Abnormalities of the Halogen Bonds in the Complexes between Y2CTe (Y = H, F, CH3) and XF (X = F, Cl, Br, I)
Abstract
:1. Introduction
2. Results
2.1. Molecular Electrostatic Potential (MEP) Analyses
2.2. Geometries
2.3. Energies
2.4. Atoms in Molecules (AIM) Analyses
2.5. Natural Bond Orbital (NBO) Analyses
3. Discussion
4. Computational Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Politzer, P.; Murray, J.S. Halogen Bonding: An Interim Discussion. ChemPhysChem 2013, 14, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen Bonding: The Sigma-Hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef]
- Bertani, R.; Metrangolo, P.; Moiana, A.; Perez, E.; Pilati, T.; Resnati, G.; Rico-Lattes, I.; Sassi, A. Supramolecular Route to Fluorinated Coatings: Self-Assembly Between Poly(4-vinylpyridines) and Haloperfluorocarbons. Adv. Mater. 2002, 14, 1197–1201. [Google Scholar] [CrossRef]
- Fourmigue, M.; Batail, P. Activation of Hydrogen- and Halogen-Bonding Interactions in Tetrathiafulvalene-Based Crystalline Molecular Conductors. Chem. Rev. 2004, 104, 5379–5418. [Google Scholar] [CrossRef]
- Jungbauer, S.H.; Walter, S.M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S.M. Activation of a Carbonyl Compound by Halogen Bonding. Chem. Commun. 2014, 50, 6281–6284. [Google Scholar] [CrossRef] [PubMed]
- Libri, S.; Jasim, N.A.; Perutz, R.N.; Brammer, L. Metal Fluorides Form Strong Hydrogen Bonds and Halogen Bonds: Measuring Interaction Enthalpies and Entropies in Solution. J. Am. Chem. Soc. 2008, 130, 7842–7844. [Google Scholar] [CrossRef]
- Mele, A.; Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. A Halogen-Bonding-Based Heteroditopic Receptor for Alkali Metal Halides. J. Am. Chem. Soc. 2005, 127, 14972–14973. [Google Scholar] [CrossRef]
- Adler, M.; Kochanny, M.J.; Ye, B.; Rumennik, G.; Light, D.R.; Biancalana, S.; Whitlow, M. Crystal Structures of Two Potent Nonamidine Inhibitors Bound to Factor Xa. Biochemistry 2002, 41, 15514–15523. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zhu, W. Nonbonding Interactions of Organic Halogens in Biological Systems: Implications for Drug Discovery and Biomolecular Design. Phys. Chem. Chem. Phys. 2010, 12, 4543–4551. [Google Scholar] [CrossRef]
- Matter, H.; Nazaré, M.; Güssregen, S.; Will, D.W.; Schreuder, H.; Bauer, A.; Urmann, M.; Ritter, K.; Wagner, M.; Wehner, V. Evidence for C−Cl/C−Br∙∙∙π Interactions as an Important Contribution to Protein–Ligand Binding Affinity. Angew. Chem. Int. Ed. 2009, 48, 2911–2916. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [PubMed] [Green Version]
- Erdelyi, M. Halogen Bonding in Solution. Chem. Soc. Rev. 2012, 41, 3547–3557. [Google Scholar] [CrossRef] [PubMed]
