Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review
Abstract
:1. Introduction
2. Ethnobotanical Properties of P. kurroa
3. Phytochemistry
4. Pharmacological Activities of P. kurroa
5. Classical and Clinical Use of P. kurroa
5.1. Antimicrobial Activity
5.2. Anti-Inflammatory Activity
5.3. Antioxidant Activity
5.4. Hepato-Protective Activity
5.5. Antidiabetic Activity
5.6. Anticancer Activity
5.7. Immunomodulatory
5.8. Anti-Ulcer Activity
5.9. Cardioprotective Activity
5.10. Hypolipidemic Effect
5.11. Antiasthmatic Activity
6. Dosages and Toxicity
7. Conclusions and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshehri, S.A.; Wahab, S.; Abullais, S.S.; Das, G.; Hani, U.; Ahmad, W.; Amir, M.; Ahmad, A.; Kandasamy, G.; Vasudevan, R. Pharmacological Efficacy of Tamarix Aphylla: A Comprehensive Review. Plants 2022, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Alqarni, M.H.; Shoaib, A.; Wahab, S.; Foudah, A.I.; Aljarba, T.M.; Akhtar, J.; Alamri, M.A.; Ahmad, S. Anti-Obesity Action of Boerhavia Diffusa in Rats against High-Fat Diet-Induced Obesity by Blocking the Cannabinoid Receptors. Plants 2022, 11, 1158. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An Updated Knowledge of Black Seed (Nigella Sativa Linn.): Review of Phytochemical Constituents and Pharmacological Properties. J. Herb. Med. 2021, 25, 100404. [Google Scholar] [CrossRef] [PubMed]
- Dutta, I.C. Non-Timber Forest Products of Nepal: Identification, Classification, Ethnic Uses and Cultivation. Inst. For. Pokhara, Nepal 2007, 44, 436–438. [Google Scholar]
- Chhetri, N.; Sharma, E.; Lama, S.D. Non-Timber Forest Produces Utilization, Distribution and Status in a Trekking Corridor of Sikkim, India. Lyonia 2005, 8, 89–101. [Google Scholar]
- Singh, A.P. Kutkins-A Review of Chemistry and Pharmacology. Ethnobot. Leafl. 2004, 2004, 9. [Google Scholar]
- Tiwari, T.; Chaturvedi, P. Efficient in Vitro Establishment and Multiplication of Picrorhiza Kurroa Royle Ex Benth through in Vitro Raised Seedlings. Res. Crop. 2016, 17, 800–807. [Google Scholar] [CrossRef]
- Mahajan, R.; Kapoor, N.; Singh, I. Somatic Embryogenesis and Callus Proliferation in Picrorhiza Kurroa Royle Ex. Benth. J. Exp. Biol. Agric. Sci. 2016, 4, 201–209. [Google Scholar] [CrossRef]
- Nautiyal, B.P.; Prakash, V.; Chauhan, R.S.; Purohit, H.; Nautiyal, M.C. Assessment of Germinability, Productivity and Cost Benefit Analysis of Picrorhiza Kurrooa Cultivated at Lower Altitudes. Curr. Sci. 2001, 81, 579–585. [Google Scholar]
- Dorsch, W.; Wagner, H. New Antiasthmatic Drugs from Traditional Medicine? Int. Arch. Allergy Appl. Immunol. 1991, 94, 262–265. [Google Scholar] [CrossRef]
- Bhandari, P.; Kumar, N.; Singh, B.; Ahuja, P.S. Online HPLC-DPPH Method for Antioxidant Activity of Picrorhiza Kurroa Royle Ex Benth. and Characterization of Kutkoside by Ultra-Performance LC-Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Indian J. Exp. Biol. 2010, 48, 323–328. [Google Scholar] [PubMed]
- Bhattacharjee, S.; Bhattacharya, S.; Jana, S.; Bhagel, D.S. A Review on Medicinally Important Species of Picrorhiza. Int. J. Pharm. Res. Biosci. 2013, 2, 1–16. [Google Scholar]
- Rana, C.S.; Amandeep, K.; Kimothi, G.P.; Narayan, S.B.; Sastry, J.L.N. Notes on Identity of Picrorhiza—A High Value Threatened Medicinal Plant Group of Western Himalaya. Nelumbo 2018, 60, 38–43. [Google Scholar] [CrossRef]
- Sood, H.; Chauhan, R.S. Biosynthesis and Accumulation of a Medicinal Compound, Picroside-I, in Cultures of Picrorhiza Kurroa Royle Ex Benth. Plant Cell Tissue Organ Cult. 2010, 100, 113–117. [Google Scholar] [CrossRef]
- Luper, S. A Review of Plants Used in the Treatment of Liver Disease: Part Two. Altern. Med. Rev. 1999, 4, 178–189. [Google Scholar] [PubMed]
- Dwivedi, Y.; Rastogi, R.; Garg, N.K.; Dhawan, B.N. Picroliv and Its Components Kutkoside and Picroside I Protect Liver Against Galactosamine-Induced Damage in Rats. Pharmacol. Toxicol. 1992, 71, 383–387. [Google Scholar] [CrossRef]
- Sinha, S.; Bhat, J.; Joshi, M.; Sinkar, V.; Ghaskadbi, S. Hepatoprotective Activity of Picrorhiza Kurroa Royle Ex. Benth Extract against Alcohol Cytotoxicity in Mouse Liver Slice Culture. Int. J. Green Pharm. 2011, 5, 244–253. [Google Scholar] [CrossRef]
- Jeyakumar, R.; Rajesh, R.; Rajaprabhu, D.; Ganesan, B.; Buddhan, S.; Anandan, R. Hepatoprotective Effect of Picrorrhiza Kurroa on Antioxidant Defense System in Antitubercular Drugs- Induced Hepatotoxicity in Rats. Afr. J. Biotechnol. 2009, 8, 1314–1315. [Google Scholar] [CrossRef]
- Saraswat, B.; Visen, P.K.; Patnaik, G.K.; Dhawan, B.N. Anticholestatic Effect of Picroliv, Active Hepatoprotective Principle of Picrorhiza Kurrooa, against Carbon Tetrachloride Induced Cholestasis. Indian J. Exp. Biol. 1993, 31, 316–318. [Google Scholar] [PubMed]
- Dwivedi, Y.; Rastogi, R.; Sharma, S.K.; Garg, N.K.; Dhawan, B.N. Picroliv Affords Protection against Thioacetamide-Induced Hepatic Damage in Rats. Planta Med. 1991, 57, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Girish, C.; Pradhan, S.C. Hepatoprotective Activities of Picroliv, Curcumin, and Ellagic Acid Compared to Silymarin on Carbon-Tetrachloride-Induced Liver Toxicity in Mice. J. Pharmacol. Pharmacother. 2012, 3, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Nipanikar, S.U.; Chitlange, S.S.; Nagore, D. Pharmacological Evaluation of Hepatoprotective Activity of AHPL/AYTAB/0613 Tablet in Carbon Tetrachloride-, Ethanol-, and Paracetamol-Induced Hepatotoxicity Models in Wistar Albino Rats. Pharmacogn. Res. 2017, 9, S41–S47. [Google Scholar] [CrossRef] [PubMed]
- Chander, R.; Dwivedi, Y.; Rastogi, R.; Sharma, S.K.; Garg, N.K.; Kapoor, N.K.; Dhawan, B.N. Evaluation of Hepatoprotective Activity of Picroliv (from Picrorhiza Kurroa) in Mastomys Natalensis Infected with Plasmodium Berghei. Indian J. Med. Res. 1990, 92, 34–37. [Google Scholar]
- Vaidya, A.B.; Sirsat, S.M.; Doshi, J.C.; Antarkar, D.S. Selected Medicinal Plants and Formulations as Hepato-Biliary Drugs: An Over-View. Indian J. Clin. Pharmacol. Ther. 1996, 17, 7. [Google Scholar]
- Shitiz, K.; Pandit, S.; Chauhan, R.S.; Sood, H. Picrosides Content in the Rhizomes of Picrorhiza Kurroa Royle Ex Benth. Traded for Herbal Drugs in the Markets of North India. Int. J. Med. Arom. Plants 2013, 3, 2249–4340. [Google Scholar]
- Debnath, P.; Rathore, S.; Walia, S.; Kumar, M.; Devi, R.; Kumar, R. Picrorhiza Kurroa: A Promising Traditional Therapeutic Herb from Higher Altitude of Western Himalayas; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, p. 100358. [Google Scholar]
