LC-MS/MS Screening, Total Phenolic, Flavonoid and Antioxidant Contents of Crude Extracts from Three Asclepiadaceae Species Growing in Jordan
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Phytochemical Analysis
2.2. LC-MS/MS Analysis of Phytochemicals
2.3. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.4. Antioxidant Activity
3. Materials and Methods
3.1. Plant Materials
3.2. Materials and Equipment
3.3. Extraction and Partitioning
3.4. Qualitative Phytochemical Analysis
3.5. LC-MS Analysis of Phytochemicals
3.6. Total Phenolic (TPC) and Total Flavonoid Contents (TFC)
3.7. Antioxidant and Radical Scavenging Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sengul, M.; Ercisli, S.; Yildiz, H.; Gungor, N.; Kavaz, A.; Cetin, B. Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. 2011, 10, 49–55. [Google Scholar]
- Zia-Ul-Haq, M.; Ahmad, S.; Qayum, M.; Ercisli, S. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds. Turk. J. Biol. 2013, 37, 25–32. [Google Scholar]
- Mollova, S.; Fidan, H.; Antonova, D.; Bozhilov, D.; Stanev, S.; Kostova, I.; Stoyanova, A. Chemical composition and antimicrobial and antioxidant activity of Helichrysum italicum (Roth) G. Don subspecies essential oils. Turk. J. Agric. For. 2020, 44, 371–378. [Google Scholar] [CrossRef]
- Subasi, I. Seed fatty acid compositions and chemotaxonomy of wild Crambe (Brassicaceae) taxa in Turkey. Turk. J. Agric. For. 2020, 44, 662–670. [Google Scholar] [CrossRef]
- Endress, M.E.; Liede-Schumann, S.; Meve, U. Advances in Apocynaceae: The enlightment, an introduction. Ann. Mo. Bot. Gard. 2007, 94, 259–267. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Fahim, H.I.; Boules, M.W.; Ahmed, H.Y. Cardiac and testicular toxicity effects of the latex and ethanolic leaf extract of Calotropis procera on male albino rats in comparison to abamectin. SpringerPlus 2016, 5, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabha, M.R.; Vasantha, K. Antioxidant, cytotoxicity and polyphenolic content of Calotropis procera (Ait.) R. Br. Flowers. J. Appl. Pharm. Sci. 2011, 1, 136–140. [Google Scholar]
- Barbosa-Fiho, J.M.; Medeiros, K.C.P.; Diniz, M.F.F.M.; Batista, L.M.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L.; Almeida, J.R.G.S.; Quintans-Junior, L.J. Natural products inhibitors of the enzime acetylcholinesterase. Rev. Bras. Farmacogn. 2006, 16, 258–285. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.G.; Alves, C.F.; Werli, A.A.; Braz-Filho, R. Metabolitos especiais isolados de Laseguia erecta (Apocynaceae). Rev. Bras. Farmacogn. 2006, 16, 497–500. [Google Scholar] [CrossRef] [Green Version]
- Ajitha, M.; Rajnarayana, K. Role of oxygen free radicals in human disease. Indian Drug. 2001, 38, 545–554. [Google Scholar]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef] [Green Version]
- Abdulhafiz, F.; Mohammed, A.; Kayat, F.; Bhaskar, M.; Hamzah, Z.; Podapati, S.K.; Reddy, L.V. Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS Analysis of Keladi Candik (Alocasia longiloba Miq). Molecules 2020, 25, 2658. [Google Scholar] [CrossRef] [PubMed]
