Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximal Chemical Composition
2.2. Determination of Color Parameters
2.3. Determination of Total, Soluble, and Insoluble Dietary Fiber
2.4. Determination of Total Starch
2.5. Mineral Content
2.6. Phenolic Content and Antioxidant Activity
2.6.1. Total Phenolic Content
2.6.2. Antioxidant Activity
3. Materials and Methods
3.1. Establishment of the Experiment
3.2. Proximal Chemical Analysis
3.3. Color Determination
- (a)
- CI, negative (−40 to −20), its value is related to the colors ranging from blue-violet to deep green.
- (b)
- CI, negative (−20 to −2), its value is related to the colors that go from deep green to yellowish green.
- (c)
- CI, between (−2 to +2), its value represents greenish yellow.
- (d)
- CI, positive (+2 to +20), is between the colors ranging from pale yellow to deep orange.
- (e)
- CI, positive (+20 to +40), relates to deep orange to deep red colors.
3.4. Preparation of Samples for Dietary Fiber, Total Phenols, and Antioxidant Activity
3.5. Determination of Total, Soluble, and Insoluble Dietary Fiber Content
3.6. Determination of Total Starch
3.7. Mineral Content Quantification
3.8. Total Phenol Content and Antioxidant Activity
3.8.1. Determination of Total Phenols by the Folin–Ciocalteu Method
3.8.2. Antioxidant Activity
Determination of Antioxidant Capacity by Free Radical Blocking (ABTS)
Determination of Antioxidant Activity by DPPH
3.9. Analysis of Results
4. Conclusions
5. Possible Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sammells, C.A. Haute Traditional Cuisines: How UNESCO’s List of Intangible Heritage Links the Cosmopolitan to the Local. In Edible Identities: Food as Cultural Heritage, 1st ed.; Brulotte, R.L., Di Giovin, M.A., Eds.; Ashgate Publishing Limited: Surrey, England, UK, 2014; pp. 141–158. [Google Scholar]
- Alvarez-Parrilla, E.; Mercado-Mercado, G.; La Rosa, L.A.D.; Díaz, J.A.L.; Wall-Medrano, A.; González-Aguilar, G.A. Antioxidant Activity and Prevention of Pork Meat Lipid Oxidation Using Traditional Mexican Condiments (Pasilla Dry Pepper, Achiote, and Mole Sauce). Food Sci. Technol. 2014, 34, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Gamonpilas, C.; Pongjaruvat, W.; Fuongfuchat, A.; Methacanon, P.; Seetapan, N.; Thamjedsada, N. Physicochemical and Rheological Characteristics of Commercial Chili Sauces as Thickened by Modified Starch or Modified Starch/Xanthan Mixture. J. Food Eng. 2011, 105, 233–240. [Google Scholar] [CrossRef]
- De Jesús Ornelas-Paz, J.; Martínez-Burrola, J.M.; Ruiz-Cruz, S.; Santana-Rodríguez, V.; Ibarra-Junquera, V.; Olivas, G.I.; Pérez-Martínez, J.D. Effect of Cooking on the Capsaicinoids and Phenolics Contents of Mexican Peppers. Food Chem. 2010, 119, 1619–1625. [Google Scholar] [CrossRef]
- Arcila-Lozano, C.C.; Loarca-Piña, G.; Lecona-Uribe, S.; González de Mejía, E. El Orégano: Propiedades, Composición y Actividad Biológica de sus Componentes. Arch. Latinoam. Nutr. 2004, 54, 100–111. [Google Scholar] [PubMed]
- Arora, D.S.; Kaur, J. Antimicrobial Activity of Spices. Int. J. Antimicrob. Agents 1999, 12, 257–262. [Google Scholar] [CrossRef]
- Guemes, N.; Quintero, A.; Aquino, E.N.; Hernandez, A.D. Physicochemical and Microbiological Characterization of Red and Green Mole from the Hidalgo Region (Mexico). In Proceedings of the 2004 IFT Annual Meeting, Las Vegas, NV, USA, 12–16 July 2004. [Google Scholar]
- Vignoni, L.A.; Césari, R.M.; Forte, M.; Mirábile, M.L. Determinación de Indice de Color En Ajo Picado. Inf. Tecnol. 2006, 17, 63–67. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for the Eastern Mediterranean; Healthy Diet; World Health Organization, Regional Office for the Eastern Mediterranean. 2019. Available online: https://apps.who.int/iris/handle/10665/325828 (accessed on 15 January 2022).
