Quantitative Determination of Diosmin in Tablets by Infrared and Raman Spectroscopy
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Sample Preparation
2.2. Reference Analysis
2.3. Apparatus
2.4. Software and Numerical Data Treatment
3. Results and Discussion
3.1. Vibrational Spectra
3.2. Chemometric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- El-Shafae, A.M.; El-Domiaty, M.M. Improved LC methods for the determination of diosmin and/or hesperidin in plant extracts and pharmaceutical formulations. J. Pharm. Biomed. Anal. 2001, 26, 539–545. [Google Scholar] [CrossRef]
- Diosmin Monograph. Altern. Med. Rev. 2004, 9, 308–311.
- Bogucka–Kocka, A.; Woźniak, M.; Feldo, M.; Kocki, J.; Szewczyk, K. Diosmin–isolation techniques, determination in plant material and pharmaceutical formulations, and clinical use. Nat. Prod. Commun. 2013, 8, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Garner, R.C.; Garner, J.V.; Gregory, S.; Whattam, M.; Calam, A.; Leong, D. Comparison of the absorption of micronized (Daflon 500® mg) and nonmicronized 14C-diosmin tablets after oral administration to healthy volunteers by accelerator mass spectrometry and liquid scintillation counting. J. Pharm. Sci. 2002, 91, 32–40. [Google Scholar] [CrossRef]
- López Cremades, F.J. Process for the preparation of diosmin. U.S. Patent US 10,711,025 B2, 14 July 2020. [Google Scholar]
- Nguyen, V.T.; Huynh, T.; Nguyen, T.D.; Hoang, T. Oxidation of hesperidin into diosmin using ionic liquids. Org. Commun. 2019, 12, 101–108. [Google Scholar] [CrossRef]
- Horowitz, R. Flavonoids of citrus. I. Isolation of diosmin from lemons (Citrus limon). J. Org. Chem. 1956, 21, 1184–1185. [Google Scholar] [CrossRef]
- Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; Garcıa-Lidón, A.; Ortuño, A. Citrus limon: A source of flavonoids of pharmaceutical interest. Food Chem. 2004, 84, 457–461. [Google Scholar] [CrossRef]
- Hitzenberger, G. Therapeutic effectiveness of flavonoids illustrated by Daflon 500 mg. Wien. Med. Wochenschr. 1997 147, 409–412.
- Ibegbuna, V.; Nicolaides, A.N.; Sowade, O.; Leon, M.; Geroulakos, G. Venous elasticity after treatment with Daflon 500 mg. Angiology 1997, 48, 45–49. [Google Scholar] [CrossRef]
- Cospite, M.; Dominici, A. Double blind study of the pharmacodynamic and clinical activities of 5682 SE in venous insufficiency. Advantages of the new micronized form. Int. J. Angiol. 1989, 8, 61–65. [Google Scholar]
- Takase, S.; Lerond, L.; Bergan, J.J.; Schmid-Schönbein, G.W. The inflammatory reaction during venous hypertension in the rat. Microcirculation 2000, 7, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Galley, P.; Thiollet, M. A double-blind, placebo-controlled trial of a new veno-active flavonoid fraction (S 5682) in the treatment of symptomatic capillary fragility. Int. J. Angiol. 1993, 12, 69–72. [Google Scholar]
- Shoab, S.S.; Porter, J.B.; Scurr, J.H.; Coleridge-Smith, P.D. Effect of oral micronized purified flavonoid fraction treatment on leukocyte adhesion molecule expression in patients with chronic venous disease: A pilot study. J. Vasc. Surg. 2000, 31, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Allegra, C.; Bartolo, M.; Carioti, B.; Cassiani, D.; BesseBoffi, M.G. Microlymphography: Assessment of Daflon 500 mg activity in patients with chronic venous insufficiency. Lymphology 1998, 31, 12–16. [Google Scholar]
- Ratty, A.K.; Das, N.P. Effects of flavonoids on nonenzymatic lipid peroxidation: Structure-activity relationship. Biochem. Med. Metab. Biol. 1988, 39, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kohno, H.; Mori, H. Chemoprevention of colon carcinogenesis by dietary non-nutritive compounds. Asian Pac. J. Cancer Prev. 2001, 2, 165–177. [Google Scholar]
