J. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef]
- Rommel, A.; Wrolstad, R.E. Composition of Flavonols in Red Raspberry Juice As Influenced by Cultivar, Processing, and Environmental Factors. J. Agric. Food Chem. 1993, 41, 1941–1950. [Google Scholar] [CrossRef]
- Gliszczynska-Swiglo, A.; Tyrakowska, B. Quality of commercial apple juices evaluated on the basis of the polyphenol content and the TEAC antioxidant activity. J. Food Sci. 2003, 68, 1844–1849. [Google Scholar] [CrossRef]
- Gualdani, R.; Cavalluzzi, M.; Lentini, G.; Habtemariam, S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016, 21, 1530. [Google Scholar] [CrossRef]
- Shi, Y.-S.S.; Zhang, Y.; Li, H.-T.T.; Wu, C.-H.H.; El-Seedi, H.R.; Ye, W.-K.K.; Wang, Z.-W.W.; Li, C.-B.B.; Zhang, X.-F.F.; Kai, G.-Y.Y. Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. J. Funct. Foods 2020, 75, 104213. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdylo, A. Bioactive compounds vs. organoleptic assessment of ’smoothies’-type products prepared from selected fruit species. Int. J. Food Sci. Technol. 2014, 49, 98–106. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Teleszko, M.; Samoticha, J.; Th, P.; Wojdyło, A.; Teleszko, M.; Samoticha, J. Sensory attributes and changes of physicochemical properties during storage of smoothies prepared from selected fruit. LWT 2016, 71, 102–109. [Google Scholar] [CrossRef]
- Villagrán, M.; Muñoz, M.; Díaz, F.; Troncoso, C.; Celis-Morales, C.; Mardones, L. Vitamin c in health and disease: A current perspective. Rev. Chil. Nutr. 2019, 46, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, A.; Picouet, P.; Jofré, A.; Guàrdia, M.D.; Ros, J.M.; Bañón, S. Application of High Pressure Processing for Obtaining “Fresh-Like” Fruit Smoothies. Food Bioprocess Technol. 2015, 8, 2470–2482. [Google Scholar] [CrossRef]
- Keenan, D.F.; Brunton, N.P.; Gormley, T.R.; Butler, F.; Tiwari, B.K.; Patras, A. Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innov. Food Sci. Emerg. Technol. 2010, 11, 551–556. [Google Scholar] [CrossRef]
- González-Tejedor, G.A.; Martínez-Hernández, G.B.; Garre, A.; Egea, J.A.; Fernández, P.S.; Artés-Hernández, F. Quality Changes and Shelf-Life Prediction of a Fresh Fruit and Vegetable Purple Smoothie. Food Bioprocess Technol. 2017, 10, 1892–1904. [Google Scholar] [CrossRef]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef]
- Bestwick, C.; Scobbie, L.; Milne, L.; Duncan, G.; Cantlay, L.; Russell, W. Fruit-Based beverages contain a wide range of phytochemicals and intervention targets should account for the individual compounds present and their availability. Foods 2020, 9, 891. [Google Scholar] [CrossRef]
- Hurtado, A.; Guàrdia, M.D.; Picouet, P.; Jofré, A.; Ros, J.M.; Bañón, S. Stabilisation of red fruit-based smoothies by high-pressure processing. Part II: Effects on sensory quality and selected nutrients. J. Sci. Food Agric. 2017, 97, 777–783. [Google Scholar] [CrossRef]
- Keenan, D.F.; Brunton, N.; Gormley, R.; Butler, F. Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies. J. Agric. Food Chem. 2011, 59, 601–607. [Google Scholar] [CrossRef]