- Ozgur, M.; Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L. Functional Compounds and Antioxidant Properties of Dried Green and Red Peppers. Afr. J. Agric. Res. 2011, 6, 5638–5644. [Google Scholar] [CrossRef]
- Yazdizadeh Shotorbani, N.; Jamei, R.; Heidari, R. Antioxidant Activities of Two Sweet Pepper Capsicum Annuum L. Varieties Phenolic Extracts and the Effects of Thermal Treatment. Avicenna J. Phytomed. 2013, 3, 25–34. [Google Scholar]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in Phytochemical and Antioxidant Activity of Selected Pepper Cultivars (Capsicum Species) As Influenced by Maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef]
- Lee, Y.; Howard, L.R.; Villalón, B. Flavonoids and Antioxidant Activity of Fresh Pepper (Capsicum Annuum) Cultivars. J. Food Sci. 1995, 60, 473–476. [Google Scholar] [CrossRef]
- Lima, G.P.P.; do Vale Cardoso Lopes, T.; Rossetto, M.R.M.; Vianello, F. Nutritional Composition, Phenolic Compounds, Nitrate Content in Eatable Vegetables Obtained by Conventional and Certified Organic Grown Culture Subject to Thermal Treatment. Int. J. Food Sci. Technol. 2009, 44, 1118–1124. [Google Scholar] [CrossRef]
- Roy, M.K.; Takenaka, M.; Isobe, S.; Tsushida, T. Antioxidant Potential, Anti-Proliferative Activities, and Phenolic Content in Water-Soluble Fractions of Some Commonly Consumed Vegetables: Effects of Thermal Treatment. Food Chem. 2007, 103, 106–114. [Google Scholar] [CrossRef]
- López, J.; Uribe, E.; Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Gonzalez, E.; Di Scala, K. Effect of Air Temperature on Drying Kinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content, Non-Enzymatic Browning and Firmness of Blueberries Variety O´Neil. Food Bioprocess Technol. 2010, 3, 772–777. [Google Scholar] [CrossRef]
- Chen, M.-L.; Yang, D.-J.; Liu, S.-C. Effects of Drying Temperature on the Flavonoid, Phenolic Acid and Antioxidative Capacities of the Methanol Extract of Citrus Fruit (Citrus Sinensis (L.) Osbeck) Peels. Int. J. Food Sci. Technol. 2011, 46, 1179–1185. [Google Scholar] [CrossRef]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of Hot Air-Drying and Freeze-Drying on the Physicochemical Properties and Antioxidant Activities of Pumpkin (Cucurbita Moschata Duch.) Flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Chuah, A.M.; Lee, Y.-C.; Yamaguchi, T.; Takamura, H.; Yin, L.-J.; Matoba, T. Effect of Cooking on the Antioxidant Properties of Coloured Peppers. Food Chem. 2008, 111, 20–28. [Google Scholar] [CrossRef]
- Kuskoski, E.M.; Asuero, A.G.; García-Parilla, M.C.; Troncoso, A.M.; Fett, R. Actividad Antioxidante de Pigmentos Antociánicos. Food Sci. Technol. 2004, 24, 691–693. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of Blackberry Extract and Its Antiproliferative and Anti-Inflammatory Properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef]