- Srinivasan, S.; Pari, L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem. Biol. Interact. 2012, 195, 43–51. [Google Scholar] [CrossRef]
- Janeczko, Z.; Hubicka, U.; Krzek, J.; Podolak, I. Qualitative and quantitative analysis of diosmin in tablets by thin layer chromatography with densitometric UV detection. JPC-J. Planar Chromat. 2003, 16, 377–380. [Google Scholar] [CrossRef]
- El-Shahawi, M.S.; Bashammakh, A.S.; El-Mogy, T. Determination of trace levels of diosmin in a pharmaceutical preparation by adsorptive stripping voltammetry at a glassy carbon electrode. Anal. Sci. 2006, 22, 1351–1354. [Google Scholar] [CrossRef] [Green Version]
- Gunache, R.O.; Apetrei, C. Determination of diosmin in pharmaceutical products with chemically modified voltammetric Sensors. Int. J. Mol. Sci. 2021, 22, 7315. [Google Scholar] [CrossRef]
- Moldovan, Z.; Aboul-Enein, H.Y. A sensitive spectrophotometric method for determination of diosmin using sodium nitroprusside as a chromogenic reagent. Instrum. Sci. Technol. 2011, 39, 135–148. [Google Scholar] [CrossRef]
- Moldovan, Z.; Bunaciu, A.A.; Al-Omar, M.A.; Aboul-Enein, H.Y. A spectrophotometric method for diosmin determination. Open Chem. Biomed. Meth. J. 2010, 3, 123–127. [Google Scholar]
- Bunaciu, A.A.; Udristioiu, G.E.; Ruţă, L.L.; Fleschin, Ş.; Aboul-Enein, H.Y. Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharm. J. 2009, 17, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, S.; Szostak, R. Comparison of infrared attenuated total reflection and Raman spectroscopy in the quantitative analysis of diclofenac sodium in tablets. Vib. Spectrosc. 2011, 57, 157–162. [Google Scholar] [CrossRef]
- Szostak, R.; Mazurek, S. Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy. Analyst 2002, 127, 144–148. [Google Scholar] [CrossRef]
- Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Derring, A.; Davis, R. Melamine detection in infant formula powder using near- and mid-infrared spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980. [Google Scholar] [CrossRef]
- Patel, B.D.; Mehta, P.J. An overview: Application of Raman spectroscopy in pharmaceutical field. Curr. Pharm. Anal. 2010, 6, 131–141. [Google Scholar] [CrossRef]
- Townshend, N.; Nordon, A.; Littlejohn, D.; Myrick, M.; Andrews, J.; Dallin, P. Comparison of the determination of a low-concentration active ingredient in pharmaceutical tablets by backscatter and transmission Raman spectrometry. Anal. Chem. 2012, 84, 4671–4676. [Google Scholar] [CrossRef] [Green Version]
- Bonnier, F.; Petitjean, F.; Baker, M.J.; Byrne, H.J. Improved protocols for vibrational spectroscopic analysis of body fluids. J. Biophoton. 2014, 7, 167–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, C.; Isabelle, M.; Bazant-Hegemark, F.; Hutchings, J.; Orr, L.; Babrah, J.; Stone, N. Vibrational spectroscopy: A clinical tool for cancer diagnostics. Analyst 2009, 134, 1029–1045. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.E. Quantitative Analysis of Solid Dosage Formulations by Raman Spectroscopy. In Pharmaceutical Applications of Raman Spectroscopy; Šašić, S., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 29–64. [Google Scholar]
- Gredilla, A.; Fdez-Ortiz de Vallejuelo, S.; Elejoste, N.; de Diego, A.; Madariaga, J.M. Non-destructive spectroscopy combined with chemometrics as a tool for green chemical analysis of environmental samples: A review. TrAC 2016, 76, 30–39. [Google Scholar] [CrossRef]
- Szeleszczuk, Ł.; Pisklak, D.M.; Zielińska-Pisklak, M.; Wawer, I. Spectroscopic and structural studies of the diosmin monohydrate and anhydrous diosmin. Int. J. Pharm. 2017, 529, 193–199. [Google Scholar] [CrossRef]
- Saeidi, I.; Hadjmohammadi, M.R.; Peyrovi, M.; Iranshahi, M.; Barfi, B.; Babaei, A.B.; Dust, A.M. HPLC determination of hesperidin, diosmin and eriocitrin in Iranian lime juice using polyamide as an adsorbent for solid phase extraction. J. Pharm. Biomed. Anal. 2011, 56, 419–422. [Google Scholar] [CrossRef]