- Abdulhafiz, F.; Mohammed, A.; Kayat, F.; Zakaria, S.; Hamzah, Z.; Reddy Pamuru, R.; Reduan, M.F.H. Micropropagation of Alocasia longiloba Miq and comparative antioxidant properties of ethanolic extracts of the field-grown plant, in vitro propagated and in vitro-derived callus. Plants 2020, 9, 816. [Google Scholar] [CrossRef] [PubMed]
- Al-Eisawi, D. List of Jordan vascular plants. Mitt. Bot. Munchen 1982, 18, 79–182. [Google Scholar]
- Mudi, S.Y.; Bukar, A. Anti-plasmodia activity of leaf extracts of Calotropis procera Linn. Biokemistri 2011, 23, 29–34. [Google Scholar]
- Parihar, G.; Sharma, A.; Ghule, S.; Sharma, P.; Deshmukh, P.; Srivastava, D. Anti-inflammatory effect of Calotropis procera root bark extract. Asian J. Pharm. Life Sci. 2011, 1, 29–44. [Google Scholar]
- Falguni, S. Range of Seasonal Phytochemical Variations in Calotropis procera. Int. J. Med. Arom Plants 2011, 1, 180–183. [Google Scholar]
- Gupta, A.; Singh, R.; Purwar, C.; Chauhan, D.; Singh, J. Two pentacyclic triterpenes from the stem of Calotropis procera. Indian J. Chem. 2003, 42B, 2030. [Google Scholar]
- Ansari, S.H.; Ali, M. New oleanene triterpenes from root bark of Calotropis procera (Ait.) R.Br. Indian J. Chem. 2000, 39B, 287. [Google Scholar]
- Samy, R.P.; Chow, V.T.K. Pilot study with regard to the wound healing activity of protein from Calotropis procera (Ait.) R. Br. Evid.-Based Complement. Altern. Med. 2012, 2012, 294528. [Google Scholar] [CrossRef] [Green Version]
- Moronkola, D.O.; Ogukwe, C.; Awokoya, K.N. Chemical compositions of leaf and stem essential oils of Calotropis procera Ait R.Br [Asclepiadaceae]. Chem. Sin. 2011, 2, 255–260. [Google Scholar]
- Al-Robal, A.A.; Abo-Khatwa, A.N.; Danish, E.Y. Toxicological studies on the latex of the usher plants Calotropis procera (Ait). R. Br. in Saudi Arabia 111. Effects of usher latex on the fine structures, Oxygen consumption and Na+/k+- transporting ATPase activity of albino rat kidneys. Arab-Gulf J. Sci. Res. 1993, 11, 441–445. [Google Scholar]
- Mueen, A.K.K.; Rana, A.C.; Dixit, V.K. Calotropis species (Asclepediaceae)-A comprehensive review. Pharmacogn. Mag. 2005, 1, 4852. [Google Scholar]
- Rasool, N.; Ahmad, V.U.; Malik, A. Two new triterpenoids from Pentatropis spiralis. Fitoterapia 1992, 63, 156–159. [Google Scholar] [CrossRef]
- Rasool, N.; Khan, A.Q.; Viqar, A.; Abdul, M. New cycloartane-type triterpene from Pentatropis spiralis. J. Nat. Prod. 1991, 54, 889–892. [Google Scholar] [CrossRef]
- Al-Qura’n, S. Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon 2005, 46, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Shabana, M.; Mirhom, Y.; Genenah, A.; Aboutabl, E.; Amer, H. Study into wild Egyptian plants of potential medicinal activity. ninth communication: Hypoglycaemic activity of some selected plants in normal fasting and alloxanised rats. Arch. Exp. Vet. 1990, 44, 389–394. [Google Scholar]
- Gohar, A.; El-Olemy, M.; Abdel-Sattar, E.; El-Said, M.; Niwa, M. Cardenolides and β-sitosterol glucoside from Pergularia tomentosa L. J. Nat. Prod. Sci. 2000, 63, 142–146. [Google Scholar]
