Investigation of H2O2 Electrochemical Behavior on Ferricyanide-Confined Electrode Based on Ionic Liquid-Functionalized Silica-Mesostructured Cellular Foam
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Silica Mesostructured Cellular Foam
2.2. Electrochemical Characterizations of MCF-IL-Fe(CN)63−/PVA Electrode
2.3. Electrochemical Behavior of H2O2 on the MCF-IL-Fe(CN)63−/PVA Electrode
2.4. Electrochemical Response of H2O2 on the Acid-Pretreated MCF-IL-Fe(CN)63−/PVA Electrode
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Synthesis and Functionalization of MCFs
3.4. Preparation of the Electrodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Walcarius, A. Silica-based electrochemical sensors and biosensors: Recent trends. Curr. Opin. Electrochem. 2018, 10, 88–97. [Google Scholar] [CrossRef]
- Rohlfing, D.F.; Rathousk, J.; Rohlfing, Y.; Bartels, O.; Wark, M. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir 2005, 21, 11320–11329. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, X.; Yang, Z.; Qi, H.; Xu, Q.; Diao, G. A novel mesoporous silica nanosphere matrix for the immobilization of proteins and their applications as electrochemical biosensor. Talanta 2013, 104, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Xian, Y.; Xian, Y.; Zhou, L.; Wu, F.; Ling, Y.; Jin, L. Encapsulation hemoglobin in ordered mesoporous silicas: Influence factors for immobilization and bioelectrochemistry. Electrochem. Commun. 2007, 9, 142–148. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, S.; Ju, H.; Chen, H. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens. Bioelectron. 2004, 19, 861–867. [Google Scholar] [CrossRef]
- Winkel, P.S.; Lukens, W.W., Jr.; Yang, P.; Margolese, D.I.; Lettow, J.S.; Ying, J.Y.; Stucky, G.D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mater. 2000, 12, 686–696. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Li, J. Direct electrochemistry and electrocatalysis of myoglobin covalently immobilized in mesopores cellular foams. Biosens. Bioelectron. 2010, 26, 846–849. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Han, X.; Hu, J.; Liu, H.; Xu, J. Direct electrochemistry of hemoglobin immobilized on siliceous mesostructured cellular foam. Sens. Actuators B 2009, 138, 545–549. [Google Scholar] [CrossRef]
- Cao, X.; Sun, Y.; Ye, Y.; Li, Y.; Ge, X. Macroporous ordered silica foam for glucos oxidase immobilisation and direct electrochemical biosensing. Anal. Methods 2014, 6, 1448–1454. [Google Scholar] [CrossRef]
- Chidsey, C.E.D.; Murray, R.W. Electroactive polymers and macromolecular electronics. Science 1986, 231, 25–31. [Google Scholar] [CrossRef]
- Prévoteau, A.; Rabaey, K. Electroactive biofilms for sensing: Reflections and perspectives. ACS Sens. 2017, 2, 1072–1085. [Google Scholar] [CrossRef] [PubMed]
- Maduraiveeran, G.; Ramaraj, R. Gold nanoparticles embedded in silica sol-gel matrix as an amperometric sensor for hydrogen peroxide. J. Electroanal. Chem. 2007, 608, 52–58. [Google Scholar] [CrossRef]
- Liang, R.; Qiu, J.; Cai, P. A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique. Anal. Chim. Acta 2005, 534, 223–229. [Google Scholar] [CrossRef]
- Li, S.; Noroozifar, M.; Kerman, K. Nanocomposite of ferricyanide-doped chitosan with multi-walled carbon nanotubes for simultaneous senary detection of updates redox-active biomolecules. J. Electroanal. Chem. 2019, 849, 113376. [Google Scholar] [CrossRef]
- Doherty, A.P.; Graham, L.; Wagner, K.; Officer, D.L.; Chen, J.; Wallace, G.G. Functional electro-materials based on ferricyanide redox-active ionic liquids. Electrochim. Acta 2017, 245, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Barulli, L.; Mezzetta, A.; Brunetti, B.; Guazzelli, L.; Ciprioti, S.V.; Ciccioli, A. Evaporation thermodynamics of the tetraoctylphosphonium bis(trifluoromethansulfonyl)imide([P8888]NTf2) and tetraoctylphosphonium nonafluorobutane-1-sulfonate ([P8888]NFBS) ionic liquids. J. Mol. Liq. 2021, 333, 115892. [Google Scholar] [CrossRef]
- Mezzetta, A.; Guglielmero, L.; Mero, A.; Tofani, G.; D’Andrea, F.; Pomelli, C.S.; Guazzelli, L. Expanding the chemical space of benzimidazole dicationic ionic liquids. Molecules 2021, 26, 4211. [Google Scholar] [CrossRef]