- Škegro, M.; Putnik, P.; Bursać Kovačević, D.; Kovač, A.P.; Salkić, L.; Čanak, I.; Frece, J.; Zavadlav, S.; Ježek, D. Chemometric Comparison of High-Pressure Processing and Thermal Pasteurization: The Nutritive, Sensory, and Microbial Quality of Smoothies. Foods 2021, 10, 1167. [Google Scholar] [CrossRef]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar] [CrossRef]
- Mesías-García, M.; Guerra-Hernández, E.; García-Villanova, B. Determination of furan precursors and some thermal damage markers in baby foods: Ascorbic acid, dehydroascorbic acid, hydroxymethylfurfural and furfural. J. Agric. Food Chem. 2010, 58, 6027–6032. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free redical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Parejo, I.; Codina, C.; Petrakis, C.; Kefalas, P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH· (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 2000, 44, 507–512. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
Energy (kcal) | Energy (kJ) | Fats (g) | Saturated Fats (g) | Carbohydrates (g) | Sugars (g) | Fibre * (g) | Protein (g) | pH | °Brix | |
---|---|---|---|---|---|---|---|---|---|---|
Average | 56.3 | 237.5 | 0.5 | 0.4 | 11.8 | 10.9 | 0.7 | 0.6 | 3.61 | 12.53 |
Median | 53.0 | 225.0 | 0.1 | 0.0 | 12.0 | 11.0 | 0.8 | 0.6 | 3.57 | 12.60 |
Min. | 38.0 | 160.0 | 0.0 | 0.0 | 7.9 | 6.8 | 0.3 | 0.0 | 3.31 | 8.00 |
Max. | 82.0 | 343.0 | 3.2 | 2.9 | 14.6 | 13.4 | 1.8 | 0.9 | 4.06 | 15.00 |
CV (%) | 19.7 | 19.2 | 185.6 | 236.4 | 11.5 | 13.8 | 85.5 | 31.8 | 5.81 | 13.49 |
N° | Time (min) | m/z Experimental | m/z Calculated | Error (ppm) | Score (%) | Molecular Formula | m/z in Source Fragments | Compound |
---|---|---|---|---|---|---|---|---|
1 | 0.431 | 133.0131 | 133.0137 | −4.5 | 100.0 | C4H6O5 | 115.0013 | Malic acid |
2 | 0.476 | 191.0191 | 191.0192 | −0.5 | 100.0 | C6H8O7 | 111.0054 | Citric acid |
3 | 0.753 | 169.0138 | 169.0137 | 0.6 | 95.8 | C7H6O5 | 125.0222 | Gallic acid |
4 | 1.247 | 153.0189 | 153.0188 | 0.7 | 100.0 | C7H6O4 | 108.0185 | Protocatehuic acid isomer a |
5 | 1.688 | 175.0599 | 175.0606 | −4.0 | 98.8 | C7H12O5 | 113.0626 | 3-Isopropylmalic acid |
6 | 3.32 | 289.0698 | 289.0712 | −4.8 | 96.4 | C15H14O6 | 179.0345 | Catechin |
7 | 3.500 | 153.0181 | 153.0188 | −4.6 | 100.0 | C7H6O4 | - | Protocatehuic acid isomer b |
8 | 4.009 | 705.1675 | 705.1667 | 1.1 | 95.8 | C32H34O18 | 351.0702; 191.0544; 133.0271 | Kaempferol 3-[2′′′,3′′′,5′′′-triacetyl-alpha-L-arabinofuranosyl-(1->6)-glucoside isomer a |
9 | 4.009 | 353.0864 | 353.0873 | −2.5 | 100.0 | C16H18O9 | 191.0544 | Chlorogenic acid isomer a |
10 | 4.301 | 353.0869 | 353.0873 | −1.1 | 100.0 | C16H18O9 | 191.0543 | Chlorogenic acid isomer b |
11 | 4.368 | 705.1680 | 705.1667 | 1.8 | 92.1 | C32H34O18 | - | Kaempferol 3-[2′′′,3′′′,5′′′-triacetyl-alpha-L-arabinofuranosyl-(1->6)-glucoside isomer b |
12 | 4.541 | 353.0859 | 353.0873 | −4.0 | 97.5 | C16H18O9 | 191.0538 | Chlorogenic acid isomer c |