- Rastogi, R.; Saksena, S.; Garg, N.K.; Kapoor, N.K.; Agarwal, D.P.; Dhawan, B.N. Picroliv Protects against Alcohol-Induced Chronic Hepatotoxicity in Rats. Planta Med. 1996, 62, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Khandekar, S.; Pachpor, A.; Maurya, S.; Pansare, T.; Kumar Maurya, S. Role of Katuka (Picrorhiza Kurroa Royle Ex Benth.) in Obesity W.S.R to Ayurvedic and Modern Aspect: A Review. Int. J. Herb. Med. 2019, 7, 31–35. [Google Scholar]
- Bhardwaj, A.; Sharma, A.; Cooper, R.; Bhardwaj, G.; Gaba, J.; Mutreja, V.; Chauhan, A. A Comprehensive Phytochemical, Ethnomedicinal, Pharmacological Ecology and Conservation Status of Picrorhiza Kurroa Royle Ex Benth.: An Endangered Himalayan Medicinal Plant. Process Biochem. 2021, 109, 72–86. [Google Scholar] [CrossRef]
- Sharma, P.V. Dravyaguna Vijnana; Chaukhambha Bharati Academy: Varanasi, India, 2011; pp. 544–546. [Google Scholar]
- Ghimire, S.K.; McKey, D.; Aumeeruddy-Thomas, Y. Conservation of Himalayan Medicinal Plants: Harvesting Patterns and Ecology of Two Threatened Species, Nardostachys Grandiflora DC. and Neopicrorhiza Scrophulariiflora (Pennell) Hong. Biol. Conserv. 2005, 124, 463–475. [Google Scholar] [CrossRef]
- Mulliken, T.; Crofton, P. Review of the Status, Harvest, Trade and Management of Seven Asian CITES-Listed Medicinal and Aromatic Plant Species Results of the R + D Project FKZ 804 86 003 Teresa Mulliken. BfN-Skripten 227 2008, 10, 1–144. [Google Scholar]
- Kumar, D.; Kumar, R.; Singh, B.; Singh Ahuja, P. Comprehensive Chemical Profiling of Picrorhiza Kurroa Royle Ex Benth Using NMR, HPTLC and LC-MS/MS Techniques. Comb. Chem. High Throughput Screen. 2016, 19, 200–215. [Google Scholar] [CrossRef]
- Krupashree, K.; Hemanth Kumar, K.; Rachitha, P.; Jayashree, G.V.; Khanum, F. Chemical Composition, Antioxidant and Macromolecule Damage Protective Effects of Picrorhiza Kurroa Royle Ex Benth. S. Afr. J. Bot. 2014, 94, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Smith, R.E.; Luchtefeld, R.; Sun, A.Y.; Simonyi, A.; Luo, R.; Sun, G.Y. Bioavailability of Apocynin through Its Conversion to Glycoconjugate but Not to Diapocynin. Phytomedicine 2008, 15, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuppner, H.; Wagner, H. New Cucurbitacin Glycosides Fom Picrorhiza Kurrooa. Planta Med. 1989, 55, 559–563. [Google Scholar] [CrossRef]
- Zhang, Y.; DeWitt, D.L.; Murugesan, S.; Nair, M.G. Cyclooxygenase-2 Enzyme Inhibitory Triterpenoids from Picrorhiza Kurroa Seeds. Life Sci. 2005, 77, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, B.N. Picroliv—A New Hepatoprotective Agent from an Indian Medicinal Plant, Picrorhiza Kurroa. Med. Chem. Res. 1995, 5, 595–605. [Google Scholar]
- Nisha, S.; Vijaylata, P.; Bikram, S.; Raghbir, C. Intraspecific Variability of Main Phytochemical Compounds in Picrorhiza Kurroa Royle Ex Benth. from North Indian Higher Altitude Himalayas Using Reversed-Phase High-Performance Liquid Chromatography. J. Med. Plants Res. 2012, 6, 3181–3187. [Google Scholar] [CrossRef]
- Katoch, M.; Fazli, I.S.; Suri, K.A.; Ahuja, A.; Qazi, G.N. Effect of Altitude on Picroside Content in Core Collections of Picrorhiza Kurrooa from the North Western Himalayas. J. Nat. Med. 2011, 65, 578–582. [Google Scholar] [CrossRef]
- Stuppner, H. New Cucurbitacin Glycosides from Picrorhiza Kurroa. Planta Med. 1990, 56, 551–552. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Ghosh, S.; Padma, G.M. Effect of Gmelina Arborea Roxb. Leaves on Wound Healing in Rats. J. Nat. Remedies 2003, 3, 45–48. [Google Scholar]
- Kawamura, F.; Ohara, S.; Nishida, A. Antifungal Activity of Constituents from the Heartwood of Gmelina Arborea: Part 1. Sensitive Antifungal Assay against Basidiomycetes. Holzforschung 2004, 58, 189–192. [Google Scholar] [CrossRef]
- Kawamura, F.; Ohara, S. Antifungal Activity of Iridoid Glycosides from the Heartwood of Gmelina Arborea. Holzforschung 2005, 59, 153–155. [Google Scholar] [CrossRef]
- Ernst, E. Major Herbs of Ayurveda. Focus Altern. Complement. Ther. 2010, 8, 98. [Google Scholar] [CrossRef]
- Simons, J.M.; Hart, B.A.; Ip Vai Ching, T.R.A.M.; Van Dijk, H.; Labadie, R.P. Metabolic Activation of Natural Phenols into Selective Oxidative Burst Agonists by Activated Human Neutrophils. Free Radic. Biol. Med. 1990, 8, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Stuppner, H.; Moller, E.P. Cucurbitacins with Unusual Side Chains from Picrorhiza Kurroa. Phytochemistry 1993, 33, 1139–1145. [Google Scholar] [CrossRef]
- Stuppner, H.; Müller, E.P.; Wagner, H. Cucurbitacins from Picrorhiza Kurrooa. Phytochemistry 1991, 30, 305–310. [Google Scholar] [CrossRef]
- Laurie, W.A.; McHale, D.; Sheridan, J.B. A Cucurbitacin Glycoside from Picrorhiza Kurrooa. Phytochemistry 1985, 24, 2659–2661. [Google Scholar] [CrossRef]
- Salma, U.; Kundu, S.; Gantait, S. Phytochemistry and Pharmaceutical Significance of Picrorhiza Kurroa Royle Ex Benth. In Phytochemistry and Pharmacology of Medicinal Herbs; Lenin Media Private Limited: Delhi, India, 2017; ISBN 978-93-85995-46-0. [Google Scholar]
- Kumar, N.; Kumar, T.; Sharma, S.K. Phytopharmacological Review on Genus Picrorhiza. Int. J. Univ. Pharma Bio Sci. 2013, 2, 334–347. [Google Scholar]
- Zhu, T.F.; Chen, J.J.; Sun, Q.W.; Yan, Z.H. Chemical Constituents from Picrorhiza Scrophulariiflora. Chinese Tradit. Herb. Drugs 2017, 48, 263–265. [Google Scholar] [CrossRef]
- Pathan, D.; Memon, S.; Parkar, H. Pharmacognostical and Phytochemical Evaluation of Picrorhiza Kurroa. J. Curr. Pharma Res. 2018, 9, 2561–2566. [Google Scholar] [CrossRef]
- Kumar, K.N.S.; Padhi, M.M.; Babu, R. Evaluation of Phamacognostic and Physicochemical parameters of Picrorrhiza kurroa Royle ex Benth. Int. J. Ayurvedic Med. 2010, 1, 41–47. [Google Scholar] [CrossRef]
- Mall, A.K.; Chaubey, S.; Tiwari, R.C.; Kour, G. Pharmacognostical study of kutaki (picrorhiza kurroa royle ex. benth). Int. J. Res. Ayurveda Pharm. 2016, 7, 36–40. [Google Scholar] [CrossRef]
- Guleria, S.; Tiku, A.K.; Singh, G.; Koul, A.; Gupta, S.; Rana, S. In Vitro Antioxidant Activity and Phenolic Contents in Methanol Extracts from Medicinal Plants. J. Plant Biochem. Biotechnol. 2013, 22, 9–15. [Google Scholar] [CrossRef]