- Piatti, E.; Guglielmero, L.; Tofani, G.; Mezzetta, A.; Guazzelli, L.; D’Andrea, F.; Roddaro, S.; Pomelli, C.S. Ionic liquids for electrochemical applications: Correlation between molecular structure and electrochemical stability window. J. Mol. Liq. 2022, 364, 120001. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Ojani, R.; Raoof, J.B.; Fathi, S. Ferricyanide immobilized within organically modified MCM-41; application for electrocatalytic reduction of hydrogen peroxide. J. Solid State Electrochem. 2009, 13, 837–842. [Google Scholar] [CrossRef]
- Qin, C.; Wang, W.; Chen, C. Amperometric sensing of nitrite based on electroactive ferricyanide-poly (diallyldimethylammonium)-alginate composite film. Sens. Actuators B 2013, 181, 375–381. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, D.; Lin, Y.; Yang, L.; Yu, P.; Jiang, W.; Mao, L. Strong interaction between imidazolium-based polycationic polymer and ferricyanide: Toward redox potential regulation for selective in vivo electrochemical measurements. Anal. Chem. 2012, 84, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Q.; Li, J. Electrochemical behaviors and spectral studies of ionic liquid butyl-3-methylimidazolium tetrafluoroborate) based sol-gel electrode. J. Electroanal. Chem. 2007, 603, 243–248. [Google Scholar] [CrossRef]
- Wadhawan, J.D.; Schroder, U.; Neudeck, A.; Wilkins, S.J.; Compton, R.G.; Marken, F.; Consorti, C.S.; Souza, R.F.d.; Dupont, J. Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64−:3− in droplet and thin layer deposits of 1-methyl-3-(2,6-(s)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. J. Electroanal. Chem. 2000, 493, 75–83. [Google Scholar] [CrossRef]
- Chang, J.L.; Wei, G.T.; Chen, T.Y.; Zen, J.M. Highly stable polymeric ionic liquid modified electrode to immobilize ferricyanide for electroanalysis of sulfide. Electroanalysis 2013, 25, 845–849. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, Z.; Yu, P.; Zhang, J.; Su, L.; Ohsaka, T.; Mao, L. In situ cationic ring-opening polymerization and quaternization reactions to confine ferricyanide onto carbon nanotubes: A general approach to development of integrative nanostructured electrochemical biosensors. Anal. Chem. 2008, 80, 6587–6593. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Guo, Z.; Hu, Z.; Xue, Z.; Lu, X. Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosens. Bioelectron. 2017, 87, 101–107. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Zhuo, J.; Zhu, Z.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013, 85, 10289–10295. [Google Scholar] [CrossRef]
- Zou, B.; Hu, Y.; Yu, D.; Jiang, L.; Liu, W.; Song, P. Functionalized ionic liquid modified mesoporous silica SBA-15: A novel, designable and efficient carrier for porcine pancreas lipase. Colloids Surf. B 2011, 88, 93–99. [Google Scholar] [CrossRef]
- Han, P.; Zhang, H.; Qiu, X.; Ji, X.; Gao, L. Palladium within ionic liquid functionalized mesoporous silica SBA-15 and its catalytic application in room-temperature suzuki coupling reaction. J. Mater. Chem. B 2008, 295, 57–67. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, H.; Wei, Z.; Jiang, Y.; Zhang, L.; Zhao, J.; Zhang, J.; Dong, L.; Li, E.; Ruhlmann, L.; et al. Catalytic emulsion based on Janus nanosheets for ultra-deep desulfurization. Chem. Eur. J. 2017, 23, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Gerber, S.J.; Erasmus, E. Electronic effects of metal hexacyanoferrates: An XPS and FTIR study. Mater. Chem. Phys. 2018, 203, 73–81. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Zhai, S.; Li, J.; Mao, J.; Li, M.; Qiu, H.; Lai, G. Synthesis of ionic liquid functionalized SBA-15 mesoporous materials as heterogeneous catalyst toward knoevenagel condensation under solvent-free conditions. Eur. J. Inorg. Chem. 2006, 2947–2949. [Google Scholar] [CrossRef]
