LC-ESI-MS/MS Polyphenolic Profile and In Vitro Study of Cosmetic Potential of Aerva lanata (L.) Juss. Herb Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimisation of Accelerated Solvent Extraction Conditions
2.2. Statistical Analysis
2.2.1. Pearson’s Correlation Coefficients
2.2.2. Clustering Analysis
2.3. Polyphenolic Composition and Biological Activities of Selected A. lanata (L.) Juss. Extracts
2.3.1. LC-ESI-MS/MS-MRM Analysis of Polyphenols
2.3.2. Oxygen Radical Absorbance Capacity (ORAC)
2.3.3. Chelating Power (CHEL)
2.3.4. Pro-Oxidant Enzyme Activity
2.4. Statistical Correlations between the Biological Activities and the Content of Phenolic Compounds in Selected A. lanata (L.) Juss. Extracts
2.5. Skin Ageing-Related Enzyme Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Preparation of Plant Extracts
3.4. Determination of Total Phenolic and Flavonoid Contents
3.4.1. Total Phenolic Content
3.4.2. Total Flavonoid Content
3.5. Determination of Antioxidant Capacity
3.5.1. Scavenging Activity of DPPH• Radical
3.5.2. Scavenging Activity of ABTS•+ Radical
3.5.3. Oxygen Radical Absorbance (ORAC) Assay
3.5.4. Metal-Chelating Activity (CHEL)
3.6. Inhibition of Pro-Oxidant Enzymes
3.6.1. Inhibition of LOX Activity
3.6.2. Inhibition of XO Activity
3.7. Inhibition of Skin Ageing-Related Enzyme Inhibitory Activity
3.7.1. Anti-Tyrosinase Activity
3.7.2. Anti-Elastase Activity
3.7.3. Anti-Collagenase Activity
3.7.4. Anti-Hyaluronidase Activity
3.8. LC-ESI-MS/MS Analysis
3.9. Statistical Analysis
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kumar, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal. 2017, 7, 349–364. [Google Scholar] [CrossRef] [PubMed]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; da Machado, A.P.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Riya, M.P.; Antu, K.A.; Pal, S.; Srivastava, A.K.; Sharma, S.; Raghu, K.G. Nutraceutical potential of Aerva lanata (L.) Juss. ex Schult ameliorates secondary complications in streptozotocin-induced diabetic rats. Food Funct. 2014, 5, 2086–2095. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.; Madan, S.; Ahmad, S.; Sharma, A.K.; Ansari, M.H.R. Antiurolithic efficacy of a phenolic rich ethyl acetate fraction of the aerial parts of Aerva lanata (Linn) Juss. ex Schult. in ethylene glycol induced urolithic rats. J. Pharm. Pharmacol. 2021, 73, 560–572. [Google Scholar] [CrossRef]
- Kumar, G.; Karthik, L.; Rao, K.V.B. Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. ex Schult. Stem (Amaranthaceae). Asian Pac. J. Trop. Med. 2013, 6, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Ankul Singh, S.; Gowri, K.; Chitra, V.A. Review on phytochemical constituents and pharmacological activities of the plant: Aerva lanata. Res. J. Pharm. Technol. 2020, 13, 1580–1586. [Google Scholar] [CrossRef]
- Shikov, A.N.; Narkevich, I.A.; Flisyuk, E.V.; Luzhanin, V.G.; Pozharitskaya, O.N. Medicinal plants from the 14th edition of the Russian Pharmacopoeia, recent updates. J. Ethnopharmacol. 2021, 268, 113685. [Google Scholar] [CrossRef]