- Rajkumar, V.; Guha, G.; Ashok Kumar, R. Antioxidant and Anti-Neoplastic Activities of Picrorhiza Kurroa Extracts. Food Chem. Toxicol. 2011, 49, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Surveswaran, S.; Cai, Y.Z.; Corke, H.; Sun, M. Systematic Evaluation of Natural Phenolic Antioxidants from 133 Indian Medicinal Plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Mohi-ud-din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Mir, P.A.; Jan, R.; Farooq, S.; Mohi-ud-din, I.; Banday, N. Phytochemical and Pharmacological Properties of Picrorhiza Kurroa. In Edible Plants in Health and Diseases; Springer: Singapore, 2022; pp. 399–423. [Google Scholar]
- Sharma, T.; Sharma, N.K.; Kumar, P.; Panzade, G.; Rana, T.; Swarnkar, M.K.; Singh, A.K.; Singh, D.; Shankar, R.; Kumar, S. The First Draft Genome of Picrorhiza Kurrooa, an Endangered Medicinal Herb from Himalayas. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Garg, H.S.; Bhandari, S.P.S.; Tripathi, S.C.; Patnaik, G.K.; Puri, A.; Saxena, R.; Saxena, R.P. Antihepatotoxic and Immunostimulant Properties of Iridoid Glycosides of Scrophularia Koelzii. Phyther. Res. 1994, 8, 224–228. [Google Scholar] [CrossRef]
- Puri, A.; Saxena, R.P.; Sumati; Guru, P.Y.; Kulshreshtha, D.K.; Saxena, K.C.; Dhawan, B.N. Immunostimulant Activity of Picroliv, the Iridoid Glycoside Fraction of Picrorhiza Kurroa, and Its Protective Action against Leishmania Donovani Infection in Hamsters 1. Planta Med. 1992, 58, 528–532. [Google Scholar] [CrossRef]
- Stuppner, H.; Dorsch, W.; Wagner, H.; Gropp, M.; Kepler, P. Antiasthmatic Effects of Picrorhiza Kurrooa: Inhibition of Allergen- and PAF-Induced Bronchial Obstruction in Guinea Pigs by Androsin, Apocynine, and Structurally Related Compounds. Planta Med. 1991, 57, A62. [Google Scholar] [CrossRef]
- Sah, J.N.; Varshney, V.K. Chemical Constituents of Picrorhiza Genus: A Review. Am. J. Essent. Oils Nat. Prod. 2013, 1, 22–37. [Google Scholar]
- Bhandari, P.; Kumar, N.; Singh, B.; Gupta, A.P.; Kaul, V.K.; Ahuja, P.S. Stability-Indicating LC-PDA Method for Determination of Picrosides in Hepatoprotective Indian Herbal Preparations of Picrorhiza Kurroa. Chromatographia 2009, 69, 221–227. [Google Scholar] [CrossRef]
- Zhu, J.-S.S.; Ouyang, D.-Y.Y.; Shi, Z.-J.J.; Xu, L.-H.H.; Zhang, Y.-T.T.; He, X.-H.H. Cucurbitacin B Induces Cell Cycle Arrest, Apoptosis and Autophagy Associated with G Actin Reduction and Persistent Activation of Cofilin in Jurkat Cells. Pharmacology 2012, 89, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Chen, J.; Zhou, Z.; Xia, H.; Qiu, M.H.; Chen, C. Cucurbitacin e Induces Cell Cycle G2/M Phase Arrest and Apoptosis in Triple Negative Breast Cancer. PLoS ONE 2014, 9, e103760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duangmano, S.; Sae-lim, P.; Suksamrarn, A.; Domann, F.E.; Patmasiriwat, P. Cucurbitacin B Inhibits Human Breast Cancer Cell Proliferation through Disruption of Microtubule Polymerization and Nucleophosmin/B23 Translocation. BMC Complement. Altern. Med. 2012, 12. [Google Scholar] [CrossRef]
- Aribi, A.; Gery, S.; Lee, D.H.; Thoennissen, N.H.; Thoennissen, G.B.; Alvarez, R.; Ho, Q.; Lee, K.; Doan, N.B.; Chan, K.T.; et al. The Triterpenoid Cucurbitacin B Augments the Antiproliferative Activity of Chemotherapy in Human Breast Cancer. Int. J. Cancer 2013, 132, 2730–2737. [Google Scholar] [CrossRef] [Green Version]
- Alghasham, A.A. Cucurbitacins: A Promising Target for Cancer Therapy. Int. J. Health Sci. 2013, 7, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Win, N.N.; Kodama, T.; Lae, K.Z.W.; Win, Y.Y.; Ngwe, H.; Abe, I.; Morita, H. Bis-Iridoid and Iridoid Glycosides: Viral Protein R Inhibitors from Picrorhiza Kurroa Collected in Myanmar. Fitoterapia 2019, 134, 101–107. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, Y.K.; Singh, S.; Raj, A. Anti-Inflammatory Effect of Picrorhiza Kurroa in Experimental Models of Inflammation. Planta Med. 2016, 82, 1403–1409. [Google Scholar] [CrossRef]
- Usman, M.R.M.; Yamgar, S.; Gadgoli, C.; Salunkhe, D. Preliminary Screening and Antimicrobial Activity of Picrorhiza Kurroa Royle Ethanolic Extracts. Int. J. Pharm. Sci. Rev. Res. 2012, 14, 73–76. [Google Scholar]
- Kumar, P.V.; Sivaraj, A.; Madhumitha, G.; Saral, A.M.; Kumar, B.S. In-Vitro Anti-Bacterial Activities of Picrorhiza Kurroa Rhizome Extract Using Agar Well Diffusion Method. Int. J. Curr. Pharm. Res. 2010, 2, 30–33. [Google Scholar]
- Rathee, D.; Rathee, P.; Rathee, S.; Rathee, D. Phytochemical Screening and Antimicrobial Activity of Picrorrhiza Kurroa, an Indian Traditional Plant Used to Treat Chronic Diarrhea. Arab. J. Chem. 2016, 9, S1307–S1313. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.C. Trease and Evans’ Pharmacognosy: Sixteenth Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2009; ISBN 9780702029332. [Google Scholar]
- Arya, D.; Bhatt, D.; Kumar, R.; Tewari, L.; Kishor, K.; Joshi, G.C. Studies on Natural Resources, Trade and Conservation of Kutki (Picrorhiza Kurroa Royle Ex Benth., Scrophulariaceae) from Kumaun Himalaya. Sci. Res. Essays 2013, 8, 575–580. [Google Scholar]
- Gupta, P.; Tripathi, A.; Agrawal, T.; Narayan, C.; Singh, B.M.; Kumar, M.; Kumar, A. Synergistic Protective Effect of Picrorhiza with Honey in Acetaminophen Induced Hepatic Injury. Indian J. Exp. Biol. 2016, 54, 530–536. [Google Scholar] [PubMed]
- Turaskar, A.; More, S.; Sheikh, R.; Gadhpayle, J.; Bhongade, S.L. Inhibitory Potential of Picrorhiza Kurroa Royle Ex. Benth Extracts on Phenylhydrazine Induced Reticulocytosis in Rats. Asian J. Pharm. Clin. Res. 2013, 6, 212–213. [Google Scholar]
- Gianfaldoni, S.; Wollina, U.; Tirant, M.; Tchernev, G.; Lotti, J.; Satolli, F.; Rovesti, M.; França, K.; Lotti, T. Herbal Compounds for the Treatment of Vitiligo: A Review. Open Access Maced. J. Med. Sci. 2018, 6, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Krishna, A.B.; Manikyam, H.K.; Sharma, V.K.; Sharma, N. Single Dose Oral Toxicity Study of Picrorhiza Kurroa Rhizome Extract in Wistar Rats. Fundam. Toxicol. Sci. 2016, 3, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Rajaprabhu, D.; Rajesh, R.; Jeyakumar, R.; Buddhan, S.; Ganesan, B.; Anandan, R. Protective Effect of Picrorhiza Kurroa on Antioxidant Defense Status in Adriamycin-Induced Cardiomyopathy in Rats. J. Med. Plant Res. 2007, 1, 80–85. [Google Scholar] [CrossRef]
- Mehrotra, R.; Rawat, S.; Kulshreshtha, D.K.; Patnaik, G.K.; Dhawan, B.N. In Vitro Studies on the Effect of Certain Natural Products against Hepatitis B. Virus. Indian J. Med. Res. Sect. B Biomed. Res. Other Than Infect. Dis. 1990, 92, 133–138. [Google Scholar]
- Sane, S.A.; Shakya, N.; Gupta, S. Immunomodulatory Effect of Picroliv on the Efficacy of Paromomycin and Miltefosine in Combination in Experimental Visceral Leishmaniasis. Exp. Parasitol. 2011, 127, 376–381. [Google Scholar] [CrossRef]
