The Bifurcated σ-Hole···σ-Hole Stacking Interactions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen Bonding: The σ-Hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen Bonding: An Electrostatically-Driven Highly Directional Noncovalent Interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef] [PubMed]
- Tarannam, N.; Shukla, R.; Kozuch, S. Yet Another Perspective on Hole Interactions. Phys. Chem. Chem. Phys. 2021, 23, 19948–19963. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond. Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Bryce, D.L.; Desiraju, G.R.; Frontera, A.; Legon, A.C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P.; et al. Definition of the Chalcogen Bond. Pure Appl. Chem. 2019, 91, 1889–1892. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. σ-Hole Interactions: Perspectives and Misconceptions. Crystals 2017, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, W. The σ-Hole···σ-Hole Stacking Interaction: An Unrecognized Type of Noncovalent Interaction. J. Chem. Phys. 2020, 153, 214302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W. The Face-to-Face σ-Hole···σ-Hole Stacking Interactions: Structures, Energies, and Nature. Crystals 2021, 11, 877. [Google Scholar] [CrossRef]
- Ghosh, K.; Frontera, A.; Chattopadhyay, S. A Theoretical Insight on the Anion···Anion Interactions Observed in the Solid State Structure of a Hetero-Trinuclear Complex. CrystEngComm 2021, 23, 1429–1438. [Google Scholar] [CrossRef]
- Wysokiński, R.; Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Ability of Lewis Acids with Shallow -Holes to Engage in Chalcogen Bonds in Different Environments. Molecules 2021, 26, 6394. [Google Scholar] [CrossRef]
- Scheiner, S. Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage. J. Phys. Chem. A 2021, 125, 6514–6528. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, A.; Zhang, J.; Xu, W.; Zhu, D. New Sulfur Bridged Neutral Annulenes. Structure, Physical Properties and Applications in Organic Field-Effect Transistors. Chem. Commun. 2011, 47, 905–907. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X. Sulfur Chemistry. Topics in Current Chemistry Collections; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Turkoglu, G.; Cinar, M.E.; Ozturk, T. Thiophene-Based Organic Semiconductors. Top Curr. Chem. 2017, 375, 84. [Google Scholar] [CrossRef]
- Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P.S. Halogen Bonds in Biological Molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolář, M.; Hostaš, J.; Hobza, P. The Strength and Directionality of a Halogen Bond are Co-Determined by the Magnitude and Size of the σ-Hole. Phys. Chem. Chem. Phys. 2014, 16, 9987–9996. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ji, B.; Zhang, Y. Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. J. Phys. Chem. A 2009, 113, 8132–8135. [Google Scholar] [CrossRef] [PubMed]
- Evenson, S.J.; Rasmussen, S.C. N-Acyldithieno[3,2-b:2’,3’-d]pyrroles: Second Generation Dithieno[3,2-b:2’,3’-d]pyrrole Building Blocks with Stabilized Energy Levels. Org. Lett. 2010, 12, 4054–4057. [Google Scholar] [CrossRef]
- Kozaki, M.; Tanaka, S.; Yamashita, Y. Preparation and Properties of Novel Polythiophenes Containing 1,3-Dithiol-2-ylidene Moieties. J. Org. Chem. 1994, 59, 442–450. [Google Scholar] [CrossRef]