13 | 4.69 | 289.0705 | 289.0712 | −2.4 | 100.0 | C15H14O6 | 245.0794 | Epicatechin |
14 | 4.952 | 337.0909 | 337.0923 | −4.1 | 100.0 | C16H18O8 | 173.0441 | Coumaroylquinic acid isomer a |
15 | 5.155 | 337.0914 | 337.0923 | −2.7 | 100.0 | C16H18O8 | 173.0439 | Coumaroylquinic acid isomer a |
16 | 5.678 | 579.1725 | 579.1714 | 1.9 | 93.1 | C27H32O14 | 245.092 | Narirutin |
17 | 6.465 | 337.0546 | 337.0560 | −4.2 | 99.9 | C15H14O9 | 173.0082 | Quercetin dihydrate |
18 | 8.449 | 371.1332 | 371.1342 | −2.7 | 99.6 | C17H24O9 | 209.0801 | Syringin isomer a |
19 | 8.553 | 579.1719 | 579.1714 | 0.9 | 99.6 | C27H32O14 | 271.0604; 167.0341 | Naringin |
20 | 8.606 | 463.0861 | 463.0877 | −3.5 | 99.7 | C21H20O12 | 300.0253; 271.0228; 167.0347 | Isoquercetin |
21 | 8.636 | 567.1716 | 567.1714 | 0.4 | 100.0 | C26H32O14 | 463.0866; 300.0244;273.0748; 167.0342 | Phloretin 2′-xyloglucoside |
22 | 8.816 | 463.0872 | 463.0877 | −1.1 | 100.0 | C21H20O12 | 300.0256; 271.0240; 255.0276 | Hyperoside |
23 | 8.965 | 371.1340 | 371.1342 | −0.5 | 100.0 | C17H24O9 | 209.0811 | Syringin isomer b |
24 | 9.137 | 435.1301 | 435.1291 | 2.3 | 99.3 | C21H24O10 | 273.0757 | Phloridzin |
25 | 9.137 | 609.1838 | 609.1819 | 3.1 | 96.9 | C28H34O15 | 301.0711 | Hesperidin |
26 | 9.340 | 433.0771 | 433.0771 | 0.0 | 100.0 | C20H18O11 | 300.0262; 271.0242; 241.0136 | Quercetin 3-O-beta-D-xylopyranoside |
27 | 9.827 | 447.0917 | 447.0927 | −2.2 | 90.1 | C21H20O11 | 285.0382; 255.0272; 227.0331 | Kaempferol-3-glucoside |
28 | 10.032 | 447.0932 | 447.0927 | 1.1 | 100.0 | C21H20O11 | 300.0255; 271.0233 | Quercetin 3-rhamnoside |
29 | 10.111 | 461.0716 | 461.0720 | −0.9 | 100.0 | C21H18O12 | 285.0392 | Kaempferol-3-glucuronide |
30 | 10.942 | 489.1023 | 489.1033 | −2.0 | 99.8 | C23H22O12 | 285.0374; 255.0263; 227.0333 | Kaempferol 3-(6-acetylgalactoside) isomer a |
31 | 11.113 | 593.1883 | 593.1870 | 2.2 | 98.5 | C28H34O14 | 285.076 | Didymin |
32 | 11.226 | 693.2756 | 693.2758 | −0.3 | 99.1 | C34H46O15 | - | Nomilin glucoside |
33 | 11.511 | 489.1056 | 489.1033 | 4.7 | 92.8 | C23H22O12 | 285.0414; 255.0290; 227.0320 | Kaempferol 3-(6-acetylgalactoside) isomer b |
34 | 11.877 | 711.2866 | 711.2864 | 0.3 | 100.0 | C34H48O16 | 607.276 | Nomilinic acid 17-beta-D-glucopyranoside |
35 | 12.139 | 271.0602 | 271.0606 | −1.5 | 100.0 | C15H12O5 | 151.001 | Naringenin |
36 | 12.640 | 345.0599 | 345.0610 | −3.2 | 99.9 | C17H14O8 | 287.0171 | Limocitrin |
37 | 12.648 | 301.0699 | 301.0712 | −4.3 | 100.0 | C16H14O6 | 164.0084 | Hesperetin |
38 | 13.240 | 385.1494 | 385.1499 | −1.3 | 100.0 | C18H26O9 | 223.096 | Methylsyringin |
39 | 13.712 | 529.2075 | 529.2074 | 0.2 | 100.0 | C28H34O10 | 469.186 | 7-Acetoxy-6-hydroxylimonin |
40 | 14.206 | 329.2328 | 329.2328 | 0.0 | 100.0 | C18H34O5 | 211.1343 | Pinellic acid |
Phenolic Compound | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | S21 | S22 | S23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 367.25 ± 0.53 | <LOQ | 201.97 ± 0.36 | 5.56 ± 0.16 | 42.50 ± 0.08 | 32.47 ± 0.06 | 570.66 ± 0.74 | 62.27 ± 0.22 | 226.90 ± 0.39 | 964.22 ± 1.15 | 157.69 ± 0.32 | 405.54 ± 0.57 | 34.27 ± 0.07 | 41.18 ± 0.08 | 679.61 ± 0.85 | <LOQ | 31.44 ± 0.06 | 207.83 ± 0.37 | 40.15 ± 0.20 | 17.98 ± 0.04 | 543.29 ± 0.71 | 19.69 ± 0.05 | <LOQ |