- Pieczykolan, A.; Pietrzak, W.; Gawlik-Dziki, U.; Nowak, R. Antioxidant, anti-Inflammatory, and anti-diabetic activity of phenolic acids fractions obtained from Aerva lanata (L.) Juss. Molecules 2021, 26, 3486. [Google Scholar] [CrossRef]
- Pieczykolan, A.; Pietrzak, W.; Nowak, R.; Pielczyk, J.; Łamacz, K. Optimization of extraction conditions for determination of tiliroside in Tilia L. flowers using an LC-ESI-MS/MS Method. J. Anal. Methods Chem. 2019, 2019, 9052425. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Łyko, L.; Nowak, R. Influence of Accelerated Solvent Extraction conditions on the LC-ESI-MS/MS polyphenolic profile, triterpenoid content, and antioxidant and anti-lipoxygenase activity of Rhododendron luteum Sweet Leaves. Antioxidants 2020, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Cvetanović, A.; Gašić, U.; Tešić, Ž.; Stupar, A.; Bulut, G.; Ibrahime, K.; Uysal, S.; Carene, M.; Picot-Allain, N.; et al. A comparative exploration of the phytochemical profiles and bio-pharmaceutical potential of Helichrysum stoechas subsp. barrelieri extracts obtained via five extraction techniques. Process Biochem. 2020, 91, 113–125. [Google Scholar] [CrossRef]
- Rajesh, R.; Chitra, K.; Paarakh, P.M. Aerva lanata (Linn.) Juss. ex Schult.—An overview. Indian J. Nat. Prod. Resour. 2011, 2, 5–9. [Google Scholar]
- Chawla, P.; Chawla, A.; Vasudeva, N.; Sharma, S.K. A review of chemistry and biological activities of the genus Aerva—A desert plant. Acta Pol. Pharm. Drug Res. 2012, 69, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, W.; Nowak, R.; Olech, M. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis. Chem. Pap. 2014, 68, 976–982. [Google Scholar] [CrossRef]
- Sut, S.; Dall’Acqua, S.; Zengin, G.; Senkardes, I.; Bulut, G.; Cvetanović, A.; Stupar, A.; Mandić, A.; Picot-Allain, C.; Dogan, A.; et al. Influence of different extraction techniques on the chemical profile and biological properties of Anthemis cotula L.: Multifunctional aspects for potential pharmaceutical applications. J. Pharm. Biomed. Anal. 2019, 173, 75–85. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Bursać Kovačević, D. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Gil-Chávez, G.J.; Villa, J.A.; Ayala-Zavala, J.F.; Heredia, J.B.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Chew, K.K.; Ng, S.Y.; Thoo, Y.Y.; Khoo, M.Z.; Wan Aida, W.M.; Ho, C.W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. Int. Food Res. J. 2011, 18, 571–578. [Google Scholar]
- Giergielewicz-Możajska, H.; Dąbrowski, Ł.; Namieśnik, J. Accelerated Solvent Extraction (ASE) in the analysis of environmental solid samples—Some aspects of theory and practice. Crit. Rev. Anal. Chem. 2001, 31, 149–165. [Google Scholar] [CrossRef]
- Nandasiri, R.; Eskin, N.A.M.; Thiyam-Höllander, U. Antioxidative polyphenols of canola meal extracted by high pressure: Impact of temperature and solvents. Food Chem. 2019, 84, 3117–3128. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z. Concurrent extraction and transformation of bioactive phenolic compounds from rapeseed meal using pressurized solvent extraction system. Ind. Crop. Prod. 2016, 94, 152–159. [Google Scholar] [CrossRef]
