Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Grain Yield
2.2. Phenolic Profile
3. Materials and Methods
3.1. Experimental Design
3.2. Chemical Compounds
3.3. Extraction of Phenolic Compounds
3.4. UPLC-MS/MS Analysis
3.5. HPLC-DAD Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pye, C.; Sutherland, S.; Martín, P.S. Consumo de frutas, verduras y legumbres en adultos de Santiago Oriente, Chile: ¿Ha influido el confinamiento por COVID-19? Revista Chilena Nutrición 2021, 48, 374–380. [Google Scholar] [CrossRef]
- Rawal, V.; Navarro, D.K. The Global Economy of Pulses; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/ (accessed on 15 December 2021).
- de Camargo, C.A.; Favero, T.B.; Morzelle, C.M.; Franchin, M.; Alvarez-Parrilla, E.; de la Rosa, A.L.; Geraldi, V.M.; Maróstica Júnior, R.M.; Shahidi, F.; Schwember, R.A. Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits. Int. J. Mol. Sci. 2019, 20, 2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolleson, W.H.; Doerge, D.R.; Churchwell, M.I.; Marques, M.M.; Roberts, D.W. Metabolism of biochanin A and formononetin by human liver microsomes in vitro. J. Agric. Food Chem. 2002, 50, 4783–4790. [Google Scholar] [CrossRef]
- Sarfraz, A.; Javeed, M.; Shah, M.A.; Hussain, G.; Shafiq, N.; Sarfraz, I.; Riaz, A.; Sadiqa, A.; Zara, R.; Zafar, S.; et al. Biochanin A: A novel bioactive multifunctional compound from nature. Sci. Total Environ. 2020, 722, 137907. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. USDA Database for the Isoflavone Content of Selected Foods, Release 2.1. Nutrient Data Laboratory Home Page. U.S. Department of Agriculture. 2015. Available online: https://data.nal.usda.gov/dataset/usda-database-isoflavone-content-selected-foods-release-20 (accessed on 15 December 2021).
- Yu, C.; Zhang, P.; Lou, L.X.; Wang, Y. Perspectives Regarding the Role of Biochanin A in Humans. Front. Pharmacol. 2019, 10, 793. [Google Scholar] [CrossRef] [Green Version]
- Nestel, P.; Cehun, M.; Chronopoulos, A.; DaSilva, L.; Teede, H.; McGrath, B. A biochanin-enriched isoflavone from red clover lowers LDL cholesterol in men. Eur. J. Clin. Nutr. 2004, 58, 403–408. [Google Scholar] [CrossRef]
- Clifton-Bligh, P.B.; Baber, R.J.; Fulcher, G.R.; Nery, M.L.; Moreton, T. The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism. Menopause 2001, 8, 259–265. [Google Scholar] [CrossRef]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef]
- Witt, S.; Galicia, L.; Lisec, J.; Cairns, J.; Tiessen, A.; Araus, J.L.; Palacios-Rojas, N.; Fernie, A.R. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol. Plant 2021, 5, 401–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Bano, A.; Rahman, M.A.; Rathinasabapathi, B.; Babar, M.A. UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. 2018, 42, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought stress in plants: An overview. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar]
- Bhaskarla, V.; Zinta, G.; Ford, R.; Jain, M.; Varshney, R.K.; Mantri, N. Comparative root transcriptomics provide insights into drought adaptation strategies in chickpea (Cicer arietinum L.). Int. J. Mol. Sci. 2020, 21, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DGAC. Dirección Meteorológica De Chile, Contigo Todo El Tiempo. Available online: https://www.dgac.gob.cl/direccion-meteorologica-de-chile-contigo-todo-el-tiempo/ (accessed on 14 January 2022).
- BCN. Decreto 308—Declara Como Zona Afectada por Catástrofe a las Comunas de las Regiones de Coquimbo y Valparaíso que Indica. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1136546 (accessed on 14 January 2022).
- ODEPA. Estadísticas Productivas. Available online: https://www.odepa.gob.cl/estadisticas-del-sector/estadisticas-productivas (accessed on 15 December 2021).