- Shubha, K.S.; Sumana, K.; Lakshmidevi, L. Antifungal Activity of Solanum Xantocarpum Sch and Wend and Picrorhiza Kurroa Royle Ex Benth against Some Clinical Dermatophytes. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Joy, K.L.; Kuttan, R. Anti-Diabetic Activity of Picrorrhiza Kurroa Extract. J. Ethnopharmacol. 1999, 67, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Husain, G.M.; Singh, P.N.; Kumar, V. Antidiabetic Activity of Standardized Extract of Picrorhiza Kurroa in Rat Model of NIDDM. Drug Discov. Ther. 2009, 3, 88–92. [Google Scholar] [PubMed]
- Husain, G.M.; Rai, R.; Rai, G.; Singh, H.B.; Thakur, A.K.; Kumar, V. Potential Mechanism of Anti-Diabetic Activity of Picrorhiza Kurroa. TANG [HUMANITAS MEDICINE] 2014, 4, 27.1–27.5. [Google Scholar] [CrossRef] [Green Version]
- Gaddipati, J.P.; Madhavan, S.; Sidhu, G.S.; Singh, A.K.; Seth, P.; Maheshwari, R.K. Picroliv—A Natural Product Protects Cells and Regulates the Gene Expression during Hypoxia/Reoxygenation. Mol. Cell. Biochem. 1999, 194, 271–281. [Google Scholar] [CrossRef]
- Gupta, A.; Khajuria, A.; Singh, J.; Bedi, K.L.; Satti, N.K.; Dutt, P.; Suri, K.A.; Suri, O.P.; Qazi, G.N. Immunomodulatory Activity of Biopolymeric Fraction RLJ-NE-205 from Picrorhiza Kurroa. Int. Immunopharmacol. 2006, 6, 1543–1549. [Google Scholar] [CrossRef]
- Sharma, M.L.; Rao, C.S.; Duda, P.L. Immunostimulatory Activity of Picrorhiza Kurroa Leaf Extract. J. Ethnopharmacol. 1994, 41, 185–192. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Singh, S.; Siddiquei, M.M.; Khan, T.H. Immunomodulatory Effect of Withania Somnifera, Asparagus Racemosus and Picrorhiza Kurroa Roots. Int. J. Pharmacol. 2012, 8, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Mallick, M.N.; Singh, M.; Parveen, R.; Khan, W.; Ahmad, S.; Zeeshan Najm, M.; Husain, S.A. HPTLC Analysis of Bioactivity Guided Anticancer Enriched Fraction of Hydroalcoholic Extract of Picrorhiza Kurroa. Biomed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Rathee, D.; Thanki, M.; Bhuva, S.; Anandjiwala, S.; Agrawal, R. Iridoid Glycosides-Kutkin, Picroside I, and Kutkoside from Picrorrhiza Kurroa Benth Inhibits the Invasion and Migration of MCF-7 Breast Cancer Cells through the down Regulation of Matrix Metalloproteinases. 1st Cancer Update. Arab. J. Chem. 2013, 6, 49–58. [Google Scholar] [CrossRef]
- Harikumar, K.B.; Kuttan, G.; Kuttan, R. Inhibition of Progression of Erythroleukemia Induced by Friend Virus in BALB/c Mice by Natural Products—Berberine, Curcumin and Picroliv. J. Exp. Ther. Oncol. 2008, 7, 275–284. [Google Scholar]
- Rajeshkumar, N.V.; Kuttan, R. Modulation of Carcinogenic Response and Antioxidant Enzymes of Rats Administered with 1,2-Dimethylhydrazine by Picroliv. Cancer Lett. 2003, 191, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Joy, K.L.; Rajeshkumar, N.V.; Kuttan, G.; Kuttan, R. Effect of Picrorrhiza Kurroa Extract on Transplanted Tumours and Chemical Carcinogenesis in Mice. J. Ethnopharmacol. 2000, 71, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Jeena, K.J.; Joy, K.L.; Kuttan, R. Effect of Emblica Officinalis, Phyllanthus Amarus and Picrorrhiza Kurroa on N-Nitrosodiethylamine Induced Hepatocarcinogenesis. Cancer Lett. 1999, 136, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, N.V.; Kuttan, R. Inhibition of N-Nitrosodiethylamine—Induced Hepatocarcinogenesis by Picroliv. J. Exp. Clin. Cancer Res. 2000, 19, 459–465. [Google Scholar] [PubMed]
- Rajeshkumar, N.V.; Kuttan, R. Protective Effect of Picroliv, the Active Constituent of Picrorhiza Kurroa, against Chemical Carcinogenesis in Mice. Teratog. Carcinog. Mutagen. 2001, 21, 303–313. [Google Scholar] [CrossRef]
- Agnivesha Charaka Samhita (Revised by Charaka and Dridhabala) with Commentary of Chakrapanidatta; Acharya, V.J.T. (Ed.) Chaukhambha Sanskrit Sansthan: Varanasi, India, 2001; p. 159. [Google Scholar]
- Pandey, B.L.; Das, P.K. Immunopharmacological Studies on Picrorhiza kurroa Royle-Ex-Benth Part IV: Cellular Mechanisms of Anti-Inflammatory Action. Indian J. Physiol. Pharmacol. 1989, 33, 28–30. [Google Scholar]
- Romero-Daza, N. Traditional Medicine in Africa. Ann. Am. Acad. Pol. Soc. Sci. 2002, 583, 173–176. [Google Scholar] [CrossRef]
- Gogate, V.M. Dravyagunavignyana; Continental Prakashan: Pune, India, 1982. [Google Scholar]
- Raut, A.; Dhami-Shah, H.; Phadke, A.; Shindikar, A.; Udipi, S.; Joshi, J.; Vaidya, R.; Vaidya, A.D.B. Picrorhiza Kurroa, Royle Ex Benth:Traditional Uses, Phytopharmacology, and Translational Potential in Therapy of Fatty Liver Disease. J. Ayurveda Integr. Med. 2022, 100558. [Google Scholar] [CrossRef]
- Harbans, S.; Sharma, Y.K. Clinical Evaluation of the Hepatoprotective Effect of Katuki (Picrorhiza Kurroa Royle Ex Benth.) Processed in Guduchi (Tinospora Cordifolia Wild.) Miers in Patients Receiving Lipid Lowering Drugs (Statins). Indian J. Tradit. Knowl. 2011, 10, 657–660. [Google Scholar]
- Tarapure, S.; Tubaki, B.R.; Khot, S. Elastographic Liver Evaluation of Katukyadi Churna in the Management of Non-Alcoholic Steatohepatitis (NASH)—A Single Arm Clinical Trial. J. Ayurveda Integr. Med. 2021, 12, 136–142. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K.; Ghildiyal, S. Potent Hepatoprotective Phaltrikadi Kwath: A Clinical Study. SM J. Pharmac. Ther. 2015, 1, 105. [Google Scholar]
- Singhal, P.; Nesari, T.; Gupta, G. Efficacy of Herbomineral Compounds and Pathya (Ayurvedic Dietary Regime and Physical Exercise) in the Management of Yakṛt Roga (Non-Alcoholic Fatty Liver Disease). Anc. Sci. Life 2015, 34, 216. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Vyas, M.; Dave, A. A Comparative Clinical Study of Shatapatrayadi Churna Tablet and Patoladi Yoga in the Management of Amlapitta. AYU (An Int. Q. J. Res. Ayurveda) 2011, 32, 361. [Google Scholar] [CrossRef] [PubMed]
- Bedi, K.L.; Zutshi, U.; Chopra, C.L.; Amla, V. Picrorhiza Kurroa, an Ayurvedic Herb, May Potentiate Photochemotherapy in Vitiligo. J. Ethnopharmacol. 1989, 27, 347–352. [Google Scholar] [CrossRef]
- Vaidya, A.B. Picrorhiza Kurroa (Kutaki) Royle Ex. Benth as a Hepatoprotective Agent—Experimental & Clinical Studies. J. Postgrad. Med. 1996, 42, 105–108. [Google Scholar] [PubMed]
- Antarkar, D.S.; Vaidya, A.B.; Doshi, J.C.; Athavale, A.V.; Vinchoo, K.S.; Natekar, M.R.; Tathed, P.S.; Ramesh, V.; Kale, N. A Double-Blind Clinical Trial of Arogya-Wardhani-an Ayurvedic Drug-in Acute Viral Hepatitis. Indian J. Med. Res. 1980, 72, 588–593. [Google Scholar]