- Hassan, S.W.; Umar, R.A.; Ladan, M.J.; Nyemike, P.; Wasagu, R.S.U.; Lawal, M.; Ebbo, A.A. Nutritive value, phytochemical and Antifungal Properties of Pergularia tomentosa L. (Asclepiadaceae). Int. J. Pharmacol. 2007, 3, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Bellakhdar, J.; La, P.; Marocaine, T. Me’decine Arabe Ancienne et Savoirs Populaires; Ibis Press: Paris, France, 1998. [Google Scholar]
- Benchelah, A.C.; Bouziane, H.; Maka, M.; Ouahes, C.; Monod, T. Fleurs du Sahara: Voyage Ethnobotanique Avec Les Touaregs du Tassili; Ibis Press: Paris, France, 2011. [Google Scholar]
- Piacente, S.; Masullo, M.; De Neve, N.; Dewelle, J.; Hamed, A.; Kiss, R.; Mijatovic, T. Cardenolides from Pergularia tomentosa display cytotoxic activity resulting from their potent inhibition of Na+/K+- ATPase. J. Nat. Prod. 2009, 72, 1087–1091. [Google Scholar] [CrossRef]
- Heneidak, S.; Grayer, R.J.; Kite, G.C.; Simmonds, M.S.J. Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). Biochem. Syst. Ecol. 2006, 34, 575–584. [Google Scholar] [CrossRef]
- Achenk, F.; Doumad-Mitiche, B. Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar Larvae of Locusta migratoria cinerascens. Int. J. Sci. Adv. Technol. 2013, 3, 8–13. [Google Scholar]
- Siddiqui, A.; Ali, M. Pratical Pharmaceutical Chemistry, 1st ed.; CBS Publish and Distributors: New Delhi, India, 1997; pp. 126–131. [Google Scholar]
- Al-Qudah, M.A.; Saleh, A.M.; Alhawsawi, N.L.; Al-Jaber, H.I.; Rizvi, S.A.; Afifi, F.U. Composition, antioxidant and cytotoxic activities of essential oils from Fresh and air-dried aerial parts of Pallenis spinosa. Chem. Biodivers. 2017, 14, e1700146. [Google Scholar] [CrossRef] [PubMed]
- Al-Qudah, M.A. Chemical composition of essential oil from Jordanian Lupinus varius L. Arab. J. Chem. 2013, 6, 225–227. [Google Scholar] [CrossRef] [Green Version]
- Al-Qudah, M.A.; Al-Ghoul, A.M.; Tarawneh, I.N.; Al-Jaber, H.I.; Al Shboul, T.M.; Abu Zarga, M.H.; Abu-Orabi, S.T. Antioxidant activity and chemical composition of essential oils from Jordanian Ononis natrix L. and Ononis Sicula Guss. J. Biol. Act. Prod. Nat. 2014, 4, 52–61. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Obeidat, S.M.; Saleh, A.M.; El-Oqlah, A.A.; Al-Masaeed, E.; Al-Jaber, H.I.; Abu-Orabi, S.T. Volatile components analysis, total phenolic, flavonoid contents, and antioxidant activity of Phlomis species collected from Jordan. J. Essent. Oil-Bear. Plants 2018, 21, 583–599. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Lahham, J.N. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Al-Qudah, M.A. Antioxidant activity and chemical composition of essential oils of fresh and air-dried Jordanian Nepeta curviflora Boiss. J. Biol. Act. Prod. Nat. 2016, 6, 101–111. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Obeidat, S.M.; Muhaidat, R.; Al-Trad, B.; Al-Jaber, H.I.; Lahham, J.N. Intercomparative investigation of the total phenols, total flavonoids, in vitro and in vivo antioxidant activities of Capparis Cartilaginea (Decne.) maire and weiller and Capparis Ovata Desf. from Jordan. Pharmacogn. Mag. 2018, 14, 154. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Tashtoush, H.I.; Khlaifat, E.F.; Ibrahim, S.O.; Saleh, A.M.; Al-Jaber, H.I.; Abu Orabi, S.T. Chemical constituents of the aerial parts of Salvia judaica Boiss. from Jordan. Nat. Prod. Res. 2020, 34, 2981–2985. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Allahham, F.E.; Obeidat, S.M.; Al-Jaber, H.I.; Lahham, J.N.; Abu Orabi, S.T. In vitro antioxidant activities, total phenolics and total flavonoids of the different extracts of Capparis spinosa L. and Capparis decidua Edgew (forssk.) from Jordan. Int. J. Pharm. Res. 2020, 12, 1226–1236. [Google Scholar] [CrossRef]