- Dipaolo, T.; Sandorfy, C. On the Biological Importance of the Hydrogen Bond Breaking Potency of Fluorocarbons. Chem. Phys. Lett. 1974, 26, 466–473. [Google Scholar] [CrossRef]
- Lu, Y.; Li, H.; Zhu, X.; Zhu, W.; Liu, H. How Does Halogen Bonding Behave in Solution? A Theoretical Study Using Implicit Solvation Model. J. Phys. Chem. A 2011, 115, 4467–4475. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An Electrostatically-Driven Highly Directional Noncovalent Interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef]
- Fourmigue, M. Halogen Bonding: Recent Advances. Curr. Opin. Solid. St. M. 2009, 13, 36–45. [Google Scholar] [CrossRef]
- Tepper, R.; Schubert, U.S. Halogen Bonding in Solution: Anion Recognition, Templated Self-Assembly, and Organocatalysis. Angew. Chem. Int. Ed. 2018, 57, 6004–6016. [Google Scholar] [CrossRef]
- Li, Q.Z.; Xu, X.S.; Liu, T.; Jing, B.; Li, W.Z.; Cheng, J.B.; Gong, B.A.; Sun, J.Z. Competition Between Hydrogen Bond and Halogen bond in Complexes of Formaldehyde with Hypohalous Acids. Phys. Chem. Chem. Phys. 2010, 12, 6837–6843. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Lane, P. σ-Hole Bonding and Hydrogen Bonding: Competitive Interactions. Int. J. Quantum Chem. 2007, 107, 3046–3052. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Fasulo, M.; Schultheiss, N.; Desper, J.; Moore, C. Structural Competition between Hydrogen Bonds and Halogen Bonds. J. Am. Chem. Soc. 2007, 129, 13772–13773. [Google Scholar] [CrossRef] [PubMed]
- Nagels, N.; Geboes, Y.; Pinter, B.; De Proft, F.; Herrebout, W.A. Tuning the Halogen/Hydrogen Bond Competition: A Spectroscopic and Conceptual DFT Study of Some Model Complexes Involving CHF2I. Chem. Eur. J. 2014, 20, 8433–8443. [Google Scholar] [CrossRef] [PubMed]
- An, X.L.; Yang, X.; Xiao, B.; Cheng, J.B.; Li, Q.Z. Comparison of Hydrogen and Halogen Bonds Between Dimethyl Sulfoxide and Hypohalous Acid: Competition and Cooperativity. Mol. Phys. 2017, 115, 1614–1623. [Google Scholar] [CrossRef]
- An, X.L.; Zhuo, H.Y.; Wang, Y.Y.; Li, Q.Z. Competition Between Hydrogen Bonds and Halogen Bonds in Complexes of Formamidine and Hypohalous Acids. J. Mol. Model. 2013, 19, 4529–4535. [Google Scholar] [CrossRef] [PubMed]
- Geboes, Y.; De Proft, F.; Herrebout, W.A. Towards a Better Understanding of the Parameters Determining the Competition Between Bromine Halogen Bonding and Hydrogen Bonding: An FTIR Spectroscopic Study of the Complexes Between Bromodifluoromethane and Trimethylamine. J. Mol. Struct. 2018, 1165, 349–355. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Deng, G.; Zhou, Y.; Sun, H.Y.; Yu, Z.W. Comparative Study of Halogen- and Hydrogen-Bond Interactions between Benzene Derivatives and Dimethyl Sulfoxide. ChemPhysChem 2015, 16, 2594–2601. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Wang, N.N.; Zhou, Y.; Yu, Z.W. Halogen-Bond and Hydrogen-Bond Interactions between Three Benzene Derivatives and Dimethyl Sulphoxide. Phys. Chem. Chem. Phys. 2014, 16, 6946–6956. [Google Scholar] [CrossRef]