Chlorogenic acid isomer a | 532.92 ± 1.21 | 791.93 ± 1.48 | 1163.81 ± 1.86 | 673.74 ± 1.35 | <LOQ | <LOQ | 170.39 ± 0.84 | 230.75 ± 0.90 | 181.16 ± 0.85 | 500.54 ± 1.18 | 94.49 ± 0.76 | 160.96±0.51 | 697.92 ± 1.38 | 168.30 ± 0.53 | 1117.11 ± 1.81 | 859.87 ± 1.54 | 1226.82 ± 1.92 | 732.40 ± 1.41 | 713.90 ± 1.40 | <LOQ | 116.85 ± 0.79 | 185.17 ± 0.58 | 1144.12 ± 1.84 |
Chlorogenic acid isomer b | 1232.31 ± 1.93 | 926.29 ± 1.61 | 784.19 ± 1.47 | 1015.41 ± 1.70 | <LOQ | <LOQ | 741.19 ± 1.42 | 581.39 ± 1.26 | 448.95 ± 1.12 | 999.52 ± 1.69 | 615.80 ± 1.30 | 354.76±1.03 | 1194.18 ± 1.89 | 318.21 ± 0.99 | 1090.78 ± 1.78 | 1052.55 ± 1.74 | 1353.11 ± 2.05 | 1189.69 ± 1.88 | 946.19 ± 1.63 | <LOQ | 409.35 ± 1.08 | 112.41 ± 0.78 | 1363.95 ± 2.06 |
Chlorogenic acid isomer c | 45.73 ± 0.71 | 111.33 ± 0.36 | 523.06 ± 1.20 | 139.81 ± 0.45 | <LOQ | <LOQ | 81.93 ± 0.27 | 97.39 ± 0.32 | 105.24 ± 0.34 | 167.15 ± 0.53 | 106.08 ± 0.35 | 79.30±0.27 | 155.04 ± 0.49 | 39.27 ± 0.14 | 577.79 ± 1.26 | 95.03 ± 0.76 | 316.56 ± 0.99 | 166.47 ± 0.53 | 185.91 ± 0.59 | <LOQ | 80.20 ± 0.27 | 57.34 ± 0.20 | 139.74 ± 0.81 |
Coumaroylquinic acid isomer a | 133.26 ± 0.43 | 145.68 ± 0.47 | 186.47 ± 0.59 | 122.63 ± 0.40 | <LOQ | <LOQ | 80.11 ± 0.27 | 37.49 ± 0.14 | 21.63 ± 0.09 | 65.14 ± 0.22 | 34.90 ± 0.13 | 115.07±0.37 | 136.37 ± 0.44 | 129.03 ± 0.42 | 1006.93 ± 1.69 | 187.89 ± 0.59 | 501.91 ± 1.18 | 139.30 ± 0.45 | 98.80 ± 0.32 | <LOQ | 59.14 ± 0.20 | 36.70 ± 0.14 | 204.54 ± 0.64 |
Coumaroylquinic acid isomer a | 147.81 ± 0.47 | 157.45 ± 0.50 | 182.93 ± 0.58 | 131.98 ± 0.42 | <LOQ | <LOQ | 93.75 ± 0.31 | 35.58 ± 0.13 | 27.66 ± 0.11 | 59.72 ± 0.21 | 36.15 ± 0.14 | 141.90±0.45 | 200.41 ± 0.63 | 137.21 ± 0.44 | 1023.10 ± 1.71 | 189.33 ± 0.60 | 728.71 ± 1.41 | 154.30 ± 0.49 | 105.86 ± 0.35 | <LOQ | 81.45 ± 0.27 | 46.78 ± 0.17 | 199.41 ± 0.63 |
Protocatehuic acid isomer a | 16.50 ± 0.04 | 12.11 ± 0.03 | 8.04 ± 0.16 | 392.01 ± 0.56 | 40.53 ± 0.08 | <LOQ | 16.13 ± 0.04 | 13.99 ± 0.04 | 0.08 ± 0.02 | 53.97 ± 0.10 | 95.67 ± 0.25 | 28.36±0.06 | 75.46 ± 0.23 | 4.62 ± 0.02 | 66.21 ± 0.12 | 33.88 ± 0.07 | 32.68 ± 0.07 | 25.71 ± 0.05 | 13.95 ± 0.04 | <LOQ | 26.49 ± 0.06 | 83.11 ± 0.14 | 12.14 ± 0.03 |
Protocatehuic acid isomer b | <LOQ | <LOQ | 71.94 ± 0.12 | 688.17 ± 0.86 | 55.03 ± 0.10 | <LOQ | <LOQ | 128.77 ± 0.29 | <LOQ | <LOQ | 35.90 ± 0.07 | <LOQ | 49.74 ± 0.21 | <LOQ | <LOQ | <LOQ | 4.29 ± 0.02 | <LOQ | <LOQ | <LOQ | <LOQ | 95.95 ± 0.25 | <LOQ |
Catechin | 138.09 ± 0.24 | 98.49 ± 0.13 | 165.39 ± 0.32 | 155.18 ± 0.29 | 440.95 ± 1.10 | <LOQ | 94.42 ± 0.12 | 490.36 ± 1.24 | 82.07 ± 0.09 | 128.59 ± 0.22 | 236.22 ± 0.52 | 68.69±0.05 | 100.04 ± 0.14 | 60.64 ± 0.03 | 172.85 ± 0.34 | <LOQ | 227.13 ± 0.50 | 177.63 ± 0.36 | 146.01 ± 0.27 | <LOQ | 88.55 ± 0.10 | 338.05 ± 0.81 | 150.17 ± 0.28 |