- Akanji, M.A.; Olukolu, S.O.; Kazeem, M.I. Leaf extracts of Aerva lanata inhibit the activities of type 2 diabetes-related enzymes and possess antioxidant properties. Oxid. Med. Cell. Longev. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chewchinda, S.; Kongkiatpaiboon, S.; Sithisarn, P. Evaluation of antioxidant activities, total phenolic and total flavonoid contents of aqueous extracts of leaf, stem, and root of Aerva lanata. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 345–357. [Google Scholar] [CrossRef]
- Riya, M.P.; Antu, K.A.; Pal, S.; Chandrakanth, K.C.; Anilkumar, K.S.; Tamrakar, A.K.; Srivastava, A.K.; Raghu, K.G. Antidiabetic property of Aerva lanata (L.) Juss. ex Schult. is mediated by inhibition of alpha glucosidase, protein glycation and stimulation of adipogenesis. J. Diabetes 2015, 7, 548–561. [Google Scholar] [CrossRef]
- Corrêa, W.R.; Serain, A.F.; Aranha Netto, L.; Marinho, J.V.N.; Arena, A.C.; Aquino, D.F.D.S.; Kuraoka-Oliveira, Â.M.; Jorge, A.; Bernal, L.P.T.; Kassuya, C.A.L.; et al. Anti-inflammatory and antioxidant properties of the extract, tiliroside, and patuletin 3-O-β-D-glucopyranoside from Pfaffia townsendii (Amaranthaceae). Evid. Based Complement. Altern. Med. 2018, 2018, 2411–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carola, C.; Pfluecker, F.; Graf, R.; Epstein, H.; Wirth, C. Tiliroside and dihydroxy methylchromone: From nature to cosmetic applications. J. Appl. Cosmetol. 2010, 123, 109–123. [Google Scholar]
- Takeda, S.; Shimoda, H.; Takarada, T.; Imokawa, G. Strawberry seed extract and its major component, tiliroside, promote ceramide synthesis in the stratum corneum of human epidermal equivalents. PLoS ONE 2018, 13, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chatzigeorgiou, S.; Thai, Q.D.; Tchoumtchoua, J.; Tallas, K.; Tsakiri, E.N.; Papassideri, I.; Halabalaki, M.; Skaltsounis, A.L.; Trougakos, I.P. Isolation of natural products with anti-ageing activity from the fruits of Platanus orientalis. Phytomedicine 2017, 33, 53–61. [Google Scholar] [CrossRef]
- Lu, Y.H.; Chen, J.; Wei, D.Z.; Wang, Z.T.; Tao, X.Y. Tyrosinase inhibitory effect and inhibitory mechanism of tiliroside from raspberry. J. Enzyme Inhib. Med. Chem. 2009, 24, 1154–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, C.; Buccholz, H.; Carola, C. Cosmetic Forumulations Containing Flavonoid Derivatives. U.S. Patent US 2004/0092606A1, 29 April 2004. [Google Scholar]
- Buchholz, H.; Wirth, C. Use of Flavonoid-Derivatives Fot the Treatment of Atopic Eczema. European Patent EP 1 393 733 B1, 23 August 2006. [Google Scholar]
- Courtin, O. Combination of a Tiliroside and a Peptide. U.S. Patent US 2011/0144565 A1, 16 June 2011. [Google Scholar]
- Athira, P.; Nair, S.N. Pharmacognostic review of medicinal plant Aerva lanata. J. Pharm. Sci. Res. 2017, 9, 1420–1423. [Google Scholar]