- Li, Q.Z.; Jing, B.; Li, R.; Liu, Z.B.; Li, W.Z.; Luan, F.; Cheng, J.B.; Gong, B.A.; Sun, J.Z. Some Measures for Making Halogen Bonds Stronger than Hydrogen Bonds in H2CS-HOX (X = F, Cl, and Br) Complexes. Phys. Chem. Chem. Phys. 2011, 13, 2266–2271. [Google Scholar] [CrossRef]
- Lv, H.; Zhuo, H.Y.; Li, Q.Z.; Yang, X.; Li, W.Z.; Cheng, J.B. Halogen Bonds with N-heterocyclic Carbenes as Halogen Acceptors: A Partially Covalent Character. Mol. Phys. 2015, 112, 3024–3032. [Google Scholar] [CrossRef]
- Zhuo, H.Y.; Yu, H.; Li, Q.Z.; Li, W.Z.; Cheng, J.B. Some Measures for Mediating the Strengths of Halogen Bonds with the B-B Bond in Diborane(4) as an Unconventional Halogen Acceptor. Int. J. Quantum Chem. 2014, 114, 128–137. [Google Scholar] [CrossRef]
- Hou, M.C.; Li, Q.Z.; Scheiner, S. Comparison between Hydrogen and Halogen Bonds in Complexes of 6-OX-Fulvene with Pnicogen and Chalcogen Electron Donors. ChemPhysChem 2019, 20, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Bulat, F.A.; Toro-Labbe, A.; Brinck, T.; Murray, J.S.; Politzer, P. Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies. J. Mol. Model. 2010, 16, 1679–1691. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Pauling, L.; Pauling, P. Chemistry; W. H. Freeman Company: San Francisco, CA, USA, 1975. [Google Scholar]
- Miranda, M.O.; Duarte, D.J.R. Halogen Bonds Stabilised by an Electronic Exchange Channel. ChemistrySelect 2021, 6, 680–684. [Google Scholar] [CrossRef]
- Duarte, D.J.R.; Buralli, G.J.; Peruchena, N.M. Is σ-Hole an Electronic Exchange Channel in YX⋯CO Interactions? Chem. Phys. Lett. 2018, 710, 113–117. [Google Scholar] [CrossRef]
- Koch, U.; Popelier, P.L.A. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Popelier, P.L.A. Characterization of a Dihydrogen Bond on the Basis of the Electron Density. J. Phys. Chem. A 1998, 102, 1873–1878. [Google Scholar] [CrossRef]
- Arnold, W.D.; Oldfield, E. The Chemical Nature of Hydrogen Bonding in Proteins via NMR: J-Couplings, Chemical Shifts, and AIM Theory. J. Am. Chem. Soc. 2000, 122, 12835–12841. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Liu, N.; Li, Q.Z.; Scheiner, S.; Xie, X.Y. Resonance-Assisted Intramolecular Triel Bonds. Phys. Chem. Chem. Phys. 2022, 24, 15015–15024. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Pitonak, M.; Hesselmann, A. Accurate Intermolecular Interaction Energies from a Combination of MP2 and TDDFT Response Theory. J. Chem. Theory Comput. 2010, 6, 168–178. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–556. [Google Scholar] [CrossRef]