- Antarkar, D.S.; Tathed, P.S.; Vaidya, A.B. A Pilot Phase II Trial with Arogya-Wardhani and Punarnavadi-Kwath in Viral Hepatitis. Panminerva Med. 1978, 20, 157–160. [Google Scholar]
- Hussain, A.; Wahab, S.; Zarin, I.; Hussain, M.D.S. Antibacterial Activity of the Leaves of Coccinia Indica (W. and A) Wof India. Biol. Res. 2010, 4, 241–248. [Google Scholar]
- Ahmad, I.; Wahab, S.; Nisar, N.; Dera, A.A.; Alshahrani, M.Y.; Abullias, S.S.; Irfan, S.; Alam, M.M.; Srivastava, S. Evaluation of Antibacterial Properties of Matricaria Aurea on Clinical Isolates of Periodontitis Patients with Special Reference to Red Complex Bacteria. Saudi Pharm. J. 2020, 28, 1203–1209. [Google Scholar] [CrossRef]
- Wahab, S.; Ahmad, I.; Irfan, S.; Baig, M.H.; Farouk, A.-E.; Dong, J.-J. Use of Natural Compounds as a Potential Therapeutic Agent Against COVID-19. Curr. Pharm. Des. 2021, 27, 1144–1152. [Google Scholar] [CrossRef]
- Alsayari, A.; Wahab, S. Genus Ziziphus for the Treatment of Chronic Inflammatory Diseases. Saudi J. Biol. Sci. 2021, 28, 6897–6914. [Google Scholar] [CrossRef] [PubMed]
- Alsayari, A.; Bin Muhsinah, A.; Almaghaslah, D.; Annadurai, S.; Wahab, S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021, 26, 4095. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.P.; Hussain, A.; Siddiqui, H.H.; Wahab, S.; Adak, M. Effect of Methanolic Extract of Asparagus Racemosus Willd. On Lipopolysaccharide Induced-Oxidative Stress in Rats. Pak. J. Pharm. Sci. 2015, 28, 509–513. [Google Scholar] [PubMed]
- Sharma, S.K.; Kumar, N. Antimicrobial Screening of Picrorhiza Kurroa Royle Ex Benth Rhizome. Int. J. Curr. Pharm. Rev. Res. 2012, 3, 60–65. [Google Scholar]
- Laxmi, V.; Preeti, C. Antimicrobial Activity of Dried Stolon Extracts of Picrorhiza Kurroa Royle Ex Benth—An Endemic and Endangered Himalayan Herb. ENVIS Cent. Himal. Ecol. 2015, 23, 127–132. [Google Scholar]
- Vasudevan, R.; Kandasamy, G.; Almaghaslah, D.; Almanasef, M.; Alqahatani, A.; Aldahish, A.; Venkatesan, K.; Paulsamy, P.; Maheswari, C.; Wahab, S. Alleviation of Neuropathic Pain by Trazodone in Rats. Brazilian J. Pharm. Sci. 2022, 58. [Google Scholar] [CrossRef]
- Engels, F.; Renirie, B.F.; Hart, B.A.; Labadie, R.P.; Nijkamp, F.P. Effects of Apocynin, a Drug Isolated from the Roots of Picrorhiza Kurroa, on Arachidonic Acid Metabolism. FEBS Lett. 1992, 305, 254–256. [Google Scholar] [CrossRef] [Green Version]
- Amir, M.; Ahmad, W.; Sarafroz, M.; Ahmad, A.; Ali, A.; Ansari, M.A.; Thiruvengadam, M.; Wahab, S.; Ashraf, K.; Barkat, M.A.; et al. Hepatoprotective Effect of a Polyherbal Formulation (Aab-e-Murawaqain) against CCl4 Induced Liver Toxicity in Wistar Albino Rat Model by Suppressing Proinflammatory Cytokines. S. Afr. J. Bot. 2021. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.M. Iridoid Glycosides Fraction of Folium Syringae Leaves Modulates NF-ΚB Signal Pathway and Intestinal Epithelial Cells Apoptosis in Experimental Colitis. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Skrzydlewska, E. Protection Against Cyclophosphamide-Induced Renal Oxidative Stress by Amifostine: The Role of Antioxidative Mechanisms. Toxicol. Mech. Methods 2003, 13, 301–308. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, P.; Kulurkar, P.; Singh, D.; Kumar, D.; Patial, V. Iridoid Glycosides Fraction from Picrorhiza Kurroa Attenuates Cyclophosphamide-Induced Renal Toxicity and Peripheral Neuropathy via PPAR-γ Mediated Inhibition of Inflammation and Apoptosis. Phytomedicine 2017, 36, 108–117. [Google Scholar] [CrossRef]
- Kiss, E.; Popovic, Z.V.; Bedke, J.; Adams, J.; Bonrouhi, M.; Babelova, A.; Schmidt, C.; Edenhofer, F.; Zschiedrich, I.; Domhan, S.; et al. Peroxisome Proliferator-Activated Receptor (PPAR)γ Can Inhibit Chronic Renal Allograft Damage. Am. J. Pathol. 2010, 176, 2150–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheldof, N.; Engeseth, N.J. Antioxidant Capacity of Honeys from Various Floral Sources Based on the Determination of Oxygen Radical Absorbance Capacity and Inhibition of in Vitro Lipoprotein Oxidation in Human Serum Samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef]
- Kumar, R.; Usmani, S.; Kamal, M.; Singh, B.; Prakash, O.; Wahab, S.; Fahad, M. Pharmaco-Characterization, Antioxidant, and Cytotoxic Activity of Caesalpinia Crista Linn. and Its Role in Prevention of Cell Proliferation in MG-63 Osteosarcoma Cell Lines. Lat. Am. J. Pharm. 2022, 41, 580–588. [Google Scholar]
- Rajagopalan, P.; Wahab, S.; Dera, A.; Chandramoorthy, H.; Irfan, S.; Patel, A.; Abullias, S.; Zaman, G.; Ahmad, I. Anti-Cancer Activity of Ethanolic Leaf Extract of Salvia Officinalis against Oral Squamous Carcinoma Cells in Vitro via Caspase Mediated Mitochondrial Apoptosis. Pharmacogn. Mag. 2020, 16, 554. [Google Scholar] [CrossRef]
- Ray, A.; Chaudhuri, S.R.; Majumdar, B.; Bandyopadhyay, S.K. Antioxidant Activity of Ethanol Extract of Rhizome of Picrorhiza Kurroa on Indomethacin Induced Gastric Ulcer during Healing. Indian J. Clin. Biochem. 2002, 17, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, A.; Izzo, A.A.; Cardile, V.; Borrelli, F.; Vanella, A. Indian Medicinal Plants as Antiradicals and DNA Cleavage Protectors. Phytomedicine 2001, 8, 125–132. [Google Scholar] [CrossRef]
- Kant, K.; Walia, M.; Agnihotri, V.K.; Pathania, V.; Singh, B. Evaluation of Antioxidant Activity of Picrorhiza Kurroa (Leaves) Extracts. Indian J. Pharm. Sci. 2013, 75, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.S.; Pandey, M.M.; Srivastava, S.; Rawat, A. TLC Densitometric Quantification of Picrosides (Picroside-I and Picroside-II) in Picrorhiza Kurroa and Its Substitute Picrorhiza Scrophulariiflora and Their Antioxidant Studies. Biomed. Chromatogr. 2012, 26, 61–68. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, E.K.; Lee, S.J.; Jeon, Y.J.; Moon, S.H.; Lee, C.H.; Jeon, B.T.; Park, I.S.; Park, T.K.; Kim, B.; et al. ESR Spectroscopy Investigation of Antioxidant Activity and Protective Effect on Hydroxyl Radical-Induced DNA Damage of Enzymatic Extracts from Picrorrhiza Kurroa. J. Food Biochem. 2008, 32, 708–724. [Google Scholar] [CrossRef]
- Mohamed Saleem, T.S.; Madhusudhana Chetty, C.; Ramkanth, S.; Rajan, V.S.T.; Mahesh Kumar, K.; Gauthaman, K. Hepatoprotective Herbs—A Review. Int. J. Res. Pharm. Sci. 2010, 1, 1–5. [Google Scholar]