- Materska, M.; Perucka, I. Antioxidant Activity of the Main Phenolic Compounds Isolated from Hot Pepper Fruit (Capsicum Annuum L.). J. Agric. Food Chem. 2005, 53, 1750–1756. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Martínez-Guirado, C.; del Mar Rebolloso-Fuentes, M.; Carrique-Pérez, A. Nutrient Composition and Antioxidant Activity of 10 Pepper (Capsicum Annuun) Varieties. Eur. Food Res. Technol. 2006, 224, 1–9. [Google Scholar] [CrossRef]
- Matsufuji, H.; Ishikawa, K.; Nunomura, O.; Chino, M.; Takeda, M. Anti-Oxidant Content of Different Coloured Sweet Peppers, White, Green, Yellow, Orange and Red (Capsicum Annuum L.). Int. J. Food Sci. Technol. 2007, 42, 1482–1488. [Google Scholar] [CrossRef]
- Helmja, K.; Vaher, M.; Gorbatšova, J.; Kaljurand, M. Characterization of Bioactive Compounds Contained in Vegetables of the Solanaceae Family by Capillary Electrophoresis. Proc. Estonian Acad. Sci. Chem. 2007, 56, 172–186. [Google Scholar]
- Ünver, A.; Arslan, D.; Özcan, M.M.; Akbulut, M. Phenolic Content and Antioxidant Activity of Some Spices. World Appl. Sci. J. 2009, 6, 373–377. [Google Scholar]
- Garau, M.C.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Air-Drying Temperature on Physico-Chemical Properties of Dietary Fibre and Antioxidant Capacity of Orange (Citrus Aurantium v. Canoneta) by-Products. Food Chem. 2007, 104, 1014–1024. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Goñi, I.; Martin-Carrón, N. In Vitro Fermentation and Hydration Properties of Commercial Dietary Fiber-Rich Supplements. Nutr. Res. 1998, 18, 1077–1089. [Google Scholar] [CrossRef]
- Ferguson, E.L.; Gibson, R.S.; Thompson, L.U.; Ounpuu, S.; Berry, M. Phytate, Zinc, and Calcium Contents of 30 East African Foods and Their Calculated Phytate:Zn, Ca:Phytate, and [Ca][Phytate]/[Zn] Molar Ratios. J. Food Compos. Anal. 1988, 1, 316–325. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Mole Type | Moisture (%) | Fat (%) | Protein (%) | Crude Fiber (%) | Ash (%) | NFE (%) |
---|---|---|---|---|---|---|
V | 21.74 ± 1.08 c | 58.25 ± 0.43 d | 4.90 ± 0.25 a | 3.20 ± 0.11 a | 1.15 ± 0.05 a | 10.7 ± 0.43 a |
R | 13.43 ± 0.60 b | 39.33 ± 0.03 b | 8.53 ± 0.42 b | 3.80 ± 0.09 a | 2.38 ± 0.10 b | 16.97 ± 0.45 b |
C | 11.30 ± 0.67 a | 35.47 ± 0.13 a | 9.53 ± 0.57 bc | 3.50 ± 0.17 a | 3.04 ± 0.09 c | 31.56 ± 1.01 c |
A | 13.26 ± 0.92 b | 36.65 ± 0.24 a | 10.78 ± 0.75 c | 3.10 ± 0.09 a | 3.13 ± 0.47 c | 33.06 ± 0.08 c |
P | 11.50 ± 0.43 a | 42.90 ± 0.19 c | 12.82 ± 0.64 d | 12.20 ± 0.98 b | 3.51 ± 0.54 c | 38.10 ± 0.33 d |
Mole Type | L* | b* | a* |
---|---|---|---|
V | 45.49 ± 0.10 c | 16.79 ± 0.13 c | 0.82 ± 0.38 d |
R | 27.34 ± 0.50 a | 5.80 ± 0.51 a | 3.51 ± 0.06 a |
C | 30.43 ± 0.48 b | 7.79 ± 0.24 b | 6.92 ± 0.26 b |
A | 31.87 ± 0.58 b | 8.47 ± 0.31 b | 8.00 ± 0.41 c |
P | 28.37 ± 0.45 a | 8.01 ± 0.30 b | 6.72 ± 0.17 b |
Mole Type | Color Index (CI) | Interval |
---|---|---|
V | −1.08 ± 0.26 c | Greenish yellow (−2 to +2) |
R | 22.22 ± 0.20 b | Deep orange to deep red ( +20 to +40) |
