Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Vitamin C
2.2. Effect of Extraction Method on Total Soluble Phenolic Content
2.3. Identification of Phenolic Compounds by High-Performance Liquid Chromatography (HPLC)
2.4. Antiradical Activity
3. Materials and Methods
3.1. Samples and Chemicals
3.2. Determination of Vitamin C
3.3. Phenolic Extraction
3.4. Total Phenolic Content of Soluble Extracts
3.5. Identification of Phenolic Compounds by High-Performance Liquid Chromatography (HPLC)
3.6. Antiradical Activity towards Peroxyl Radicals
3.7. Trolox Equivalent Antioxidant Capacity (TEAC)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- De Carvalho Romão, M.O. Avaliação da atividade protetora gástrica do extrato de raspa de juá. Rev. Soc. Bra. Clín. Med. 2010, 8, 222–227. [Google Scholar]
- Silva, M.L.C.; Costa, R.S.; Santana, A.D.S.; Koblitz, M.G.B. Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semin. Ciênc. Agrárias 2010, 31, 669. [Google Scholar] [CrossRef] [Green Version]
- Reiss, R.; Johnston, J.; Tucker, K.; Desesso, J.M.; Keen, C.L. Estimation of cancer risks and benefits associated with a potential increased consumption of fruits and vegetables. Food Chem. Toxicol. 2012, 50, 4421–4427. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grindel, A.; Müllner, E.; Brath, H.; Jäger, W.; Henriksen, T.; Poulsen, H.E.; Marko, D.; Wagner, K.-H. Influence of polyphenol-rich apple pomace extract on oxidative damage to DNA in type 2 diabetes mellitus individuals. Cancer Metab. 2014, 2, P25. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Vian, M.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- De Camargo, A.C.; Schwember, A.R.; Parada, R.; Garcia, S.; Maróstica, M.R.; Franchin, M.; Regitano-d’Arce, M.A.B.; Shahidi, F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int. J. Mol. Sci. 2018, 19, 3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Ma, Y.-Q.; Ye, X.-Q.; Fang, Z.-X.; Chen, J.-C.; Xu, G.-H.; Liu, D.-H. Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma Mandarin (Citrus unshiu Marc.) peels. J. Agric. Food Chem. 2008, 56, 5682–5690. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Khan, A.; Khattak, M.M.A.K. Biological Significance of Ascorbic Acid (Vitamin C) in Human Health—A Review. Pak. J. Nutr. PJN 2004, 3, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.D.S.; Ferreira, S.R.S.; Vitali, L.; Block, J.M. May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res. Int. 2019, 115, 451–459. [Google Scholar] [CrossRef]
- Mazza, K.E.L.; Santiago, M.C.P.A.; do Nascimento, L.S.M.; Godoy, R.L.O.; Souza, E.F.; Brígida, A.I.S.; Borguini, R.G.; Tonon, R.V. Syrah grape skin valorisation using ultrasound-assisted extraction: Phenolic compounds recovery, antioxidant capacity and phenolic profile. Int. J. Food Sci. 2019, 54, 641–650. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Aguilar-Zárate, P.; Sepúlveda, L.; Buenrostro-Figueroa, J.; Ascacio-Valdés, J.A.; Aguilar, C.N. Effect of ultrasound on the extraction of ellagic acid and hydrolysis of ellagitannins from pomegranate husk. Environ. Technol. Innov. 2021, 24, 102063. [Google Scholar] [CrossRef]