Epicatechin | 412.15 ± 1.02 | 458.72 ± 1.15 | 338.92 ± 0.81 | 485.87 ± 1.23 | 81.51 ± 0.08 | <LOQ | 280.50 ± 0.65 | 408.96 ± 1.01 | 258.08 ± 0.58 | 370.42 ± 0.90 | 199.85 ± 0.42 | 91.06±0.11 | 105.29 ± 0.15 | 80.31 ± 0.08 | 417.27 ± 1.03 | 54.91 ± 0.01 | 222.64 ± 0.48 | 403.77 ± 1.00 | 498.76 ± 1.26 | <LOQ | 211.96 ± 0.45 | 267.64 ± 0.61 | 591.24 ± 1.53 |
Phloridzin | 340.25 ± 1.02 | 685.88 ± 1.72 | 596.35 ± 1.54 | 365.08 ± 1.07 | 33.94 ± 0.07 | <LOQ | 20.00 ± 0.38 | 8.71 ± 0.35 | 50.23 ± 0.44 | 211.09 ± 0.76 | 100.02 ± 0.54 | 142.84±0.62 | 287.98 ± 0.92 | 80.44 ± 0.50 | 777.90 ± 1.91 | 687.57 ± 1.72 | 601.08 ± 1.55 | 304.90 ± 0.95 | 602.91 ± 1.55 | <LOQ | 54.16 ± 0.45 | 67.70 ± 0.27 | 504.35 ± 1.35 |
Phloretin 2′-xyloglucoside | 36.34 ± 0.41 | 124.84 ± 0.59 | 55.60 ± 0.45 | 80.80 ± 0.31 | <LOQ | <LOQ | 48.35 ± 0.21 | 14.03 ± 0.12 | 32.17 ± 0.07 | 57.51 ± 0.16 | 7.16 ± 0.10 | 72.05±0.28 | 66.72 ± 0.27 | 37.06 ± 0.18 | 395.60 ± 1.14 | 116.66 ± 0.57 | 239.00 ± 0.82 | 78.62 ± 0.30 | 82.84 ± 0.31 | <LOQ | 30.77 ± 0.16 | 11.02 ± 0.11 | 102.55 ± 0.54 |
Narirutin | 60.51 ± 0.25 | 32.44 ± 0.07 | 4.00 ± 0.09 | 7.12 ± 0.10 | <LOQ | <LOQ | 23.88 ± 0.04 | 18.94 ± 0.13 | 17.19 ± 0.01 | 0.72 ± 0.08 | 19.48 ± 0.02 | 16.25±0.01 | 22.43 ± 0.03 | 16.34 ± 0.01 | 37.25 ± 0.18 | 20.69 ± 0.02 | 31.65 ± 0.06 | 32.92 ± 0.07 | 32.12 ± 0.07 | <LOQ | 19.01 ± 0.02 | <LOQ | 19.21 ± 0.13 |
Naringin | 63.75 ± 0.26 | 15.35 ± 0.01 | <LOQ | 18.90 ± 0.13 | 56.77 ± 0.45 | 19.39 ± 0.02 | 84.15 ± 0.51 | <LOQ | <LOQ | 47.25 ± 0.43 | 37.41 ± 0.18 | 147.01±0.63 | 28.06 ± 0.39 | 41.11 ± 0.42 | <LOQ | <LOQ | <LOQ | 124.72 ± 0.59 | <LOQ | <LOQ | 28.74 ± 0.39 | 15.45 ± 0.12 | <LOQ |
Hesperidin | 206.93 ± 0.75 | 30.43 ± 0.06 | <LOQ | 53.01 ± 0.23 | 314.24 ± 0.97 | 28.60 ± 0.16 | 508.80 ± 1.36 | <LOQ | <LOQ | 332.79 ± 1.01 | 178.31 ± 0.70 | 554.81±1.46 | 305.55 ± 0.95 | 216.93 ± 0.77 | <LOQ | 27.08 ± 0.05 | <LOQ | 325.76 ± 0.99 | <LOQ | 31.24 ± 0.06 | 445.35 ± 1.24 | 77.77 ± 0.49 | 27.66 ± 0.05 |
Naringenin | <LOQ | 19.28 ± 0.02 | <LOQ | 17.83 ± 0.01 | 16.77 ± 0.01 | <LOQ | <LOQ | 17.88 ± 0.01 | <LOQ | <LOQ | 21.46 ± 0.03 | <LOQ | 22.65 ± 0.03 | 22.41 ± 0.38 | <LOQ | <LOQ | <LOQ | 16.70 ± 0.01 | <LOQ | <LOQ | 17.15 ± 0.01 | 18.73 ± 0.02 | <LOQ |
Hesperetin | <LOQ | 6.84 ± 0.10 | <LOQ | <LOQ | 16.78 ± 0.01 | <LOQ | 16.58 ± 0.01 | <LOQ | <LOQ | <LOQ | 15.57 ± 0.01 | <LOQ | 16.66 ± 0.01 | 492.79 ± 1.33 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 22.33 ± 0.03 | 16.34 ± 0.01 | <LOQ |
Didymin | 57.14 ± 0.24 | 16.15 ± 0.01 | <LOQ | 1.41 ± 0.08 | 77.46 ± 0.30 | 18.08 ± 0.02 | 9.57 ± 0.36 | <LOQ | <LOQ | 28.22 ± 0.39 | 38.72 ± 0.19 | 26.27 ± 0.39 | 79.45 ± 0.30 | 80.07 ± 0.30 | <LOQ | <LOQ | <LOQ | 36.92 ± 0.41 | <LOQ | <LOQ | 2.50 ± 0.34 | 23.30 ± 0.14 | <LOQ |
Quercetin 3-rhamnoside | 44.12 ± 0.43 | 234.36 ± 0.81 | 254.54 ± 0.85 | 122.60 ± 0.58 | <LOQ | <LOQ | 28.29 ± 0.16 | 11.14 ± 0.36 | 55.57 ± 0.23 | 25.54 ± 0.39 | 51.11 ± 0.22 | 26.86 ± 0.15 | 163.30 ± 0.67 | 67.58 ± 0.27 | 32.10 ± 0.40 | 84.19 ± 0.51 | 64.06 ± 0.26 | 74.14 ± 0.29 | 69.41 ± 0.48 | <LOQ | 26.95 ± 0.15 | 6.24 ± 0.09 | 59.61 ± 0.46 |