- Hu, Y.L.; Yuan, J.H.; Chen, W.; Wang, K.; Xia, X.H. Photochemical synthesis of Prussian blue film from an acidic ferricyanide solution and application. Electrochem. Commun. 2005, 7, 1252–1256. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, K.; Sun, D.; Xia, X.; Chen, H. Potentiodynamic deposition of Prussian blue from a solution containing single component of ferricyanide and its mechanism investigation. J. Solid State Electrochem. 2003, 7, 561–566. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Karyakina, E.E.; Gorton, L. Amperometric biosensor for glutamate using Prussian blue-based artificial peroxidase as a transducer for hydrogen peroxide. Anal. Chem. 2000, 72, 1720–1723. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Z.; Zhang, Q.; Jia, X.; Zhang, H.; Xin, S. Enhancement of the electrochemical performance of Prussian blue modified electrode via ionic liquid treatment. Electroanalysis 2009, 21, 1835–1841. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Puganova, E.A.; Budashov, I.A.; Kurochkin, I.N.; Karyakina, E.E.; Levchenko, V.A.; Matveyenko, V.N.; Varfolomeyev, S.D. Prussian blue based nanoelectrode arrays for H2O2 detection. Anal. Chem. 2004, 76, 474–478. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Zheng, J. One-pot fabrication of aunps-Prussian blue-graphene oxide hybrid nanomaterials for non-enzymatic hydrogen peroxide electrochemical detection. Microchem. J. 2021, 160, 105595. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Lü, H.; Hui, N. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microrna detection. Microchim. Acta 2021, 188, 25. [Google Scholar] [CrossRef]
- Fernández, L.; Alvarez-Paguay, J.; González, G.; Uribe, R.; Bolaños-Mendez, D.; Piñeiros, J.L.; Celi, L.; Espinoza-Montero, P.J. Electrochemical sensor for hydrogen peroxide based on Prussian blue electrochemically deposited at the TiO2-ZrO2–doped carbon nanotube glassy carbon-modified electrode. Front. Chem. 2022, 10, 884050. [Google Scholar] [CrossRef] [PubMed]
- Uzunçar, S.; Ozdogan, N.; Ak, M. An innovative sensor construction strategy via LBL assembly for the detection of H2O2 based on the sequential in situ growth of Prussian blue nanoparticles in CMC-PANI composite film. J Electrochem. Soc. 2021, 168, 076509. [Google Scholar] [CrossRef]
- Haghighi, B.; Hamidi, H.; Gorton, L. Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sens. Actuators B 2010, 147, 270–276. [Google Scholar] [CrossRef]
- Hoegaerts, D.; Sels, B.F.; Vos, D.E.d.; Verpoort, F.; Jacobs, P.A. Heterogeneous tungsten-based catalysts for the epoxidation of bulky olefins. Catal. Today 2000, 60, 209–218. [Google Scholar] [CrossRef]
- Ying, S.X.; Fa, W.J. Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide. J. Mol. Catal. A Chem. 2008, 280, 142–147. [Google Scholar]
Electrode | Linear Range (mM) | Ref. |
---|---|---|
Acid-pretreated MCF-IL-Fe(CN)63−/PVA | 6.125~55.08 | this work |
Acid-pretreated MCM-41 1-NH2-Fe(CN)63−/CPE 2 | 1~30 | [20] |
PB/[Bmim] [Cl] 3/GC | 5.0~30 | [37] |
Prussian blue based nanoelectrode arrays | 0.01~10 | [38] |
AuNPs-PB-GO 4/GCE | 0.0038~5.4 | [39] |
PPY/MWCNTs/PB 5 | 0.005~0.503 1.403~5.103 | [40] |
PB/Au CDtrode 6 | 0.001~1.2 | [34] |
PB-fCNT/TiO2.ZrO2 7 | 0.1~1.0 | [41] |
ITO/LbL 8-CMC 9:PANI 10:PB | 0.002~0.165 | [42] |
GE 11/PBNPs/Nafion | 0.0021~0.14 | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Ma, Z.; Fan, Y.; Jiao, S.; Yu, Z.; Chen, X. Investigation of H2O2 Electrochemical Behavior on Ferricyanide-Confined Electrode Based on Ionic Liquid-Functionalized Silica-Mesostructured Cellular Foam. Molecules 2022, 27, 9028. https://doi.org/10.3390/molecules27249028
Zhang L, Ma Z, Fan Y, Jiao S, Yu Z, Chen X. Investigation of H2O2 Electrochemical Behavior on Ferricyanide-Confined Electrode Based on Ionic Liquid-Functionalized Silica-Mesostructured Cellular Foam. Molecules. 2022; 27(24):9028. https://doi.org/10.3390/molecules27249028
Chicago/Turabian StyleZhang, Ling, Zhenkuan Ma, Yun Fan, Songlin Jiao, Zhan Yu, and Xuwei Chen. 2022. "Investigation of H2O2 Electrochemical Behavior on Ferricyanide-Confined Electrode Based on Ionic Liquid-Functionalized Silica-Mesostructured Cellular Foam" Molecules 27, no. 24: 9028. https://doi.org/10.3390/molecules27249028
APA StyleZhang, L., Ma, Z., Fan, Y., Jiao, S., Yu, Z., & Chen, X. (2022). Investigation of H2O2 Electrochemical Behavior on Ferricyanide-Confined Electrode Based on Ionic Liquid-Functionalized Silica-Mesostructured Cellular Foam. Molecules, 27(24), 9028. https://doi.org/10.3390/molecules27249028