- Landete, J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Daniel, E.M.; Krupnick, A.S.; Heur, Y.H.; Blinzler, J.A.; Nims, R.W.; Stoner, G.D. Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J. Food Compost. Anal. 1989, 2, 338–349. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Tranchant, C.; Shi, J.; Ye, X.; Xue, S.J. Ellagic acid in strawberry (Fragaria spp.): Biological, technological, stability, and human health aspects. Food Qual. Saf. 2017, 1, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Zagklis, D.P.; Paraskeva, C.A. Purification of grape marc phenolic compounds through solvent extraction, membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 2015, 156, 328–335. [Google Scholar] [CrossRef]
- Alvarez-Parrilla, E.; Urrea-López, R.; de la Rosa, L.A. Bioactive components and health effects of pecan nuts and their byproducts: A review. J. Food Bioact. 2018, 1, 56–92. [Google Scholar] [CrossRef] [Green Version]
- Sartori, A.G.O.; Regitano-d’Arce, M.A.B.; Skibsted, L.H. Brazil nut: Nutritional benefits from a unique combination of antioxidants. J. Food Bioact. 2019, 9, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Hossain, A. Bioactives in spices, and spice oleoresins: Phytochemicals and their beneficial effects in food preservation and health promotion. J. Food Bioact. 2018, 3, 8–75. [Google Scholar] [CrossRef] [Green Version]
- Mirfat, A.H.S.; Amin, I.; Kartinee, K.N.; Muhajir, H.; Shukri, M.A.M. Underutilised fruits: A review of phytochemistry and biological properties. J. Food Bioact. 2018, 1, 2–30. [Google Scholar] [CrossRef] [Green Version]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Camargo, A.C.d.; Shahidi, F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chem. 2017, 221, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, F.L.; Arruda, T.Y.P.; Lima, R.d.S.; Casarotti, S.N.; Morzelle, M.C. Pomegranate as a natural source of phenolic antioxidants: A review. J. Food Bioact. 2020, 9, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Portal Antioxidantes. Available online: http://portalantioxidantes.com/ (accessed on 10 December 2020).
- De Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem. 2019, 290, 229–238. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; de Sousa, P.H.M.; Arriaga, Â.M.C.; do Prado, G.M.; Magalhães, C.E.d.C.; Maia, G.A.; de Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef] [Green Version]
- Rufino, M.d.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Hui-Chi, C.; Yu-Tang, T.; Sheng-Yi, C.; Jer-An, L.; Gow-Chin, Y. Effect of Phyllanthus emblica L. fruit on improving regulation of methylglyoxal-induced insulin resistance in 3T3-L1 cells. J. Food Bioact. 2018, 4, 139–149. [Google Scholar]
- Morzelle, M.C.; Salgado, J.M.; Massarioli, A.P.; Bachiega, P.; Rios, A.O.; Alencar, S.M.; Schwember, A.R.; de Camargo, A.C. Potential benefits of phenolics from pomegranate pulp and peel in Alzheimer’s disease: Antioxidant activity and inhibition of acetylcholinesterase. J. Food Bioact. 2019, 5, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Larrauri, J.A.; Ruperez, P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Pereira, C.A.M.; Yariwake, J.H.; Lanças, F.M.; Wauters, J.N.; Tits, M.; Angenot, L. A HPTLC densitometric determination of flavonoids from Passiflora alata, P. edulis, P. incarnata and P. caerulea and comparison with HPLC method. Phytochem. Anal. 2004, 15, 241–248. [Google Scholar] [CrossRef]