Quercetin dihydrate isomer a | 18.52 ± 0.02 | 132.41 ± 0.60 | <LOQ | 19.32 ± 0.02 | 18.99 ± 0.02 | 13.29 ± 0.36 | 20.32 ± 0.02 | <LOQ | 15.36 ± 0.12 | 21.32 ± 0.03 | 15.97 ± 0.01 | 18.47 ± 0.02 | 19.38 ± 0.02 | 83.39 ± 0.50 | <LOQ | <LOQ | <LOQ | 20.12 ± 0.02 | 20.87 ± 0.03 | 36.51 ± 0.18 | 20.21 ± 0.02 | <LOQ | 47.17 ± 0.21 |
Quercetin 3-O-beta-D-xylopyranoside | 56.29 ± 0.24 | 128.42 ± 0.60 | 171.28 ± 0.68 | 27.76 ± 0.39 | <LOQ | <LOQ | 28.82 ± 0.05 | 47.82 ± 0.21 | 29.40 ± 0.06 | 72.35 ± 0.21 | 20.07 ± 0.13 | 1.02 ± 0.08 | 44.44 ± 0.43 | 38.18 ± 0.18 | 13.94 ± 0.36 | 32.19 ± 0.17 | 81.85 ± 0.31 | 30.54 ± 0.16 | 86.18 ± 0.32 | <LOQ | 4.79 ± 0.09 | 33.83 ± 0.07 | 55.70 ± 0.23 |
Isoquercetin | 30.88 ± 0.16 | 43.91 ± 0.42 | 392.84 ± 1.13 | 230.14 ± 0.80 | <LOQ | <LOQ | 20.98 ± 0.03 | 24.86 ± 0.04 | 31.90 ± 0.06 | 23.73 ± 0.14 | 15.68 ± 0.12 | 25.09 ± 0.04 | 120.26 ± 0.58 | 32.66 ± 0.07 | 33.30 ± 0.17 | 20.04 ± 0.13 | 50.82 ± 0.22 | 32.54 ± 0.07 | 39.32 ± 0.19 | <LOQ | 22.94 ± 0.03 | 33.71 ± 0.07 | 29.85 ± 0.16 |
Hyperoside | 9.83 ± 0.10 | 43.32 ± 0.20 | 45.17 ± 0.43 | 18.91 ± 0.37 | 19.52 ± 0.13 | <LOQ | 22.11 ± 0.03 | 29.26 ± 0.16 | 22.93 ± 0.03 | 10.81 ± 0.11 | 52.70 ± 0.23 | 26.81 ± 0.05 | 115.12 ± 0.57 | 29.55 ± 0.06 | 26.45 ± 0.15 | 6.29 ± 0.09 | 38.57 ± 0.19 | 29.79 ± 0.06 | 11.91 ± 0.11 | <LOQ | 25.01 ± 0.04 | 64.15 ± 0.26 | 41.04 ± 0.19 |
Kaempferol-3-glucoside | <LOQ | 18.38 ± 0.02 | 18.52 ± 0.13 | 25.60 ± 0.04 | 18.44 ± 0.02 | <LOQ | <LOQ | 72.85 ± 0.48 | <LOQ | 15.46 ± 0.01 | 32.47 ± 0.17 | <LOQ | 58.98 ± 0.24 | 19.29 ± 0.02 | 17.60 ± 0.01 | <LOQ | 31.91 ± 0.17 | <LOQ | 16.91 ± 0.01 | <LOQ | <LOQ | 58.21 ± 0.45 | 13.67 ± 0.11 |
Kaempferol-3-glucuronide | <LOQ | <LOQ | <LOQ | <LOQ | 39.13 ± 0.41 | <LOQ | <LOQ | 89.21 ± 0.52 | <LOQ | <LOQ | 14.27 ± 0.12 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 38.55 ± 0.19 | <LOQ | <LOQ | <LOQ | <LOQ | 76.44 ± 0.29 | <LOQ |
Kaempferol 3-(6-acetylgalactoside) isomer a | <LOQ | <LOQ | <LOQ | <LOQ | 54.85 ± 0.23 | <LOQ | <LOQ | 85.64 ± 0.51 | <LOQ | <LOQ | 25.44 ± 0.04 | <LOQ | 17.47 ± 0.01 | <LOQ | <LOQ | <LOQ | 32.62 ± 0.07 | <LOQ | <LOQ | <LOQ | <LOQ | 43.47 ± 0.20 | 17.21 ± 0.01 |
Kaempferol 3-(6-acetylgalactoside) isomer b | <LOQ | <LOQ | 15.62 ± 0.01 | <LOQ | 28.65 ± 0.05 | <LOQ | <LOQ | 9.85 ± 0.10 | <LOQ | <LOQ | 19.49 ± 0.02 | <LOQ | 16.13 ± 0.01 | 18.00 ± 0.02 | <LOQ | <LOQ | 18.28 ± 0.02 | <LOQ | <LOQ | <LOQ | <LOQ | 24.13 ± 0.04 | <LOQ |
Kaempferol 3-[2′′′,3′′′,5′′′-triacetyl-alpha-L-arabinofuranosyl-(1->6)-glucoside isomer a | 105.09 ± 0.55 | 177.64 ± 0.69 | 853.59 ± 2.06 | 173.70 ± 0.69 | <LOQ | <LOQ | 44.77 ± 0.20 | 25.33 ± 0.15 | 12.54 ± 0.11 | 69.02 ± 0.48 | 31.35 ± 0.16 | 25.93 ± 0.04 | 172.97 ± 0.69 | 1.81 ± 0.08 | 885.25 ± 2.12 | 162.14 ± 0.66 | 608.30 ± 1.56 | 124.20 ± 0.59 | 68.78 ± 0.47 | <LOQ | 11.83 ± 0.11 | 23.04 ± 0.03 | 312.60 ± 0.97 |