- Mekky, R.H.; Contreras, M.D.; El-Gindi, M.R.; Abdel-Monem, A.R.; Abdel-Sattar, E.; Segura-Carretero, A. Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: A comparative study. RSC Adv. 2015, 5, 17751–17767. [Google Scholar] [CrossRef]
- Guardado-Felix, D.; Serna-Saldivar, S.O.; Cuevas-Rodriguez, E.O.; Jacobo-Velazquez, D.A.; Gutierrez-Uribe, J.A. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chem. 2017, 226, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yao, Y.; Zhu, Y.Y.; Ren, G.X. Isoflavone Content and Composition in Chickpea (Cicer arietinum L.) Sprouts Germinated under Different Conditions. J. Agric. Food Chem. 2015, 63, 2701–2707. [Google Scholar] [CrossRef]
- Wu, Z.; Song, L.; Feng, S.; Liu, Y.; He, G.; Yioe, Y.; Liu, S.Q.; Huang, D. Germination Dramatically Increases Isoflavonoid Content and Diversity in Chickpea (Cicer arietinum L.) Seeds. J. Agric. Food Chem. 2012, 60, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardelli, M.; Coppola, R.; Nazzaro, F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
- Herrera, M.D.; Acosta-Gallegos, J.A.; Reynoso-Camacho, R.; Perez-Ramirez, I.F. Common bean seeds from plants subjected to severe drought, restricted- and full-irrigation regimes show differential phytochemical fingerprint. Food Chem. 2019, 294, 368–377. [Google Scholar] [CrossRef]
- Raheja, S.; Girdhar, A.; Lather, V.; Pandita, D. Biochanin A: A phytoestrogen with therapeutic potential. Trends Food Sci. Technol. 2018, 79, 55–66. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Yang, X.D.; Xia, Z.L. Effects of Sodium Selenite and Germination on the Sprouting of Chickpeas (Cicer arietinum L.) and Its Content of Selenium, Formononetin and Biochanin A in the Sprouts. Biol. Trace Elem. Res. 2012, 146, 376–380. [Google Scholar] [CrossRef]
- Moenga, S.M.; Gai, Y.; Carrasquilla-Garcia, N.; Perilla-Henao, L.M.; Cook, D.R. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. Plant J. 2020, 104, 1195–1214. [Google Scholar] [CrossRef]
- Silva, M.B.R.; Falcão, H.G.; Kurozawa, L.E.; Prudencio, S.H.; de Camargo, A.C.; Shahidi, F.; Ida, E.I. Ultrasound- and hemicellulase-assisted extraction increase β-glucosidase activity, the content of isoflavone aglycones and antioxidant potential of soymilk. J. Food. Bioact. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Walsh, K.B.; Bhattarai, S.P.; Naiker, M. Partitioning of nutritional and bioactive compounds between the kernel, hull and husk of five new chickpea genotypes grown in Australia. Future Foods 2021, 4, 100065. [Google Scholar] [CrossRef]
- Han, I.H.; Baik, B. Oligosaccharide Content and Composition of Legumes and Their Reduction by Soaking, Cooking, Ultrasound, and High Hydrostatic Pressure. Cereal Chem. 2006, 83, 428–433. [Google Scholar] [CrossRef]
- Ayoub, M.; De Camargo, A.C.; Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef] [PubMed]
- De Camargo, A.C.; Regitano-d’Arce, M.A.B.; Gallo, C.R.; Shahidi, F. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J. Funct. Foods 2015, 12, 129–143. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic profiles and antioxidant activity of defatted camelina and sophia seeds. Food Chem. 2018, 240, 917–925. [Google Scholar] [CrossRef]
- Albishi, T.; Banoub, J.H.; de Camargo, A.C.; Shahidi, F. Wood extracts as unique sources of soluble and insoluble-bound phenolics: Reducing power, metal chelation and inhibition of oxidation of human LDL-cholesterol and DNA strand scission. J. Food Bioact. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Mudenuti, N.V.R.; de Camargo, A.C.; de Alencar, S.M.; Danielski, R.; Shahidi, F.; Madeira, T.B.; Hirooka, E.Y.; Spinosa, W.A.; Grossmann, M.V.E. Phenolics and alkaloids of raw cocoa nibs and husk: The role of soluble and insoluble-bound antioxidants. Food Biosci. 2021, 42, 101085. [Google Scholar] [CrossRef]