- Rastogi, R.; Srivastava, A.K.; Rastogi, A.K. Long Term Effect of Aflatoxin B1 on Lipid Peroxidation in Rat Liver and Kidney: Effect of Picroliv and Silymarin. Phyther. Res. 2001, 15, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.; Srivastava, A.K.; Rastogi, A.K. Biochemical Changes Induced in Liver and Serum of Aflatoxin B1-Treated Male Wistar Rats: Preventive Effect of Picroliv. Pharmacol. Toxicol. 2001, 88, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.; Srivastava, A.K.; Srivastava, M.; Rastogi, A.K. Hepatocurative Effect of Picroliv and Silymarin against Aflatoxin B1 Induced Hepatotoxicity in Rats. Planta Med. 2000, 66, 709–713. [Google Scholar] [CrossRef]
- Hegde, K.; Mathew, N.; Shivashankara, A.R.; Prabhu, A.N.; Baliga, M.S. Hepatoprotective Effects of Picroliv: The Ethanolic Extract Fraction of the Endangered Indian Medicinal Plant Picrorhiza Kurroa Royle Ex. Benth. In Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 685–695. ISBN 9780123971548. [Google Scholar]
- Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Sumaya-Martínez, M.T.; Gutiérrez-Salinas, J.; Bautista, M.; Morales-González, Á.; García-Luna y González-Rubio, M.; Aguilar-Faisal, J.L.; Morales-González, J.A. Review of Natural Products with Hepatoprotective Effects. World J. Gastroenterol. 2014, 20, 14787. [Google Scholar] [CrossRef]
- Vaidya, A.B.; Bhatia, C.K.; Mehta, J.M.; Sheth, U.K. Therapeutic Potential of Luffa Echinata (Roxb) in Viral Hepatitis. Indian J. Pharmacol. 1976, 8, 245. [Google Scholar]
- Jeyakumar, R.; Rajesh, R.; Meena, B.; Rajaprabhu, D.; Ganesan, B.; Buddhan, S.; Anandan, R. Antihepatotoxic Effect of Picrorhiza Kurroa on Mitochondrial Defense System in Antitubercular Drugs (Isoniazid and Rifampicin)-Induced Hepatitis in Rats. J. Med. Plants Res. 2008, 2, 17–19. [Google Scholar]
- Chander, R.; Singh, K.; Visen, P.K.S.; Kapoor, N.K.; Dhawan, B.N. Picroliv Prevents Oxidation in Serum Lipoprotein Lipids of Mastomys Coucha Infected with Plasmodium Berghei. Indian J. Exp. Biol. 1998, 36, 371–374. [Google Scholar]
- Chander, R.; Kapoor, N.K.; Dhawan, B.N. Picroliv, Picroside-I and Kutkoside from Picrorhiza Kurrooa Are Scavengers of Superoxide Anions. Biochem. Pharmacol. 1992, 44, 180–183. [Google Scholar] [CrossRef]
- Hussain, A.; Shadma, W.; Maksood, A.; Ansari, S.H. Protective Effects of Picrorhiza Kurroa on Cyclophosphamide-Induced Immunosuppression in Mice. Pharmacogn. Res. 2013, 5, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Yadav, N.; Khandelwal, S. Effect of Picroliv on Cadmium-Induced Hepatic and Renal Damage in the Rat. Hum. Exp. Toxicol. 2006, 25, 581–591. [Google Scholar] [CrossRef]
- Soren, P.; Sharma, R.; Mal, G.; Singh, B.; Kumar, P.; Patil, R.D.; Singh, B. Hepatoprotective Activity of Picrorhiza Kurroa and Berberis Lycium Is Mediated by Inhibition of COX-2 and TGF-β Expression in Lantadenes-Induced sub-chronic toxicity in guinea pigs. Phytomed. Plus 2022, 2, 100288. [Google Scholar] [CrossRef]
- Visen, P.K.S.; Saraswat, B.; Patnaik, G.K.; Agarwal, D.P.; Dhawan, B.N. Protective Activity of Picroliv Isolated from Picrorhiza Kurrooa against Ethanol Toxicity in Isolated Rat Hepatocytes. Indian J. Pharmacol. 1996, 28, 98–101. [Google Scholar]
- Saraswat, B.; Visen, P.K.S.; Patnaik, G.K.; Dhawan, B.N. Ex Vivo and in Vivo Investigations of Picroliv from Picrorhiza Kurroa in an Alcohol Intoxication Model in Rats. J. Ethnopharmacol. 1999, 66, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Shukla, S.K. Hepatoprotective Efficacy of Picrorhiza Kurroa in Experimentally Induced Hepatotoxicity in Cockerels. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2614–2622. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Tiwari, V.; Jain, A.; Ghoshal, S. Protective Activity of Picroliv on Hepatic Amoebiasis Associated with Carbon Tetrachloride Toxicity. Indian J. Med. Res. 2005, 121, 676–682. [Google Scholar] [PubMed]
- Chakraborty, A.; Mandal, T.; Roy, S.; Bhar, M.; Das, S. Hepatoprotective Effect of Enliv ® on Paracetamol-Induced Liver Damage in Broiler Chicks. Indian J. Pharmacol. 2005, 37, 257. [Google Scholar] [CrossRef]
- Khalid, M.; Alqarni, M.H.; Alsayari, A.; Foudah, A.I.; Aljarba, T.M.; Mukim, M.; Alamri, M.A.; Abullais, S.S.; Wahab, S. Anti-Diabetic Activity of Bioactive Compound Extracted from Spondias Mangifera Fruit: In-Vitro and Molecular Docking Approaches. Plants 2022, 11, 562. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Amir, M.; Ahmad, A.; Ali, A.; Ali, A.; Wahab, S.; Barkat, H.A.; Ansari, M.A.; Sarafroz, M.; Ahmad, A.; et al. Aegle Marmelos Leaf Extract Phytochemical Analysis, Cytotoxicity, in Vitro Antioxidant and Antidiabetic Activities. Plants 2021, 10, 2573. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Tokár, M.; Mocko, K.; Bojnanska, T.; Mareček, J.; Mendelová, A. Antioxidant activity of selected plant products. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 1692–1703. [Google Scholar]
- Land, E.T. Free Radicals in Biology and Medicine. Int. J. Radiat. Biol. 1990, 58, 725. [Google Scholar] [CrossRef]
- Kumar, S.; Patial, V.; Soni, S.; Sharma, S.; Pratap, K.; Kumar, D.; Padwad, Y. Picrorhiza Kurroa Enhances β-Cell Mass Proliferation and Insulin Secretion in Streptozotocin Evoked β-Cell Damage in Rats. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA. Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Alshahrani, M.Y.; Ahmad, M.F.; Abbas, H. Current Trends and Future Perspectives of Nanomedicine for the Management of Colon Cancer. Eur. J. Pharmacol. 2021, 910. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.; Hussain, A.; Farooqui, A.H.A.; Arshad, M.; Siddiqui, S.; Ahmad, M.; Wahab, S. Anti-Proliferative Activity of Crude Extract and Fractions Obtained from Digera Muricata on HeLa Cell Lines of Human Cervix and A549 Cell Lines of Human Lung. Pharmacogn. J. 2014, 6, 32–38. [Google Scholar] [CrossRef]
- Zargan, J.; Sajad, M.; Umar, S.; Naime, M.; Ali, S.; Khan, H.A. Scorpion (Androctonus Crassicauda) Venom Limits Growth of Transformed Cells (SH-SY5Y and MCF-7) by Cytotoxicity and Cell Cycle Arrest. Exp. Mol. Pathol. 2011, 91, 447–454. [Google Scholar] [CrossRef]
- Alshahrani, M.Y.; Rafi, Z.; Alabdallah, N.M.; Shoaib, A.; Ahmad, I.; Asiri, M.; Zaman, G.S.; Wahab, S.; Saeed, M.; Khan, S. A Comparative Antibacterial, Antioxidant, and Antineoplastic Potential of Rauwolfia Serpentina (L.) Leaf Extract with Its Biologically Synthesized Gold Nanoparticles (r-Aunps). Plants 2021, 10, 2278. [Google Scholar] [CrossRef]
- Hani, U.; Yasmin Begum, M.; Wahab, S.; Siddiqua, A.; Osmani, R.A.M.; Rahmathulla, M. A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. J. Pharm. Innov. 2021. [Google Scholar] [CrossRef]