- Devi, P.; Merlin, N.J.; Madhumitha, B.; Meera, R. Wound healing property of Aerva lanata leaves extract. Res. J. Pharm. Technol. 2009, 2, 210–211. [Google Scholar]
- Perera, H.D.S.M.; Samarasekera, J.K.R.R.; Handunnetti, S.M.; Weerasena, O.V.D.S.J.; Weeratunga, H.D.; Jabeen, A.; Choudhary, M.I. In vitro pro-inflammatory enzyme inhibition and anti-oxidant potential of selected Sri Lankan medicinal plants. BMC Complement. Altern. Med. 2018, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Advances in the analytical methods for determining the antioxidant properties of honey: A review. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Zeljković, S.Ć.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants 2021, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kaur, G. An insight into the role of citrus bioactives in modulation of colon cancer. J. Funct. Foods 2015, 13, 239–261. [Google Scholar] [CrossRef]
- Mohos, V.; Pánovics, A.; Fliszár-Nyúl, E.; Schilli, G.; Hetényi, C.; Mladěnka, P.; Needs, P.W.; Kroon, P.A.; Pethő, G.; Poór, M. Inhibitory effects of quercetin and its human and microbial metabolites on xanthine oxidase enzyme. Int. J. Mol. Sci. 2019, 20, 2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.T.; Jang, Y.; Myung, S.W.; Lee, J.M.; Kim, H.S.; Ko, S.C.; Lee, S.H. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish. Aquat. Sci. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- García-Gavín, J.; González-Vilas, D.; Fernández-Redondo, V.; Toribio, J. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermat. 2010, 62, 63–64. [Google Scholar] [CrossRef]
- Olech, M.; Nowak, R.; Los, R.; Rzymowska, J.; Malm, A.; Chrusciel, K. Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb. Cent. Eur. J. Biol. 2012, 7, 172–182. [Google Scholar] [CrossRef]
- Lamaison, J.L.C.; Carnet, A. Teneurs en principaux flavonoides des fleurs de Cratageus monogyna Jacq et de Cratageus laevigata (Poiret D.C) en Fonction de la vegetation. Pharm. Acta Helv. 1990, 65, 315–320. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Ciz, M.; Lojek, A.; Vasicek, O.; Nedelcheva, P.; Blazheva, D.; Toshkova, R.; Gardeva, E.; Yossifova, L.; et al. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem. 2014, 157, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, B.; Cheesbrough, T.M.; Laakso, S. [53] Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate:oxygen oxidoreductase. Methods Enzymol. 1981, 71, 441–451. [Google Scholar]
- Sweeney, A.P.; Wyllie, S.G.; Shalliker, R.A.; Markham, J.L. Xanthine oxidase inhibitory activity of selected Australian native plants. J. Ethnopharmacol. 2001, 75, 273–277. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crops Prod. 2014, 53, 244–251. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Szewczyk, K.; Pietrzak, W.; Klimek, K.; Miazga-Karska, M.; Firlej, A.; Flisiński, M.; Grzywa-Celińska, A. Flavonoid and phenolic acids content and in vitro study of the potential anti-aging properties of Eutrema japonicum (Miq.) Koidz cultivated in wasabi farm Poland. Int. J. Mol. Sci. 2021, 22, 6219. [Google Scholar] [CrossRef] [PubMed]