Sample | ‘California-INIA’ | ‘Alfa-INIA’ | ‘Local Navidad’ |
---|---|---|---|
Control | 2.39 ± 0.02 a | 2.47 ± 0.48 a | 2.75 ± 0.17 a |
Water stress | 0.12 ± 0.01 b | 0.10 ± 0.01 b | 0.14 ± 0.02 b |
Compound | MRM Transition 1 | DP | CE | CXP | MRM Transition 2 | DP | CE | CXP |
---|---|---|---|---|---|---|---|---|
Daidzein | 252.9 > 131.7 | −105 | −50 | −9 | 252.9 > 207.7 | −105 | −44 | −1 |
Formononetin | 267.1 > 251.6 | −110 | −26 | −9 | 267.1 > 222.9 | −110 | −46 | −9 |
Genistein | 268.8 > 133.0 | −170 | −38 | −43 | 268.8 > 181.0 | −170 | −34 | −13 |
Biochanin A | 282.9 > 267.9 | −80 | −32 | −5 | 282.9 > 211.1 | −80 | −46 | −5 |
Luteolin | 285.0 > 133.0 | −125 | −42 | −5 | 285.0 > 150.9 | −125 | −34 | −11 |
Kaempferol | 285.0 > 184.9 | −135 | −36 | −15 | 285.0 > 116.9 | −135 | −48 | −3 |
Apigenin | 268.9 > 117.0 | −130 | −40 | −9 | 268.9 > 150.9 | −130 | −32 | −5 |
Isorhamnetin | 315.0 > 299.9 | −130 | −32 | −15 | 315.0 > 150.9 | −130 | −40 | −11 |
Rutin | 609.0 > 299.8 | −170 | −50 | −13 | 609.0 > 300.5 | −170 | −42 | −9 |
Free Flavonoids | ‘California-INIA’ | ‘Alfa-INIA’ | ‘Local Navidad’ | |||
---|---|---|---|---|---|---|
Control | Water Stress | Control | Water Stress | Control | Water Stress | |
Daidzein | (+) | (+) | (+) | (+) | (+) | (+) |
Formononetin | (+) | (+) | (+) | (+) | (+) | (+) |
Genistein | (+) | (+) | (+) | (+) | (+) | (+) |
Biochanin A | (+) | (+) | (+) | (+) | (+) | (+) |
Luteolin | nd | nd | (+) | (+) | (+) | (+) |
Kaempferol | nd | nd | nd | nd | (+) | nd |
Apigenin | (+) | nd | (+) | (+) | (+) | nd |
Isorhamnetin | (+) | (+) | (+) | (+) | nd | (+) |
Rutin | (+) | nd | (+) | (+) | (+) | (+) |
Esterified Flavonoids | ‘California-INIA’ | ‘Alfa-INIA’ | ‘Local Navidad’ | |||
---|---|---|---|---|---|---|
Control | Water Stress | Control | Water Stress | Control | Water Stress | |
Daidzein | nd | (+) | nd | nd | nd | nd |
Formononetin | (+) | (+) | (+) | (+) | (+) | (+) |
Genistein | (+) | (+) | (+) | (+) | (+) | (+) |
Biochanin A | (+) | (+) | (+) | (+) | (+) | (+) |
Luteolin | nd | nd | nd | (+) | (+) | (+) |
Kaempferol | (+) | (+) | nd | nd | (+) | (+) |
Apigenin | nd | nd | nd | nd | nd | nd |
Isorhamnetin | nd | nd | nd | nd | nd | nd |
Rutin | (+) | (+) | (+) | (+) | (+) | (+) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Camargo, A.C.; Speisky, H.; Bridi, R.; Núñez Pizarro, P.; Larena, A.; Pinaffi-Langley, A.C.d.C.; Shahidi, F.; Schwember, A.R. Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition. Molecules 2022, 27, 691. https://doi.org/10.3390/molecules27030691
de Camargo AC, Speisky H, Bridi R, Núñez Pizarro P, Larena A, Pinaffi-Langley ACdC, Shahidi F, Schwember AR. Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition. Molecules. 2022; 27(3):691. https://doi.org/10.3390/molecules27030691
Chicago/Turabian Stylede Camargo, Adriano Costa, Hernán Speisky, Raquel Bridi, Paula Núñez Pizarro, Arturo Larena, Ana Clara da C. Pinaffi-Langley, Fereidoon Shahidi, and Andrés R. Schwember. 2022. "Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition" Molecules 27, no. 3: 691. https://doi.org/10.3390/molecules27030691
APA Stylede Camargo, A. C., Speisky, H., Bridi, R., Núñez Pizarro, P., Larena, A., Pinaffi-Langley, A. C. d. C., Shahidi, F., & Schwember, A. R. (2022). Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition. Molecules, 27(3), 691. https://doi.org/10.3390/molecules27030691