- Halkier, A.; Helgaker, T.; Jorgensen, P.; Klopper, W.; Olsen, J. Basis-Set Convergence of the Energy in Molecular Hartree-Fock Calculations. Chem. Phys. Lett. 1999, 302, 437–446. [Google Scholar] [CrossRef]
- Halkier, A.; Klopper, W.; Helgaker, T.; Jorgensen, P.; Taylor, P.R. Basis Set Convergence of the Interaction Energy of Hydrogen-Bonded Complexes. J. Chem. Phys. 1999, 111, 9157–9167. [Google Scholar] [CrossRef]
- Su, P.F.; Li, H. Energy Decomposition Analysis of Covalent Bonds and Intermolecular Interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, R.F.W. AIM2000 Program, v. 2.0; McMaster University: Hamilton, ON, Canada, 2000. [Google Scholar]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
R1 | ΔR1% | ΔR2 | ΔR2% | α | |
---|---|---|---|---|---|
H2CTe∙∙∙HF | 2.518 | 23.70% | 0.015 | 1.63% | 168.6 |
H2CTe∙∙∙F2 | 2.151 | 40.25% | 0.359 | 25.62% | 168.8 |
H2CTe∙∙∙ClF | 2.528 | 36.80% | 0.201 | 12.26% | 176.8 |
H2CTe∙∙∙BrF | 2.686 | 36.05% | 0.140 | 7.96% | 177.4 |
H2CTe∙∙∙IF | 2.904 | 34.00% | 0.089 | 4.64% | 177.9 |
F2CTe∙∙∙HF | 2.586 | 21.64% | 0.010 | 1.08% | 179.9 |
F2CTe∙∙∙F2 | 2.140 | 40.56% | 0.371 | 26.48% | 170.7 |
F2CTe∙∙∙ClF | 2.647 | 33.83% | 0.137 | 8.36% | 179.7 |
F2CTe∙∙∙BrF | 2.790 | 33.57% | 0.098 | 5.57% | 179.8 |
F2CTe∙∙∙IF | 2.996 | 31.91% | 0.064 | 3.33% | 179.2 |
(CH3)2CTe∙∙∙HF | 2.483 | 24.76% | 0.018 | 1.95% | 170.7 |
(CH3)2CTe∙∙∙F2 | 2.176 | 39.56% | 0.343 | 24.48% | 168.0 |
(CH3)2CTe∙∙∙ClF | 2.518 | 37.05% | 0.222 | 13.54% | 178.1 |
(CH3)2CTe∙∙∙BrF | 2.673 | 36.36% | 0.158 | 8.99% | 179.1 |
(CH3)2CTe∙∙∙IF | 2.893 | 34.25% | 0.101 | 5.26% | 180.0 |
HF | F2 | ClF | BrF | IF | ||
---|---|---|---|---|---|---|
H2CTe | Eint | −27.8 | −232.6 | −107.0 | −100.0 | −94.8 |
Eint,BSSE | −21.1 | −220.7 | −96.7 | −87.0 | −81.5 | |
Eint,CBS,BSSE | −22.3 | −225.5 | −106.5 | −95.6 | −89.9 | |
F2CTe | Eint | −21.1 | −206.9 | −61.2 | −66.4 | −68.8 |
Eint,BSSE | −14.5 | −194.4 | −52.7 | −54.8 | −56.4 | |
Eint,CBS,BSSE | −15.6 | −199.8 | −60.5 | −61.7 | −63.6 | |
(CH3)2CTe | Eint | −33.7 | −242.2 | −128.1 | −120.0 | −111.8 |
Eint,BSSE | −26.3 | −228.8 | −116.4 | −103.6 | −94.7 | |
Eint,CBS,BSSE | −27.7 | −233.1 | −126.5 | −112.5 | −103.3 |
Ees | Eex | Erep | Epol | Edisp | |
---|---|---|---|---|---|
H2CTe∙∙∙HF | −33.0 | −48.9 | 90.4 | −21.3 | −8.3 |
H2CTe∙∙∙F2 | −246.0 | −519.1 | 1097.3 | −442.5 | −110.3 |
H2CTe∙∙∙ClF | −255.5 | −474.9 | 985.5 | −278.4 | −73.4 |
H2CTe∙∙∙BrF | −251.3 | −417.7 | 865.0 | −223.0 | −60.1 |
H2CTe∙∙∙IF | −183.2 | −346.0 | 678.3 | −182.8 | −47.8 |
F2CTe∙∙∙HF | −22.8 | −38.4 | 70.8 | −16.7 | −7.4 |
F2CTe∙∙∙F2 | −242.6 | −524.2 | 1109.5 | −423.0 | −114.1 |
F2CTe∙∙∙ClF | −170.5 | −344.4 | 695.7 | −169.2 | −63.9 |
F2CTe∙∙∙BrF | −171.7 | −312.3 | 630.0 | −148.2 | −52.6 |
F2CTe∙∙∙IF | −129.4 | −265.6 | 510.3 | −129.3 | −42.3 |