- Mitsudo, K.; Shimohara, S.; Mizoguchi, J.; Mandai, H.; Suga, S. Synthesis of Nitrogen-Bridged Terthiophenes by Tandem Buchwald-Hartwig Coupling and Their Properties. Org. Lett. 2012, 14, 2702–2705. [Google Scholar] [CrossRef]
- Wang, W.; Sun, T.; Zhang, Y.; Wang, Y.B. The Benzene···Naphthalene Complex: A more Challenging System than the Benzene Dimer for newly Developed Computational Methods. J. Chem. Phys. 2015, 143, 114312. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Wang, Y.B. Highly Accurate Benchmark Calculations of the Interaction Energies in the Complexes C6H6···C6X6 (X = F, Cl, Br, and I). Int. J. Quantum Chem. 2017, 117, e25345. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Difference of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Ringer, A.L.; Sherrill, C.D. First Principles Computation of Lattice Energies of Organic Solids: The Benzene Crystal. Chem. Eur. J. 2008, 14, 2542–2547. [Google Scholar] [CrossRef]
- Řezáč, J.; Riley, K.E.; Hobza, P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011, 7, 2427–2438. [Google Scholar] [CrossRef]
- Hohenstein, E.G.; Sherrill, C.D. Density Fitting and Cholesky Decomposition Approximations in Symmetry-Adapted Perturbation Theory: Implementation and Application to Probe the Nature of π-π Interactions in Linear Acenes. J. Chem. Phys. 2010, 132, 184111. [Google Scholar] [CrossRef] [Green Version]
- Hohenstein, E.G.; Parrish, R.M.; Sherrill, C.D.; Turney, J.M.; Schaefer, H.F. Efficient Evaluation of Triple Excitations in Symmetry-Adapted Perturbation Theory via Second-Order Møller-Plesset Perturbation Theory Natural Orbitals. J. Chem. Phys. 2011, 135, 174017. [Google Scholar] [CrossRef] [PubMed]
- Parrish, R.M.; Burns, L.A.; Smith, D.G.A.; Simmonett, A.C.; DePrince, A.E., III; Hohenstein, E.G.; Bozkaya, U.; Sokolov, Y.A.; Di Remigio, R.; Richard, R.M.; et al. PSI4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, Y.; Wang, Y.B. Noncovalent π···π Interaction between Graphene and Aromatic Molecule: Structure, Energy, and Nature. J. Chem. Phys. 2014, 140, 094302. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Atoms in Molecules−A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Biegler-König, F.; Schönbohm, J.; Bayles, D. AIM2000-A Program to Analyze and Visualize Atoms in Molecules. J. Comput. Chem. 2001, 22, 545–559. [Google Scholar]
- Bader, R.F.W.; Carroll, M.T.; Cheeseman, J.R.; Chang, C. Properties of Atoms in Molecules: Atomic Volumes. J. Am. Chem. Soc. 1987, 109, 7968–7979. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Interaction and Polarization Energy Relationships in σ-Hole and π-Hole Bonding. Crystals 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. A 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Hohenstein, E.G.; Duan, J.; Sherrill, C.D. Origin of the Surprising Enhancement of Electrostatic Energies by Electron-Donating Substituents in Substituted Sandwich Benzene Dimers. J. Am. Chem. Soc. 2011, 133, 13244–13247. [Google Scholar] [CrossRef]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Appllcatlons. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Wang, W.; Wong, N.B.; Zheng, W.; Tian, A. Theoretical Study on the Blueshifting Halogen Bond. J. Phys. Chem. A 2004, 108, 1799–1805. [Google Scholar] [CrossRef]