Kaempferol 3-[2′′′,3′′′,5′′′-triacetyl-alpha-L-arabinofuranosyl-(1->6)-glucoside isomer b | 466.33 ± 1.28 | 363.52 ± 1.07 | 1278.43 ± 2.92 | 372.00 ± 1.09 | <LOQ | <LOQ | 48.46 ± 0.43 | 4.13 ± 0.34 | 68.34 ± 0.27 | 298.90 ± 0.94 | 47.80 ± 0.43 | 30.47 ± 0.16 | 525.69 ± 1.40 | 24.02 ± 0.14 | 1390.73 ± 3.15 | 467.01 ± 1.28 | 1161.21 ± 2.68 | 360.48 ± 1.06 | 220.77 ± 0.78 | <LOQ | 61.33 ± 0.25 | 3.55 ± 0.09 | 699.38 ± 1.75 |
Sum of phenolic acids | 2475.79 ± 5.32 | 2144.80 ± 4.45 | 3122.40 ± 6.34 | 3169.31 ± 5.91 | 138.05 ± 0.26 | 32.47 ± 0.06 | 1754.16 ± 3.90 | 1187.63 ± 3.30 | 1011.62 ± 2.93 | 2810.25 ± 5.07 | 1176.67 ± 3.31 | 1285.88 ± 3.26 | 2543.38 ± 5.33 | 837.81 ± 2.63 | 5561.52 ± 9.22 | 2418.55 ± 5.31 | 4195.52 ± 7.70 | 2615.70 ± 5.19 | 2104.76 ± 4.52 | 17.98 ± 0.04 | 1316.76 ± 3.38 | 637.14 ± 2.31 | 3063.90 ± 6.01 |
Sum of flavonoids | 2046.21 ± 6.96 | 2630.38 ± 8.26 | 4190.25 ± 11.41 | 2175.23 ± 7.43 | 1217.99 ± 3.86 | 79.36 ± 0.56 | 1300.01 ± 4.56 | 1358.97 ± 5.74 | 675.77 ± 2.07 | 1713.71 ± 6.24 | 1180.55 ± 4.35 | 1273.63 ± 4.09 | 2288.59 ± 7.80 | 1442.58 ± 5.35 | 4200.24 ± 10.97 | 1819.87 ± 5.22 | 3447.67 ± 9.07 | 2173.75 ± 6.92 | 1896.80 ± 5.85 | 67.75 ± 0.24 | 1093.58 ± 3.90 | 1202.77 ± 4.17 | 2671.39 ± 7.98 |
Sum of phenolic compounds | 4521.99 ± 12.29 | 4775.17 ± 12.71 | 7312.65 ± 17.75 | 5344.54 ± 13.34 | 1356.04 ± 4.12 | 111.82 ± 0.62 | 3054.18 ± 8.45 | 2546.60 ± 9.03 | 1687.39 ± 5.00 | 4523.96 ± 11.31 | 2357.22 ± 7.66 | 2559.51 ± 7.36 | 4831.97 ± 13.13 | 2280.39 ± 7.97 | 9761.76 ± 20.19 | 4238.42 ± 10.53 | 7643.19 ± 16.76 | 4789.45 ± 12.11 | 4001.56 ± 10.37 | 85.73 ± 0.29 | 2410.34 ± 7.28 | 1839.90 ± 6.48 | 5735.29 ± 13.99 |
Smoothie | Ascorbic Acid | Dehidroascorbic Acid | Total Vitamin C |
---|---|---|---|
µg AA/mL Smoothie | µg AA/mL Smoothie | µg AA/mL Smoothie | |
1 | 797.00 ± 2.93 | <LOD | 797.00 ± 2.93 |
2 | 619.77 ± 2.52 | 80.21 ± 0.20 | 699.98 ± 2.72 |
3 | 383.53 ± 1.97 | 164.98 ± 0.80 | 548.51 ± 2.77 |
4 | 293.28 ± 1.76 | 254.43 ± 1.44 | 547.71 ± 3.20 |
5 | 562.09 ± 2.38 | <LOD | 562.09 ± 2.38 |
6 | 556.29 ± 2.37 | <LOD | 556.29 ± 2.37 |
7 | 556.59 ± 2.37 | 96.03 ± 0.04 | 652.61 ± 2.41 |
8 | 328.37 ± 1.84 | 195.52 ± 1.08 | 523.89 ± 2.93 |
9 | 2397.80 ± 6.63 | 262.22 ± 4.09 | 2660.02 ± 10.73 |
10 | 923.67 ± 3.22 | 48.75 ± 1.14 | 972.42 ± 4.36 |
11 | 390.51 ± 1.99 | 133.37 ± 0.64 | 523.89 ± 2.63 |
12 | 651.14 ± 2.59 | 29.30 ± 0.51 | 680.45 ± 3.10 |
13 | 500.68 ± 2.24 | 77.00 ± 0.10 | 577.68 ± 2.34 |
14 | 947.16 ± 3.28 | 11.34 ± 1.37 | 958.50 ± 4.65 |
15 | 560.45 ± 2.38 | 102.06 ± 0.05 | 662.52 ± 2.44 |
16 | <LOD | 491.78 ± 3.26 | 491.78 ± 3.26 |
17 | 542.91 ± 2.34 | 84.01 ± 0.02 | 626.92 ± 2.36 |
18 | 1196.64 ± 3.85 | <LOD | 1196.64 ± 3.85 |
19 | 432.14 ± 2.08 | 59.63 ± 0.21 | 491.78 ± 2.29 |
20 | 518.97 ± 2.29 | 40.24 ± 0.11 | 559.21 ± 2.39 |
21 | 419.06 ± 2.05 | 144.70 ± 0.62 | 563.76 ± 2.67 |
22 | 489.38 ± 2.22 | 51.36 ± 0.02 | 540.75 ± 2.23 |
23 | 639.85 ± 2.56 | 27.22 ± 0.49 | 667.07 ± 3.05 |
Smoothie | DPPH | FRAP |
---|---|---|
µg TE/mL Smoothie | µg TE/mL Smoothie | |
1 | 865.25 ± 2.19 | 4322.37 ± 17.83 |
2 | 562.50 ± 9.19 | 3041.58 ± 11.83 |
3 | 1926.50 ± 4.38 | 6779.47 ± 13.47 |
4 | 1633.75 ± 11.53 | 5448.16 ± 71.94 |
5 | 1085.50 ± 5.37 | 3942.63 ± 26.13 |