(CH3)2CTe∙∙∙HF | −46.2 | −64.5 | 118.7 | −26.2 | −8.1 |
(CH3)2CTe∙∙∙F2 | −253.4 | −533.8 | 1116.9 | −457.1 | −101.5 |
(CH3)2CTe∙∙∙ClF | −287.7 | −522.2 | 1080.9 | −315.4 | −72.1 |
(CH3)2CTe∙∙∙BrF | −287.6 | −468.2 | 966.8 | −253.4 | −61.2 |
(CH3)2CTe∙∙∙IF | −211.6 | −391.0 | 763.3 | −205.4 | −50.0 |
ρ | ∇2ρ | H | |
---|---|---|---|
H2CTe∙∙∙HF | 0.022 | 0.032 | −0.003 |
H2CTe∙∙∙F2 | 0.095 | 0.101 | −0.036 |
H2CTe∙∙∙ClF | 0.079 | 0.024 | −0.027 |
H2CTe∙∙∙BrF | 0.066 | 0.033 | −0.020 |
H2CTe∙∙∙IF | 0.052 | 0.041 | −0.013 |
F2CTe∙∙∙HF | 0.019 | 0.032 | −0.001 |
F2CTe∙∙∙F2 | 0.096 | 0.112 | −0.036 |
F2CTe∙∙∙ClF | 0.060 | 0.058 | −0.015 |
F2CTe∙∙∙BrF | 0.052 | 0.053 | −0.012 |
F2CTe∙∙∙IF | 0.042 | 0.049 | −0.008 |
(CH3)2CTe∙∙∙HF | 0.025 | 0.031 | −0.004 |
(CH3)2CTe∙∙∙F2 | 0.091 | 0.088 | −0.033 |
(CH3)2CTe∙∙∙ClF | 0.082 | 0.013 | −0.029 |
(CH3)2CTe∙∙∙BrF | 0.069 | 0.024 | −0.022 |
(CH3)2CTe∙∙∙IF | 0.054 | 0.036 | −0.015 |
CT | E2 | μ | |
---|---|---|---|
H2CTe∙∙∙HF | 0.043 | 70.0 | 3.17 |
H2CTe∙∙∙F2 | 0.893 | - | 10.52 |
H2CTe∙∙∙ClF | 0.511 | 781.6 | 8.23 |
H2CTe∙∙∙BrF | 0.414 | 761.4 | 7.87 |
H2CTe∙∙∙IF | 0.322 | 636.6 | 7.81 |
F2CTe∙∙∙HF | 0.031 | 51.0 | 2.88 |
F2CTe∙∙∙F2 | 0.843 | - | 9.53 |
F2CTe∙∙∙ClF | 0.334 | 462.3 | 5.62 |
F2CTe∙∙∙BrF | 0.293 | 417.7 | 5.93 |
F2CTe∙∙∙IF | 0.242 | 334.3 | 6.34 |
(CH3)2CTe∙∙∙HF | 0.056 | 93.3 | 4.76 |
(CH3)2CTe∙∙∙F2 | 0.943 | - | 11.73 |
(CH3)2CTe∙∙∙ClF | 0.579 | 711.7 | 10.37 |
(CH3)2CTe∙∙∙BrF | 0.462 | 696.9 | 9.96 |
(CH3)2CTe∙∙∙IF | 0.350 | 613.1 | 9.84 |
HF | F2 | ClF | BrF | IF | |
---|---|---|---|---|---|
H2CO | −34.4 | −5.9 | −25.2 | −34.4 | −42.3 |
H2CS | −26.6 | −7.3 | −52.2 | −60.6 | −64.0 |
H2CSe | −24.6 | −171.7 | −64.7 | −68.2 | −69.6 |
H2CTe | −21.1 | −220.7 | −96.7 | −87.0 | −81.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-Q.; Wang, R.-J.; Li, Q.-Z.; Yu, Z.-W. Abnormalities of the Halogen Bonds in the Complexes between Y2CTe (Y = H, F, CH3) and XF (X = F, Cl, Br, I). Molecules 2022, 27, 8523. https://doi.org/10.3390/molecules27238523
Wang Y-Q, Wang R-J, Li Q-Z, Yu Z-W. Abnormalities of the Halogen Bonds in the Complexes between Y2CTe (Y = H, F, CH3) and XF (X = F, Cl, Br, I). Molecules. 2022; 27(23):8523. https://doi.org/10.3390/molecules27238523
Chicago/Turabian StyleWang, Ya-Qian, Rui-Jing Wang, Qing-Zhong Li, and Zhi-Wu Yu. 2022. "Abnormalities of the Halogen Bonds in the Complexes between Y2CTe (Y = H, F, CH3) and XF (X = F, Cl, Br, I)" Molecules 27, no. 23: 8523. https://doi.org/10.3390/molecules27238523
APA StyleWang, Y. -Q., Wang, R. -J., Li, Q. -Z., & Yu, Z. -W. (2022). Abnormalities of the Halogen Bonds in the Complexes between Y2CTe (Y = H, F, CH3) and XF (X = F, Cl, Br, I). Molecules, 27(23), 8523. https://doi.org/10.3390/molecules27238523