- Al-Jaber, H.I.; Abu Zarga, M.H.; Al-Aboudi, A.F.; Al-Qudah, M.A.; Al-Shawabkeh, A.F.; Abaza, I.F.; Afifi, F.U. Essential oil composition and anticholinesterase activity evaluation of Achillea fragrantissima growing wild in Jordan. J. Herbs Spices Med. Plants 2018, 24, 272–281. [Google Scholar] [CrossRef]
- Al-Jaber, H.I.; Hammad, H.M.; Al-Qudah, M.A.; Abaza, I.F.; Al-Humaidi, J.Y.; Abu-Zarga, M.H.; Afifi, F.U. Volatile oil composition and antiplatelet activity of Jordanian Achillea biebersteinii collected at different growth stages. J. Essent. Oil-Bear. Plants 2014, 17, 584–598. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Abu Zarga, M.H. Chemical composition of essential oils from aerial parts of Sisymbrium irio from Jordan. J. Chem. 2010, 7, 6–10. [Google Scholar] [CrossRef]
- Al-Humaidia, J.Y.; Al-Qudah, M.A.; Al-Saleema, M.S.; Alotaibia, S.M. Antioxidant activity and chemical composition of essential oils of selected cleome species growing in Saudi Arabia. Jordan J. Chem. 2019, 14, 29–37. [Google Scholar]
- Bedwell, S.; Dean, R.T.; Jessup, W. The action of defined oxygen-centred free radicals on human low-density lipoprotein. Biochem. J. 1989, 262, 707–712. [Google Scholar] [CrossRef]
Groups | C. procera | P. spiralis | P. tomentosa | ||||||
---|---|---|---|---|---|---|---|---|---|
B | A | W | B | A | W | B | A | W | |
Alkaloids | + | + | + | - | + | + | - | + | - |
Tannins | + | - | + | - | + | + | + | - | + |
Flavonoids | + | - | + | - | - | + | + | + | - |
Saponins | - | + | + | + | + | + | - | + | - |
Anthraquinone | - | - | - | - | - | - | - | - | - |
Glycosides | - | - | - | - | - | - | - | - | + |
Terpenoids | - | + | + | + | - | - |
No. | Rt Min | Compound | Relative Percentage Amounts (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C. procera | P. spiralis | P. tomentosa | |||||||||
B | A | W | B | A | W | B | A | W | |||
1 | 2.57 | 4-Hydroxybenzoic acid | 2.31 | 11.23 | - | - | - | - | 3.67 | 13.62 | - |
2 | 3.58 | Syringic acid | - | 5.36 | - | - | - | 0.29 | - | - | - |
3 | 4.45 | p-Coumaric acid | 5.21 | 15.83 | 0.14 | 0.82 | 2.38 | - | 4.26 | - | 0.29 |
4 | 5.15 | Ferulic acid | 6.42 | - | 0.78 | 10.20 | - | - | 2.31 | - | - |
5 | 5.16 | 3-Glu-7-Rha Quercetin | 2.24 | - | 8.64 | 7.36 | 3.12 | 10.88 | - | - | - |
6 | 5.44 | 3-Hydroxy-4-methoxycinnamic acid | - | - | 5.88 | - | - | - | 3.61 | 6.13 | 10.88 |
7 | 5.77 | Spiraeoside | 1.45 | 9.01 | - | 3.92 | 6.41 | - | - | - | - |
8 | 6.26 | Luteolin 7-O-glucoside | 6.51 | 1.45 | - | - | - | 4.13 | 11.91 | 2.45 | - |
9 | 6.54 | Kaempferol-3-O-glucoside | 20.36 | 5.12 | 4.13 | 1.11 | 2.59 | - | 21.63 | - | 4.13 |
10 | 6.99 | Kaempferol-7-O-glucoside | 8.41 | - | 0.29 | - | - | - | 16.90 | - | 0 |
11 | 8.53 | Quercetin | - | 3.85 | - | 0.60 | 9.60 | - | - | 4.76 | - |