- Mishra, G.; Srivastava, V.K.; Tripathi, A. Analytical method development and validation for assay of diosmin and hesperidin in combined tablet dosage form by RP-HPLC. Int. J. Pharm. Biol. Sci. 2013, 4, 2834–2839. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wise, B.M.; Kowalski, B.R. Process chemometrics. In Process Analytical Chemistry; McLennan, F., Kowalski, B.R., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 259–312. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Naso, L.; Martínez, V.R.; Lezama, L.; Salado, C.; Valcarcel, M.; Ferrer, E.G.; Williams, P.A. Antioxidant, anticancer activities and mechanistic studies of the flavone glycoside diosmin and its oxidovanadium (IV) complex. Interactions with bovine serum albumin. Bioorg. Med. Chem. 2016, 24, 4108–4119. [Google Scholar] [CrossRef]
- Aghel, N.; Ramezani, Z.; Beiranvand, S. Hesperidin from Citrus sinensis cultivated in Dezful, Iran. Pak. J. Biol. Sci. 2008, 11, 2451–2453. [Google Scholar] [CrossRef] [Green Version]
- Jurczak, E.; Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M.; Zielińska-Pisklak, M. Pharmaceutical Hydrates Analysis-Overview of Methods and Recent Advances. Pharmaceutics 2020, 12, 959. [Google Scholar] [CrossRef]
- Mazurek, S.; Włodarczyk, M.; Pielorz, S.; Okińczyc, P.; Kuś, P.M.; Długosz, G.; Szostak, R. Quantification of salicylates and flavonoids in poplar bark and leaves based on IR, NIR, and Raman spectra. Molecules 2022, 27, 3954. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Barimah, A.O.; Yin, L.; Chen, Q.; Shi, J.; El-Seedi, H.R.; Zou, X. Intelligent evaluation of taste constituents and polyphenols-to-amino acids ratio in matcha tea powder using near infrared spectroscopy. Food Chem. 2021, 353, 129372. [Google Scholar] [CrossRef]
- Stuppner, S.; Mayr, S.; Beganovic, A.; Beć, K.; Grabska, J.; Aufschnaiter, U.; Groeneveld, M.; Rainer, M.; Jakschitz, T.; Bonn, G.K.; et al. Near-infrared spectroscopy as a rapid screening method for the determination of total anthocyanin content in Sambucus fructus. Sensors 2020, 20, 4983. [Google Scholar] [CrossRef] [PubMed]
- Gowen, A.A.; Marini, F.; Tsuchisaka, Y.; De Luca, S.; Bevilacqua, M.; O’Donnell, C.; Downey, G.; Tsenkova, R. On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems. Talanta 2015, 131, 609–618. [Google Scholar] [CrossRef] [PubMed]
Parameter | RAMAN | MIR | NIR |
---|---|---|---|
Rcal | 0.9920 | 0.9882 | 0.9905 |
Rtest | 0.9932 | 0.9838 | 0.9877 |
Rcv | 0.9641 | 0.9536 | 0.9568 |
RSEPcal | 1.30 | 1.41 | 1.32 |
RSEPtest | 1.25 | 1.59 | 1.39 |
Number of PLS factors | 5 | 7 | 7 |
Wavenumber range [cm−1] | 488–963 | 1478–1633 | 3811–3957 |
3036–3119 | 2391–3452 | 4379–4762 | |
6153–6683 | |||
Normalization | SNV | None | SNV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielorz, S.; Węglińska, M.; Mazurek, S.; Szostak, R. Quantitative Determination of Diosmin in Tablets by Infrared and Raman Spectroscopy. Molecules 2022, 27, 8276. https://doi.org/10.3390/molecules27238276
Pielorz S, Węglińska M, Mazurek S, Szostak R. Quantitative Determination of Diosmin in Tablets by Infrared and Raman Spectroscopy. Molecules. 2022; 27(23):8276. https://doi.org/10.3390/molecules27238276
Chicago/Turabian StylePielorz, Sonia, Magdalena Węglińska, Sylwester Mazurek, and Roman Szostak. 2022. "Quantitative Determination of Diosmin in Tablets by Infrared and Raman Spectroscopy" Molecules 27, no. 23: 8276. https://doi.org/10.3390/molecules27238276
APA StylePielorz, S., Węglińska, M., Mazurek, S., & Szostak, R. (2022). Quantitative Determination of Diosmin in Tablets by Infrared and Raman Spectroscopy. Molecules, 27(23), 8276. https://doi.org/10.3390/molecules27238276