- Mandrone, M.; Lorenzi, B.; Venditti, A.; Guarcini, L.; Bianco, A.; Sanna, C.; Ballero, M.; Poli, F.; Antognoni, F. Antioxidant and anti-collagenase activity of Hypericum hircinum L. Ind. Crops Prod. 2015, 76, 402–408. [Google Scholar] [CrossRef]
- Younis, I.Y.; El-Hawary, S.S.; Eldahshan, O.A.; Abdel-Aziz, M.M.; Ali, Z.Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bogucka-Kocka, A.; Vorobets, N.; Chrząszcz, M.; Pietrzak, W.; Szewczyk, K. Polyphenol composition of extracts of the fruits of Laserpitium krapffii Crantz and their antioxidant and cytotoxic activity. Antioxidants 2019, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olech, M.; Pietrzak, W.; Nowak, R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa Thunb. leaves and achenes using LC-ESI-MS/MS-MRM methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | EEx (%) | TPC | TFC | DPPH• | ABTS•+ |
---|---|---|---|---|---|
E100 (60 °C) | 3.56 | 15.83 a ± 0.25 | 5.53 ab ± 0.15 | 10.07 a ± 0.23 | 9.90 a ± 0.01 |
E100 (80 °C) | 5.20 | 18.48 ab ± 0.56 | 8.32 b ± 0.35 | 9.17 a ± 0.07 | 12.77 ac ± 0.00 |
E100 (100 °C) | 6.69 | 25.03 c ± 0.14 | 8.52 b ± 0.52 | 10.28 a ± 0.46 | 12.31 ac ± 0.21 |
E100 (180 °C) | 12.20 | 45.20 d ± 0.25 | 11.54 c ± 0.28 | 72.48 b ± 0.91 | 98.94 b ± 1.75 |
E80 (60 °C) | 7.63 | 15.91 a ± 0.09 | 6.53 ab ± 0.06 | 19.86 cd ± 0.01 | 11.60 ac ± 0.10 |
E80 (80 °C) | 8.07 | 14.62 a ± 0.45 | 7.46 ab ± 0.09 | 18.02 ci ± 0.09 | 14.37 c ± 0.28 |
E80 (100 °C) | 10.00 | 33.58 e ± 0.27 | 9.43 bc ± 0.85 | 48.43 f ± 1.60 | 50.22 e ± 0.36 |
E80 (180 °C) | 19.31 | 46.24 d ± 0.91 | 12.89 c ± 0.92 | 119.85 g ± 1.95 | 107.58 f ± 1.32 |
E50 (60 °C) | 12.32 | 28.78 f ± 0.56 | 6.79 ab ± 0.18 | 24.84 e ± 0.52 | 34.72 g ± 0.80 |
E50 (80 °C) | 10.15 | 31.92 e ± 0.12 | 6.92 ab ± 0.08 | 23.28 e ± 0.00 | 36.11 g ± 1.06 |
E50 (100 °C) | 10.58 | 50.18 g ± 1.05 | 7.10 ab ± 0.24 | 24.28 e ± 1.18 | 33.61 g ± 0.83 |
E50 (180 °C) | 31.22 | 53.43 h ± 2.05 | 11.70 c ± 0.30 | 82.63 h ± 0.90 | 81.16 h ± 3.81 |
W (60 °C) | 15.23 | 19.69 b ± 0.24 | 4.10 a ± 0.21 | 15.22 i ± 0.71 | 38.61 d ± 0.48 |
W (80 °C) | 16.58 | 22.88 c ± 1.00 | 3.66 a ± 0.25 | 16.27 i ± 0.67 | 42.16 j ± 0.34 |
W (100 °C) | 17.50 | 20.89 b ± 0.23 | 5.35 ab ± 0.19 | 21.71 de ± 0.94 | 34.57 g ± 1.88 |
W (180 °C) | 38.24 | 16.87 a ± 0.31 | 7.26 b ± 0.27 | 79.94 h ± 1.12 | 88.12 i ± 1.26 |
Temperature | Solvent Concentration | TPC | TFC | |
---|---|---|---|---|
EEx | 0.761 | −0.597 | - | - |
TPC | 0.694 | 0.288 | - | - |
TFC | 0.835 | 0.402 | - | - |
DPPH• | 0.935 | 0.033 | 0.720 | 0.880 |
ABTS•+ | 0.949 | −0.076 | 0.722 | 0.816 |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|
E80 (100 °C) | E80 (60 °C) | E100 (180 °C) | E100 (60 °C) |
E50 (60 °C) | E80 (80 °C) | E80 (180 °C) | E100 (80 °C) |
E50 (80 °C) | W (60 °C) | E50 (180 °C) | E100 (100 °C) |
E50 (100 °C) | W (80 °C) | - | - |
W (180 °C) | W (100 °C) | - | - |
Compound/Sample | E100 (60 °C) | E100 (180 °C) | E80 (60 °C) | E80 (180 °C) | E50 (60 °C) | E50 (180 °C) | W (60 °C) | W (180 °C) |