C | 29.17 ± 0.17 a | Deep orange to deep red (+20 to +40) |
A | 29.63 ± 0.10 a | Deep orange to deep red (+20 to +40) |
P | 29.580 ± 0.26 a | Deep orange to deep red (+20 to +40) |
Mole Type | TDF% | IDF% | SDF% | Total Starch% |
---|---|---|---|---|
V | 4.60 ± 0.09 a | 4.30 ± 0.01 a | 0.29 ± 0.01 a | 1.08 ± 0.02 b |
R | 12.20 ± 0.08 c | 10.40 ± 0.01 c | 1.89 ± 0.08 c | 2.42 ± 0.05 c |
C | 11.50 ± 0.02 c | 10.20 ± 0.02 c | 1.28 ± 0.04 b | 3.01 ± 0.01 d |
A | 11.80 ± 0.02 c | 10.03 ± 0.02 c | 1.46 ± 0.01 b | 2.36 ± 0.04 c |
P | 9.80 ± 0.01 b | 8.30 ± 0.01 b | 1.53 ± 0.02 b | 0.78 ± 0.01 a |
Mole Type | Magnesium | Sodium | Potassium | Calcium |
---|---|---|---|---|
Mg | Na | K | Ca | |
mg/100 g | mg/100 g | mg/100 g | mg/100 g | |
V | 66.89 ± 2.36 a | 315.16 ± 36.50 c | 552.85 ± 3.21 a | 110.91 ± 0.21 a |
R | 91.25 ± 1.78 b | 127.93 ± 10.47 a | 999.83 ± 10.08 b | 96.47 ± 2.74 b |
C | 105.31 ± 0.94 c | 115.77 ± 3.09 a | 1279.58 ± 4.38 d | 119.91 ± 5.03 a |
A | 111.33 ± 0.94 c | 181.93 ± 4.66 b | 987.79 ± 18.63 b | 96.06 ± 1.37 b |
P | 127.72 ± 3.22 d | 125.22 ± 4.96 a | 1420.5 ± 40.40 c | 115.08 ± 6.24 a |
Mole Type | mg GAE/100 g (dw) |
---|---|
V | 36.13 ± 0.27 a |
R | 49.13 ± 0.48 b |
C | 50.23 ± 0.53 b |
A | 79.49 ± 0.35 d |
P | 56.03 ± 0.40 c |
Mole Type | ABTS% | DPPH% |
---|---|---|
V | 25.60 ± 0.67 a | 10.23 ± 0.22 a |
R | 37.48 ± 0.48 b | 24.32 ± 0.45 d |
C | 41.47 ± 0.86 d | 19.69 ± 0.58 b |
A | 39.95 ± 0.44 c | 23.58 ± 0.075 d |
P | 35.30 ± 0.92 b | 21.51 ± 0.42 c |
Mole Type | ABTS mg AAE/100 g | DPPH mg AAE/100 g |
---|---|---|
V | 77.67 ± 0.47 a | 87.38 ± 0.82 a |
R | 92.12 ± 0.94 c | 116.32 ± 0.58 d |
C | 96.97 ± 1.19 d | 106.82 ± 1.05 b |
A | 95.12 ± 0.16 d | 114.82 ± 0.55 d |
P | 89.47 ± 0.88 b | 110.56 ± 1.13 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Montiel, R.; Medina-Pérez, G.; Vázquez-Nuñez, E.; Afanador-Barajas, L.; Hernández-Soto, I.; Ahmad Nayik, G.; González-Montiel, L.; Alkafafy, M. Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce. Molecules 2022, 27, 966. https://doi.org/10.3390/molecules27030966
Campos-Montiel R, Medina-Pérez G, Vázquez-Nuñez E, Afanador-Barajas L, Hernández-Soto I, Ahmad Nayik G, González-Montiel L, Alkafafy M. Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce. Molecules. 2022; 27(3):966. https://doi.org/10.3390/molecules27030966
Chicago/Turabian StyleCampos-Montiel, Rafael, Gabriela Medina-Pérez, Edgar Vázquez-Nuñez, Laura Afanador-Barajas, Iridiam Hernández-Soto, Gulzar Ahmad Nayik, Lucio González-Montiel, and Mohamed Alkafafy. 2022. "Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce" Molecules 27, no. 3: 966. https://doi.org/10.3390/molecules27030966
APA StyleCampos-Montiel, R., Medina-Pérez, G., Vázquez-Nuñez, E., Afanador-Barajas, L., Hernández-Soto, I., Ahmad Nayik, G., González-Montiel, L., & Alkafafy, M. (2022). Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce. Molecules, 27(3), 966. https://doi.org/10.3390/molecules27030966