- Boykin, C.; Zhang, G.; Chen, Y.H.; Zhang, R.W.; Fan, X.E.; Yang, W.M.; Lu, Q. Cucurbitacin IIa: A Novel Class of Anti-Cancer Drug Inducing Non-Reversible Actin Aggregation and Inhibiting Survivin Independent of JAK2/STAT3 Phosphorylation. Br. J. Cancer 2011, 104, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, N.; Pratima, T.; Ashwini, W. Isolation of a Cucurbitacin from Picrorhiza Kurroa by Column Chromatography and Its Characterization. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 149–156. [Google Scholar]
- Bigoniya, P.; Warathe, A.; Singh, C. Protective Action of Picroliv Isolated from Picrorhiza Kurroa against Radiation Clastogenecity on Mice and Cyclophosphamide-Induced Cytotoxicity in Allium Cepa Root. J. Radiat. Cancer Res. 2019, 10, 58. [Google Scholar] [CrossRef]
- Lou, C.; Zhu, Z.; Xu, X.; Zhu, R.; Sheng, Y.; Zhao, H. Picroside II, an Iridoid Glycoside from Picrorhiza Kurroa, Suppresses Tumor Migration, Invasion, and Angiogenesis in Vitro and in Vivo. Biomed. Pharmacother. 2019, 120, 109494. [Google Scholar] [CrossRef]
- Schulze-Koops, H.; Burkhardt, H.; Kalden, J.R. What We Have Learned from Trials of Immunomodulatory Agents in Rheumatoid Arthritis: Future Directions. Drugs Today 1999, 35, 327–351. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Hussain, A.; Ahmad, P.; Usmani, S. Ethanobotanical, Pharmacognostical and Physico-Chemical Studies of Stem Bark of Bombax Ceiba L., Commonly Growing in Eastern Uttar Pradesh Region of India. Pharmacogn. J. 2012, 4, 55–60. [Google Scholar] [CrossRef]
- Jandú, J.J.B.; Moraes Neto, R.N.; Zagmignan, A.; de Sousa, E.M.; Brelaz-de-Castro, M.C.A.; dos Santos Correia, M.T.; da Silva, L.C.N. Targeting the Immune System with Plant Lectins to Combat Microbial Infections. Front. Pharmacol. 2017, 8, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziauddin, M.; Phansalkar, N.; Patki, P.; Diwanay, S.; Patwardhan, B. Studies on the Immunomodulatory Effects of Ashwagandha. J. Ethnopharmacol. 1996, 50, 69–76. [Google Scholar] [CrossRef]
- Wahab, S.; Hussain, A. Cytokines as Targets for Immunomodulation. Int. J. Pharm. Pharm. Sci. 2013, 5, 60–64. [Google Scholar]
- Nair, A.; Chattopadhyay, D.; Saha, B. Plant-Derived Immunomodulators. In New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads; Academic Press: Cambridge, MA, USA, 2018; ISBN 9780128146200. [Google Scholar]
- Hawkins, C.; Hanks, G.W. The Gastroduodenal Toxicity of Nonsteroidal Anti-Inflammatory Drugs. A Review of the Literature. J. Pain Symptom Manag. 2000, 20, 140–151. [Google Scholar] [CrossRef]
- Hussain, A.; Wahab, S.; Rizvi, A.; Hussain, M.S. Macroscopical, Anatomical and Physico-Chemical Studies on Leaves of Coccinia Indica Wight & Arn., Growing Wildly in Eastern Uttar Pradesh Region of India. Indian J. Nat. Prod. Resour. 2011, 2, 74–80. [Google Scholar]
- Chevallier, A. The Encyclopedia of Medicinal Plants. Choice Rev. Online 1997, 34, 34–3624. [Google Scholar] [CrossRef]
- Shukla, B.; Visen, P.K.S.; Patnaik, G.K.; Dhawan, B.N. Choleretic Effect of Picroliv, the Hepatoprotective Principle of Picrorhiza Kurroa. Planta Med. 1991, 57, 29–33. [Google Scholar] [CrossRef]
- Banerjee, D.; Maity, B.; Nag, S.K.; Bandyopadhyay, S.K.; Chattopadhyay, S. Healing Potential of Picrorhiza Kurroa (Scrofulariaceae) Rhizomes against Indomethacin-Induced Gastric Ulceration: A Mechanistic Exploration. BMC Complement. Altern. Med. 2008, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Anandan, R.; Deepa Rekha, R.; Saravanan, N.; Devaki, T. Protective Effects of Picrorrhiza Kurroa against HCl/Ethanol-Induced Ulceration in Rats. Fitoterapia 1999, 70, 498–501. [Google Scholar] [CrossRef]
- Monograph: Picrorhiza Kurroa. Altern. Med. Rev. 2001, 6, 319–321.
- Nandave, M.; Ojha, S.K.; Kumari, S.; Nag, T.C.; Mehra, R.; Narang, R.; Arya, D.S. Cardioprotective Effect of Root Extract of Picrorhiza Kurroa (Royle Ex Benth) against Isoproterenol-Induced Cardiotoxicity in Rats. Indian J. Exp. Biol. 2013, 51, 694–701. [Google Scholar] [PubMed]
- Hari Senthil Kumar, S.; Anandan, R.; Devaki, T.; Santhosh Kumar, M. Cardioprotective Effects of Picrorrhiza Kurroa against Isoproterenol-Induced Myocardial Stress in Rats. Fitoterapia 2001, 72, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Cholesterol and Coronary Heart Disease: A New Era. JAMA J. Am. Med. Assoc. 1986, 256, 2849–2858. [Google Scholar] [CrossRef]
- Tan, B.K.H.; Tan, C.H.; Pushparaj, P.N. Anti-Diabetic Activity of the Semi-Purified Fractions of Averrhoa Bilimbi in High Fat Diet Fed-Streptozotocin-Induced Diabetic Rats. Life Sci. 2005, 76, 2827–2839. [Google Scholar] [CrossRef]
- El-Saadany, S.S.; El-Massry, R.A.; Labib, S.M.; Sitohy, M.Z.; El-Saadany, S.S.; El-Massry, R.A.; Labib, S.M.; Sitohy, M.Z. The Biochemical Role and Hypocholesterolaemic Potential of the Legume Cassia Fistula in Hypercholesterolaemic Rats. Food/Nahrung 1991, 35, 807–815. [Google Scholar] [CrossRef]
- Lee, H.S.; Yoo, C.B.; Ku, S.K. Hypolipemic Effect of Water Extracts of Picrorrhiza Kurroa in High Fat Diet Treated Mouse. Fitoterapia 2006, 77, 579–584. [Google Scholar] [CrossRef]
- Lee, H.S.; Ahn, H.C.; Ku, S.K. Hypolipemic Effect of Water Extracts of Picrorrhiza Rhizoma in PX-407 Induced Hyperlipemic ICR Mouse Model with Hepatoprotective Effects: A Prevention Study. J. Ethnopharmacol. 2006, 105, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Patel, D.K. Anti-Inflammatory Activity of Bavachinin against Various Forms of Inflammatory Disorders Including Asthmatic Inflammation: Importance of Natural Medicine in the Current Scientific Research. Bone Rep. 2021, 14, 100942. [Google Scholar] [CrossRef]
- Barnes, P.J. Immunology of Asthma and Chronic Obstructive Pulmonary Disease. Nat. Rev. Immunol. 2008, 8, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, W.; Stuppner, H.; Wagner, H.; Gropp, M.; Demoulin, S.; Demoulinc, S. Antiasthmatic Effects of Picrorhiza Kurroa: Androsin Prevents Allergen- and Paf-Induced Bronchial Obstruction in Guinea Pigs. Int. Arch. Allergy Immunol. 1991, 95, 128–133. [Google Scholar] [CrossRef]
- Baruah, C.C.; Gupta, P.P.; Nath, A.; Patnaik, L.G.K.; Dhawan, B.N. Anti-Allergic and Anti-Anaphylactic Activity of Picroliv—A Standardised Iridoid Glycoside Fraction of Picrorhiza Kurroa. Pharmacol. Res. 1998, 38, 487–492. [Google Scholar] [CrossRef]
- KATUKI (PICRORHIZA)|#healthywealthylife|#VedaLifeSciences. Available online: https://www.vedalifesciences.com/blogdetail/KATUKI_(PICRORHIZA)?bid=d2ddea18f00665ce8623e36bd4e3c7c5 (accessed on 10 June 2022).