---|---|---|---|---|---|---|---|---|
Phenolic acids (μg/g of dry extract) | ||||||||
Salicylic | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
4-hydroxybenzoic | 340.5 ± 0.2 | 35.1 ± 1.2 | 260.0 ± 4.4 | <LOQ | 317.0 ± 1.8 | 9.1 ± 0.2 | 521.0 ± 3.8 | <LOQ |
Gentistic | <LOQ | <LOQ | <LOQ | <LOQ | N/D | <LOQ | N/D | <LOQ |
Protocatechuic | 92.1 ± 0.8 | 128.5 ± 1.7 | 86.5 ± 4.1 | 105.5 ± 2.0 | N/D | 79.2 ± 3.5 | N/D | 81.4 ± 3.9 |
p-coumaric | 97.8 ± 4.6 | 117.0 ± 0.0 | 135.0 ± 2.1 | 86.3 ± 2.4 | 157.5 ± 2.2 | 111.5 ± 1.9 | N/D | 144.5 ± 0.5 |
Vanillic | 25.3 ± 0.8 | <LOQ | <LOQ | N/D | N/D | N/D | <LOQ | N/D |
Gallic | <LOQ | N/D | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Caffeic | N/D | N/D | <LOQ | <LOQ | N/D | <LOQ | N/D | N/D |
Syringic | 27.1 ± 1.2 | 47.3 ± 0.4 | 77.9 ± 1.8 | <LOQ | N/D | <LOQ | N/D | 37.9 ± 1.8 |
Ferulic | N/D | N/D | N/D | N/D | N/D | N/D | N/D | <LOQ |
Flavonoids (µg/g of dry extract) | ||||||||
Astragalin | 132.5 ± 1.6 | 297.0 ± 0.5 | 288.0 ± 2.5 | 130.5 ± 4.9 | 109.5 ± 0.6 | 82.0 ± 3.9 | N/D | N/D |
Tiliroside | 514.0 ± 0.7 | 591.5 ± 0.6 | 1565.0 ± 0.5 | 205.5 ± 1.0 | 1237.5 ± 4.9 | 193.0 ± 1.5 | <LOQ | <LOQ |
Narcissin | 46.7 ± 2.2 | 80.4 ± 1.1 | 118.0 ± 3.6 | 59.1 ± 2.7 | 98.2 ± 4.8 | 54.8 ± 2.5 | 30.4 ± 0.3 | 26.2 ± 0.9 |
Rutin | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Quercetin | N/D | 248.5 ± 0.9 | 29.1 ± 1.3 | 296.5 ± 1.1 | N/D | 316.0 ± 0.9 | N/D | 2.7 ± 0.5 |
Kaempferol | <LOQ | 37.2 ± 0.6 | 21.5 ± 0.6 | 27.2 ± 0.0 | <LOQ | 36.3 ± 0.4 | <LOQ | <LOQ |
Isorhamnetin | <LOQ | 55.8 ± 0.4 | 12.8 ± 0.3 | 51.2 ± 2.1 | N/D | 61.7 ± 0.3 | N/D | <LOQ |
Apigenin | <LOQ | 14.3 ± 0.4 | <LOQ | 5.9 ± 0.2 | <LOQ | <LOQ | <LOQ | <LOQ |
Prunetin | 2.1 ± 0.1 | 2.4 ± 0.1 | 3.6 ± 0.2 | 3.5 ± 0.1 | 1.8 ± 0.0 | 1.9 ± 0.0 | 1.7 ± 0.0 | 1.7 ± 0.1 |
Luteolin | N/D | <LOQ | N/D | N/D | N/D | N/D | N/D | <LOQ |
Rhamnetin | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
ORAC | CHEL | LOX | XO | |
---|---|---|---|---|
E100 (60 °C) | 0.36 a ± 0.06 | 1.58 a ± 0.17 | 3.73 a ± 0.03 | 3.72 ab ± 0.17 |
E100 (180 °C) | 1.85 b ± 0.19 | 5.30 b ± 0.70 | 3.65 a ± 0.20 | 3.65 a ± 0.14 |
E80 (60 °C) | 0.93 c ± 0.20 | 3.42 c ± 0.06 | 3.51 a ± 0.17 | 2.67 c ± 0.11 |
E80 (180 °C) | 2.35 d ± 0.18 | 5.10 b ± 0.01 | 2.42 b ± 0.12 | 1.28 d ± 0.00 |
E50 (60 °C) | 0.90 c ± 0.30 | 2.59 d ± 0.18 | 2.85 d ± 0.15 | 2.82 ace ± 0.10 |
E50 (180 °C) | 3.84 e ± 0.06 | 3.70 c ± 0.08 | 1.24 c ± 0.04 | 2.07 f ± 0.11 |
W (60 °C) | 0.81 c ± 0.09 | NA e | 1.14 c ± 0.01 | 3.48 b ± 0.02 |
W (180 °C) | 2.32 d ± 0.20 | NA e | 1.15 c ± 0.12 | 3.02 ae ± 0.00 |
Compound | Temperature | Solvent Concentration | DPPH• | ABTS•+ | ORAC | LOX | XO | CHEL |
---|---|---|---|---|---|---|---|---|
Phenolic acids | ||||||||
4-hydroxybenzoic | −0.928 | −0.187 | −0.892 | −0.819 | −0.810 | 0.105 | 0.621 | −0.535 |
Protocatechuic | 0.407 | 0.636 | 0.369 | 0.202 | 0.214 | 0.412 | −0.302 | 0.390 |
p-Coumaric | 0.188 | 0.274 | 0.146 | 0.050 | 0.170 | 0.347 | −0.168 | 0.273 |