- Tiberti, L.A.; Yariwake, J.H.; Ndjoko, K.; Hostettmann, K. Identification of flavonols in leaves of Maytenus ilicifolia and M. aquifolium (Celastraceae) by LC/UV/MS analysis. J. Chromatogr. B 2007, 846, 378–384. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Solvent | CA | UAE |
---|---|---|
Water | 338.7 ± 29.00 Ab | 405.8 ± 6.01 Aa |
Ethanol | 314.2 ± 12.45 Ab | 394.9 ± 24.4 Aa |
Acetone | 271.5 ± 1.78 Ba | 275.1 ± 15.87 Ba |
Phenolic Compound | Extracts (µg/g FW) * | ||
---|---|---|---|
Water | Ethanol | Acetone | |
Phenolic acids | |||
Gallic acid | 29.30 ± 2.8 aA | 32.66 ± 2.6 aA | 16.50 ± 1.4 bA |
p-Coumaric acid | 0.64 ± 0.1 aB | 0.58 ± 0.1 bB | 0.99 ± 0.10 aB |
Sinapic acid | 5.56 ± 0.2 aB | 3.48 ± 0.3 bB | 0.82 ± 0.2 cB |
Ellagic acid | 210.44 ± 20.1 aC | 210.97 ± 17.1 aC | 192.13 ± 14.3 aC |
Flavan-3-ols | |||
Catechin | 4.51 ± 1.1 aB | 6.14 ± 0.3 aB | 12.55 ± 1.7 bA |
Epicatechin | 9.23 ± 0.4 aAB | 7.56 ± 1.2 abB | 6.30 ± 0.80 bAB |
Flavonol | |||
Quercetin | 1.62 ± 0.1 aB | 1.54 ± 0.2 aB | 1.27 ± 0.3 aAB |
Total (µg/g FW) | 261.30 | 262.93 | 230.56 |
Jua | Kiwi | Fig | Lucuma | Mango | Melon | Avocado | Pineapple | Banana | Watermelon | Grape | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ultrasound-Assisted Extraction * | Continuous Agitation * | |||||||||||
Peroxyl radical scavenging activity, ORAC assay (µmol TE/100 g) | 236 ± 18.80 a f.w. | 161.5 ± 5.10 b f.w. | - | - | - | - | - | - | - | - | - | - |
Oxygen radical absorbance capacity (µmol TE/100 g) [30] | 10,926 ± 870 d.w. | 7475 ± 236 d.w. | 952–5860 d.w. | 953–6332 d.w. | 533–1152 d.w. | 322–1822 d.w. | 128–2299 d.w. | 912–19,127 d.w. | 968–7223 d.w. | 1528–20,922 d.w. | 193–1708 d.w. | 1085–19,819 d.w. |
Water | Ethanol | Acetone | Methanol [32] | |
---|---|---|---|---|
Jua | 1500 ± 109 | 840 ± 59 | 790 ± 79 | |
Ciruela | - | - | - | 625 ± 4 |
Jackfruit | - | - | - | 63 ± 1 |
Mangaba | - | - | - | 1084 ± 13 |
Murici | - | - | - | 1573 ± 1 |
Papaya | - | - | - | 760 ± 20 |
Pineapple | - | - | - | 378 ± 3 |
Sapodilla | - | - | - | 99 ± 11 |
Soursop | - | - | - | 609 ± 13 |
Sweetsop | - | - | - | 621 ± 62 |
Tamarind | - | - | - | 832 ± 11 |
Umbu | - | - | - | 107 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Rocha, T.S.; de Lima, A.; Silva, J.d.N.; Sampaio, G.R.; Soares Freitas, R.A.M.; Danielski, R.; de Camargo, A.C.; Shahidi, F.; Torres, E.A.F.d.S. Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction. Molecules 2022, 27, 627. https://doi.org/10.3390/molecules27030627
da Rocha TS, de Lima A, Silva JdN, Sampaio GR, Soares Freitas RAM, Danielski R, de Camargo AC, Shahidi F, Torres EAFdS. Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction. Molecules. 2022; 27(3):627. https://doi.org/10.3390/molecules27030627
Chicago/Turabian Styleda Rocha, Thaís Silva, Alessandro de Lima, Jurandy do Nascimento Silva, Geni Rodrigues Sampaio, Rosana Aparecida Manólio Soares Freitas, Renan Danielski, Adriano Costa de Camargo, Fereidoon Shahidi, and Elizabeth Aparecida Ferraz da Silva Torres. 2022. "Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction" Molecules 27, no. 3: 627. https://doi.org/10.3390/molecules27030627
APA Styleda Rocha, T. S., de Lima, A., Silva, J. d. N., Sampaio, G. R., Soares Freitas, R. A. M., Danielski, R., de Camargo, A. C., Shahidi, F., & Torres, E. A. F. d. S. (2022). Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction. Molecules, 27(3), 627. https://doi.org/10.3390/molecules27030627