- Balkrishna, A.; Manikyam, H.K.; Sharma, V.K.; Sharma, N. Safety Evaluation of Picrorhiza Kurroa Rhizome Extract by Bacterial Reverse Mutation Test. Adv. Stud. Biol. 2016, 8, 127–140. [Google Scholar] [CrossRef]
Kingdom | Plantae |
Subkingdom | Tracheobionta |
Super-division | Spermatophyta |
Division | Magnoliophyta |
Class | Mannoliopsida |
Subclass | Asteridae |
Order | Lamiales |
Old Family | Scrophulariaceae |
New Family | Plantaginaceae |
Genus | Picrorhiza |
Species | P. kurroa |
Pharmacological Activity | Action | Concentration | Study Model | Reference |
---|---|---|---|---|
Cytoprotection | Suppression of adriamycin-stimulated cardiomyopathy | 50 mg/kg body weight | Rats | [82] |
Anti-HBsAg activity | Hepatoprotective | - | Serum | [83] |
Anti-anaphylaxis | Inhibition of passive cutaneous anaphylaxis | 25 mg/kg p.o. | Mice/Rats/Guinea pig | [84] |
Antileishmanial | Improved lymphocyte proliferation and antileishmanial efficacy | 20–5 mg/kg dose for 12 days and 10 mg/kg for further experiments | Leishmania donovani/hamster | [84] |
Antifungal Activity | Inhibition of the dermatophytic fungi | 5% and 10% alcoholic solvent extracts of root and rhizome | Solidified agar plates | [85] |
Anti-diabetic | lower blood glucose levels in basal requirements and a heavy glucose load level. | 75 mg/kg extract of the body weight | Rats | [86] |
Anti-diabetic | Non-diabetic normal rats were also subjected to an oral glucose tolerance test. | 100 mg/kg–200 mg/kg, p.o | Rats | [87] |
Anti-diabetic | GLUT-4 concentration over the whole of the soleus muscle’s membrane fractions | 100 mg/kg/day–200 mg/kg/day | Rats | [88] |
Anticancer | Protection against hypoxic injury | - | Hep3B and glioma cells | [89] |
Immunomodulatory | Enhance levels of cytokines (IFN-γ and IL-4) and the lymphocytes’ proliferation | 12.5 mg/kg, 25 mg/kg, and 50 mg/kg body weight for 14 days | Balb/c mice | [90] |
Immunomodulatory | Enhances the cell-mediated and humoral immune components | - | Mice and rats | [91] |
Immunomodulatory | Hypersensitivity reaction | 100 mg/kg of body weight | albino mice | [92] |
Anticancer | Highest cytotoxicity | 50 mg/kg for ten days | EAC (Ehrlich ascites carcinoma tumor-bearing mice | [93] |
Anticancer | Induction of cell toxicity and decrease in matrix metalloproteinases 1 and 13; 2 and 9. | 50 μg/mL and 100 μg/mL | MCF-7 cell lines (Human breast cancer) | [94] |
Antioxidant and anti-neoplastic | DPPH radical dot and radical dotOH, ferric reducing antioxidant activity, and thiobarbituric acid assay for testing suppression of lipid peroxidation | - | Hep3B, PC-3, MDA-MB-435S | [57] |
Anticancer | FMuLv induced erythroleukemia | - | BALB/c mice | [95] |
Anticancer | DMH-induced hepatic carcinogenic response | 40 and 200 mg/kg | Rats | [96] |
Antitumor and anti-carcinogenic | Yeast topoisomerase I and II enzyme | 250 μg/mL | The span of ascites tumor bearing mice | [97] |
Anticarcinogenic | Serum and tissues of tumor-bearing animals | 150 mg/kg–750 mg/kg body weight | Rats | [98] |
Anticancer | Hepatocarcinogenesis induced by N-Nitrosodiethylamine | 200 mg/Kg body weight | Rats | [99] |
Anticancer | 20-methylchlanthrene- induced sarcoma model and 7,12-dimethylbenz[a]anthracene-initiated papilloma formation | 100 mg/kg–200 mg/kg, p.o | BALB/c mice | [100] |
Hepatoprotective | Prevention of biochemical changes in the liver and serum of galactosamine-intoxicated | 12 mg/kg/day for 7 days | Rats | [16] |
Formulation | Study Design | Duration of the Study | Participants | Dose | Adverse Effect | Activity | Reference |
---|---|---|---|---|---|---|---|
Kutaki processed in Guduchi with Atorvastatin | Open Label | 3 months | 32 | Atorvastatin 20 mg twice daily + 2 gm Katukai (P. Kurroa) processed in Guduchi twice daily | No adverse effect | Hepatoprotective | [106] |
Elastographic liver evaluation of Katukyadi churna in the management of Non-Alcoholic Steatohepatitis (NASH) | A single-arm clinical trial | 180 | 11 | 6 gm (Sachets) twice a day with water twice a day with water, Katukyadichurna comprises 1 part each of Katuki þ Nimba þ Amrita þ Bhringaraj þ Bhumyamalki | Two patients suffered from loose stools 2–3 times/day for the first 8 days. | NASH | [107] |
Phalatrikadi Kwath | Open Label | 6 months | 59 | 40 mL × 2 | No adverse effect | HbsAg + ve | [108] |
Arogyavardhini and Triphala Guggulu and Pathya | Two arms | 3 months | 21 | 250 mg × 2 | No adverse effect | Non-Alcoholic Fatty Liver Disease | [109] |
Kutaki with Sita | Two arms | 3 weeks | 30 (Divided into two groups of 15) | 0 ne gm × 2 | No adverse effect | Amlapitta | [110] |
Kutaki+ Methoxasalen | Oral and Topical | 3 months | 30 | 200 mg × 2 20 mg once | No adverse effect | Vitiligo | [111] |
Kutaki | Double Blind | 2 weeks | 15 | 375 mg × 3 | No adverse effect | Acute Viral Hepatitis | [112] |
Arogyavardhini | Double Blind | 2 weeks | 20 | 750 mg × 3 | No adverse effect | Acute Viral Hepatitis | [113] |
Arogyavardhini and Punarnavadi | Open label | 3 weeks | 24 | 500 mg × 3 and 30 mL × 2 | No adverse effect | Acute Viral Hepatitis | [114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeleebia, T.M.; Alsayari, A.; Wahab, S. Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review. Molecules 2022, 27, 8316. https://doi.org/10.3390/molecules27238316
Almeleebia TM, Alsayari A, Wahab S. Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review. Molecules. 2022; 27(23):8316. https://doi.org/10.3390/molecules27238316
Chicago/Turabian StyleAlmeleebia, Tahani M., Abdulrhman Alsayari, and Shadma Wahab. 2022. "Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review" Molecules 27, no. 23: 8316. https://doi.org/10.3390/molecules27238316
APA StyleAlmeleebia, T. M., Alsayari, A., & Wahab, S. (2022). Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review. Molecules, 27(23), 8316. https://doi.org/10.3390/molecules27238316