Vanillic | −0.374 | 0.426 | −0.427 | −0.500 | −0.462 | 0.446 | 0.337 | −0.221 |
Syringic | −0.072 | 0.301 | −0.203 | −0.230 | −0.241 | 0.495 | 0.283 | 0.780 |
Flavonoids | ||||||||
Astragalin | 0.051 | 0.861 | 0.017 | 0.008 | −0.129 | 0.846 | −0.105 | 0.782 |
Tiliroside | −0.536 | 0.465 | −0.473 | −0.565 | −0.454 | 0.693 | 0.053 | 0.308 |
Narcissin | −0.377 | 0.646 | −0.307 | −0.410 | −0.311 | 0.764 | −0.113 | 0.549 |
Quercetin | 0.760 | 0.371 | 0.788 | 0.743 | 0.774 | −0.064 | −0.731 | 0.790 |
Kaempferol | 0.620 | 0.500 | 0.594 | 0.553 | 0.643 | 0.155 | −0.584 | 0.861 |
Isorhamnetin | 0.737 | 0.421 | 0.730 | 0.704 | 0.745 | 0.010 | −0.660 | 0.824 |
Apigenin | 0.521 | 0.507 | 0.456 | 0.600 | 0.159 | 0.402 | −0.132 | 0.682 |
Prunetin | 0.052 | 0.568 | 0.259 | 0.046 | −0.052 | 0.480 | −0.574 | 0.610 |
Luteolin | 0.378 | 0.426 | 0.193 | 0.409 | 0.064 | 0.418 | 0.198 | 0.506 |
Sample | EC50 (µg/mL) | |||
---|---|---|---|---|
Tyrosinase | Collagenase | Elastase | Hyaluronidase | |
E100(60 °C) | 46.48 a ± 2.93 | 598.23 a ± 2.65 | NAa | 160.84 a ± 2.22 |
E100(180 °C) | 52.19 b ± 2.84 | 78.47 b ± 0.29 | 57.26 b ± 0.30 | 126.81 b ± 3.26 |
E80(60 °C) | 43.32 c ± 0.57 | 129.44 c ± 0.49 | 95.25 c ± 1.26 | 117.54 c ± 4.82 |
E80(180 °C) | 60.10 d ± 0.44 | 59.73 d ± 0.31 | 22.54 d ± 1.86 | 215.41 d ± 4.97 |
E50(60 °C) | 46.08 e ± 0.29 | 158.08 e ± 3.61 | 153.82 e ± 2.88 | 131.22 e ± 0.62 |
E50(180 °C) | 58.56 f ± 0.37 | 21.76 f ± 1.27 | 35.81 f ± 0.81 | 237.54 f ± 7.88 |
W(60 °C) | 155.97 g ± 1.34 | 663.07 g ± 14.08 | NAa | 156.60 g ± 1.83 |
W(180 °C) | 124.62 h ± 1.14 | 134.32 h ± 3.20 | 166.23 g ± 5.42 | 135.29 h ± 5.19 |
Quercetin | 91.81 i ± 0.56 | 59.06 i ± 1.08 | 13.06 h ± 0.18 | 117.74 c ± 1.35 |
Tiliroside | 24.92 j ± 0.29 | 69.53 j ± 0.37 | 22.08 d ± 0.17 | 128.67 i ± 1.28 |
Kojic acid | 28.42 k ± 0.11 | NT | NT | NT |
EGCG | NT | 55.31 k ± 0.64 | 27.29 i ± 0.25 | 94.86 j ± 0.52 |
TYR | COL | ELA | HYA | |
---|---|---|---|---|
Sum of phenolic acids | −0.030 | 0.696 | 0.492 | −0.610 |
Sum of flavonoid aglycones | −0.358 | −0.623 | −0.939 | 0.647 |
Sum of flavonoid glycosides | −0.731 | −0.403 | −0.197 | −0.205 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieczykolan, A.; Pietrzak, W.; Dos Santos Szewczyk, K.; Gawlik-Dziki, U.; Nowak, R. LC-ESI-MS/MS Polyphenolic Profile and In Vitro Study of Cosmetic Potential of Aerva lanata (L.) Juss. Herb Extracts. Molecules 2022, 27, 1259. https://doi.org/10.3390/molecules27041259
Pieczykolan A, Pietrzak W, Dos Santos Szewczyk K, Gawlik-Dziki U, Nowak R. LC-ESI-MS/MS Polyphenolic Profile and In Vitro Study of Cosmetic Potential of Aerva lanata (L.) Juss. Herb Extracts. Molecules. 2022; 27(4):1259. https://doi.org/10.3390/molecules27041259
Chicago/Turabian StylePieczykolan, Aleksandra, Wioleta Pietrzak, Katarzyna Dos Santos Szewczyk, Urszula Gawlik-Dziki, and Renata Nowak. 2022. "LC-ESI-MS/MS Polyphenolic Profile and In Vitro Study of Cosmetic Potential of Aerva lanata (L.) Juss. Herb Extracts" Molecules 27, no. 4: 1259. https://doi.org/10.3390/molecules27041259