6 | 495.00 ± 5.66 | 2648.95 ± 12.65 |
7 | 676.50 ± 30.26 | 3557.37 ± 0.67 |
8 | 1591.50 ± 0.99 | 7271.05 ± 20.77 |
9 | 1314.00 ± 20.08 | 8167.37 ± 78.60 |
10 | 1105.00 ± 5.23 | 4828.68 ± 35.84 |
11 | 1685.50 ± 17.82 | 6551.84 ± 37.25 |
12 | 580.00 ± 8.77 | 3033.68 ± 10.64 |
13 | 1847.25 ± 5.73 | 5945.79 ± 61.93 |
14 | 762.75 ± 0.64 | 2873.68 ± 9.30 |
15 | 1058.50 ± 8.06 | 4718.68 ± 11.05 |
16 | 220.50 ± 5.23 | 1126.84 ± 7.29 |
17 | 1477.50 ± 13.72 | 5527.89 ± 75.85 |
18 | 1012.75 ± 6.72 | 4656.84 ± 11.61 |
19 | 663.75 ± 6.01 | 2736.05 ± 5.99 |
20 | 638.75 ± 10.96 | 3247.37 ± 1.27 |
21 | 597.25 ± 6.29 | 3286.32 ± 22.70 |
22 | 1637.00 ± 16.12 | 5915.26 ± 6.48 |
23 | 603.40 ± 11.48 | 3261.84 ± 30.85 |
Code | Ingredients of the Smoothie |
---|---|
1 | Apple, orange, goji, passion fruit, mango, banana |
2 | Pineapple, lime, apple, mint, chlorophyll |
3 | Apple, blueberry, banana, pomegranate, grape, currant |
4 | Banana, grape, apple, cranberry, orange, pomegranate, acai, chokeberry, lemon |
5 | Strawberry, banana, grape, orange |
6 | Pineapple, banana, coconut, mango, lemon |
7 | Apple, banana, mango, orange, passion fruit |
8 | Strawberry, apple, banana |
9 | Apple, pineapple, mango, carrot, coconut |
10 | Apple, mango, banana, orange, passion fruit, peach, lemon |
11 | Apple, banana, grape, strawberry, blackberry, raspberry, orange, currant |
12 | Orange, apple, banana, mango, passion fruit |
13 | Apple, banana, orange, raspberry, blueberry, blackberry, blackcurrant, redcurrant |
14 | Pineapple, apple, orange, banana, lime, spirulina, mint |
15 | Apple, mango, banana, passion fruit |
16 | Apple, cucumber, celery, kale, spinach, lemon, ginger |
17 | Apple, strawberry, raspberry, blueberry, banana |
18 | Apple, mango, banana, orange, passion fruit, peach, lime |
19 | Apple, pineapple, mango, coconut, banana |
20 | Pineapple, banana, coconut, mango, lemon |
21 | Apple, mango, coconut, banana, orange, passion fruit |
22 | Strawberry, apple, banana, coconut, blackberry, blackcurrant, orange |
23 | Apple, pineapple, pear, kiwi, lime, spirulina |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razola-Díaz, M.d.C.; Guerra-Hernández, E.J.; García-Villanova, B.; Verardo, V. New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market. Molecules 2022, 27, 8229. https://doi.org/10.3390/molecules27238229
Razola-Díaz MdC, Guerra-Hernández EJ, García-Villanova B, Verardo V. New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market. Molecules. 2022; 27(23):8229. https://doi.org/10.3390/molecules27238229
Chicago/Turabian StyleRazola-Díaz, María del Carmen, Eduardo Jesús Guerra-Hernández, Belén García-Villanova, and Vito Verardo. 2022. "New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market" Molecules 27, no. 23: 8229. https://doi.org/10.3390/molecules27238229
APA StyleRazola-Díaz, M. d. C., Guerra-Hernández, E. J., García-Villanova, B., & Verardo, V. (2022). New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market. Molecules, 27(23), 8229. https://doi.org/10.3390/molecules27238229