12 | 10.08 | Kaempferol | - | - | - | 0.31 | 24.79 | - | - | - | - |
13 | 10.47 | Isorhamnetin | 9.14 | - | - | 2.64 | 7.77 | - | - | - | - |
14 | 13.89 | Kaempferide | - | - | - | 8.46 | 7.56 | - | - | - | - |
Extracts | TPC (mg/g Gallic Acid) | TFC (mg/g Quercetin) | ||||
---|---|---|---|---|---|---|
C. procera | P. spiralis | P. tomentosa | C. procera | P. spiralis | P. tomentosa | |
B | 377.2 ± 2.6 | 113.2 ± 2.3 | 311.50 ± 3.04 | 82.7 ± 1.3 | 168.5 ± 0.9 | 107.7 ± 1.5 |
A | 126.4 ± 4.5 | 59.2 ± 1.9 | 213.00 ± 1.32 | 52.3 ± 1.8 | 112.1 ± 1.1 | 69.9 ± 1.6 |
W | 181.5 ± 2.5 | 30.8 ± 1.6 | 62.00 ± 1.80 | 28.2 ± 2.8 | 104.3 ± 0.8 | 21.0 ± 0.8 |
Plant | Crude | DPPH | ABTS | HDR | FIC |
---|---|---|---|---|---|
C. procera | Butanol | 0.26 ± 0.02 | 0.10 ± 0.01 | 0.52 ± 0.01 | 1.31 ± 0.07 |
Aq. methanol | 0.35 ± 0.01 | 0.25 ± 3.0 × 10−3 | 0.86 ±0.02 | 0.85 ± 0.03 | |
Water | 0.40 ± 0.01 | 0.58 ± 0.02 | 0.06± 0.01 | 0.09 ± 0.01 | |
P. spiralis | Butanol | 0.15 ± 0.02 | 8.60 × 10−5 ± 1.0 × 10−5 | 0.29 ± 0.03 | 0.72 ± 0.02 |
Aq. methanol | 0.54 ± 0.04 | 0.07 ± 3.0 × 10−3 | 0.37 ± 0.02 | 1.77 ± 0.13 | |
Water | 1.16 ± 0.01 | 0.48 ± 0.01 | 1.16 ± 0.03 | 1.72 ± 0.02 | |
P. tomentosa | Butanol | 0.35 ± 0.04 | 0.11 ± 0.01 | 0.88 ± 0.02 | 2.67 ±0.23 |
Aq. methanol | 0.54 ± 0.01 | 0.15 ± 0.01 | 0.43 ± 0.09 | 0.26 ± 0.03 | |
Water | 0.83 ± 0.04 | 0.49 ± 0.02 | 0.72 ± 0.04 | 0.44 ± 0.01 | |
Ascorbic acid (Vit. C) | 1.78 × 10−3 ± 6.0 × 10−5 | 1.58 × 10−3 ± 3.0 × 10−5 | 2.6 × 10−3 ± 3.0 × 10−5 | 1.89 × 10−3 ± 2.00 × 10−5 | |
α-tocopherol | 2.33 × 10−3 ± 4.0 × 10−5 | 1.79 × 10−3 ± 1.0 × 10−5 | - | - | |
EDTA | - | - | 0.013 ± 1.5 × 10−5 | 0.02 ± 1.1 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dalahmeh, Y.; Al-Bataineh, N.; Al-Balawi, S.S.; Lahham, J.N.; Al-Momani, I.F.; Al-Sheraideh, M.S.; Mayyas, A.S.; Abu Orabi, S.T.; Al-Qudah, M.A. LC-MS/MS Screening, Total Phenolic, Flavonoid and Antioxidant Contents of Crude Extracts from Three Asclepiadaceae Species Growing in Jordan. Molecules 2022, 27, 859. https://doi.org/10.3390/molecules27030859
Al-Dalahmeh Y, Al-Bataineh N, Al-Balawi SS, Lahham JN, Al-Momani IF, Al-Sheraideh MS, Mayyas AS, Abu Orabi ST, Al-Qudah MA. LC-MS/MS Screening, Total Phenolic, Flavonoid and Antioxidant Contents of Crude Extracts from Three Asclepiadaceae Species Growing in Jordan. Molecules. 2022; 27(3):859. https://doi.org/10.3390/molecules27030859
Chicago/Turabian StyleAl-Dalahmeh, Yousef, Nezar Al-Bataineh, Sara S. Al-Balawi, Jamil N. Lahham, Idrees F. Al-Momani, Mohammed S. Al-Sheraideh, Abdulraouf S. Mayyas, Sultan T. Abu Orabi, and Mahmoud A. Al-Qudah. 2022. "LC-MS/MS Screening, Total Phenolic, Flavonoid and Antioxidant Contents of Crude Extracts from Three Asclepiadaceae Species Growing in Jordan" Molecules 27, no. 3: 859. https://doi.org/10.3390/molecules27030859
APA StyleAl-Dalahmeh, Y., Al-Bataineh, N., Al-Balawi, S. S., Lahham, J. N., Al-Momani, I. F., Al-Sheraideh, M. S., Mayyas, A. S., Abu Orabi, S. T., & Al-Qudah, M. A. (2022). LC-MS/MS Screening, Total Phenolic, Flavonoid and Antioxidant Contents of Crude Extracts from Three Asclepiadaceae Species Growing in Jordan. Molecules, 27(3), 859. https://doi.org/10.3390/molecules27030859