- Grabowski, S.J. QTAIM Characteristics of Halogen Bond and Related Interactions. J. Phys. Chem. A 2012, 116, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Hydrogen Bonding-New Insights; Springer: New York, NY, USA, 2006. [Google Scholar]
Dimer | D | ∠CSS | |
---|---|---|---|
UPICAY-D | dS1···S3 = 3.337 | ∠C1S1S3 = 173; ∠C4S3S1 = 173 | −3.60 |
dS1···S4 = 3.520 | ∠C2S1S4 = 166; ∠C6S4S1 = 176 | ||
dS2···S3 = 3.520 | ∠C3S2S3 = 176; ∠C5S3S2 = 166 | ||
WEPGON-D | dS1···S4 = 3.426 | ∠C1S1S4 = 169; ∠C5S4S1 = 164 | −3.16 |
dS2···S3 = 3.426 | ∠C2S2S3 = 164; ∠C4S3S2 = 169 | ||
dS2···S4 = 3.520 | ∠C3S2S4 = 171; ∠C6S4S2 = 171 | ||
XEGNAA-D | dS1···S5 = 3.481 | ∠C1S1S5 = 179; ∠C8S5S1 = 171 | −4.73 |
dS1···S6 = 3.690 | ∠C2S1S6 = 156; ∠C10S6S1 = 174 | ||
dS2···S4 = 3.481 | ∠C3S2S4 = 171; ∠C6S4S2 = 179 | ||
dS2···S5 = 3.161 | ∠C4S2S5 = 175; ∠C9S5S2 = 175 | ||
dS3···S4 = 3.690 | ∠C5S3S4 = 174; ∠C7S4S3 = 156 | ||
XEGNEE-D | dS1···S3 = 3.238 | ∠C1S1S3 = 175; ∠C4S3S1 = 178 | −3.40 |
dS1···S4 = 3.332 | ∠C2S1S4 = 171; ∠C6S4S1 = 179 | ||
dS2···S3 = 3.483 | ∠C3S2S3 = 178; ∠C5S3S2 = 166 |
UPICAY-D | WEPGON-D | XEGNAA-D | XEGNEE-D | |
---|---|---|---|---|
−3.60 | −3.16 | −4.73 | −3.40 | |
−3.58 | −3.25 | −4.83 | −3.66 | |
Eelst | −3.82 | −3.86 | −5.48 | −4.86 |
Eexch | 9.15 | 9.74 | 15.54 | 12.66 |
Eind | −1.41 | −1.41 | −2.41 | −2.03 |
Escs-disp | −7.50 | −7.73 | −12.49 | −9.43 |
Eelst% 1 | 30% | 30% | 27% | 30% |
Eind% 1 | 11% | 11% | 12% | 12% |
Escs-disp 1 | 59% | 59% | 61% | 58% |
Dimer | Contact | ρb | ▽2ρb | λ1 | λ2 | λ3 | Ε |
---|---|---|---|---|---|---|---|
UPICAY-D | S1···S3 | 0.0098 | 0.0320 | −0.0071 | −0.0056 | 0.0446 | 0.2688 |
S1···S4 | 0.0068 | 0.0230 | −0.0046 | −0.0035 | 0.0311 | 0.2983 | |
S2···S3 | 0.0068 | 0.0230 | −0.0046 | −0.0035 | 0.0311 | 0.2983 | |
WEPGON-D | S1···S4 | 0.0086 | 0.0279 | −0.0063 | −0.0049 | 0.0391 | 0.2901 |
S2···S3 | 0.0086 | 0.0279 | −0.0063 | −0.0049 | 0.0391 | 0.2901 | |
S2···S4 | 0.0069 | 0.0231 | −0.0046 | −0.0036 | 0.0313 | 0.2613 | |
XEGNAA-D | S1···S5 | 0.0071 | 0.0244 | −0.0048 | −0.0036 | 0.0328 | 0.3061 |
S1···S6 | 0.0051 | 0.0172 | −0.0033 | −0.0025 | 0.0230 | 0.3233 | |
S2···S4 | 0.0071 | 0.0244 | −0.0048 | −0.0036 | 0.0328 | 0.3061 | |
S2···S5 | 0.0138 | 0.0430 | −0.0109 | −0.0081 | 0.0620 | 0.3470 | |
S3···S4 | 0.0051 | 0.0172 | −0.0033 | −0.0025 | 0.0230 | 0.3233 | |
XEGNEE-D | S1···S3 | 0.0117 | 0.0378 | −0.0086 | −0.0069 | 0.0533 | 0.2508 |
S1···S4 | 0.0096 | 0.0320 | −0.0069 | −0.0052 | 0.0441 | 0.3263 | |
S2···S3 | 0.0072 | 0.0245 | −0.0049 | −0.0036 | 0.0330 | 0.3422 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, W. The Bifurcated σ-Hole···σ-Hole Stacking Interactions. Molecules 2022, 27, 1252. https://doi.org/10.3390/molecules27041252
Zhang Y, Wang W. The Bifurcated σ-Hole···σ-Hole Stacking Interactions. Molecules. 2022; 27(4):1252. https://doi.org/10.3390/molecules27041252
Chicago/Turabian StyleZhang, Yu, and Weizhou Wang. 2022. "The Bifurcated σ-Hole···σ-Hole Stacking Interactions" Molecules 27, no. 4: 1252. https://doi.org/10.3390/molecules27041252
APA StyleZhang, Y., & Wang, W. (2022). The Bifurcated σ-Hole···σ-Hole Stacking Interactions. Molecules, 27(4), 1252. https://doi.org/10.3390/molecules27041252