Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Heat Treatment on the Color of Red Lentil Flour
2.2. Starch Properties
2.2.1. Heat Treatment Affects Starch Susceptibility to α-Amylase Hydrolysis
2.2.2. Thermal Analysis Highlights the Modification of Both Starch and Proteins
2.2.3. Structural Modifications Lead to Different Pasting Properties
2.3. Proteins Features
2.3.1. Heat Treatment Affects Protein Structure and Aggregation
2.3.2. Water Availability in Drive Protein Modifications during Kneading
2.4. Hydration Properties
2.4.1. Thermogravimetric Analysis Shows Effects on Starch and Protein Phase Separation
2.4.2. Thermal Treatment Affects Water-Holding Capacity
2.5. Mixing Properties
3. Materials and Methods
3.1. Samples
3.2. Color
3.3. Starch Properties
3.3.1. Starch Susceptibility to α-Amylase Hydrolysis
3.3.2. Thermal Properties
3.3.3. Pasting Properties
3.4. Protein Properties
3.4.1. Protein Susceptibility to Tryptic Hydrolysis
3.4.2. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
3.4.3. Protein Differential Solubility
3.4.4. Quantification of Accessible Thiols
3.4.5. Front-Face Fluorescence
3.5. Hydration Properties
3.5.1. Thermalgravimetric Analysis (TGA)
3.5.2. Water-Holding Capacity (WHC)
3.6. Mixing Properties
3.7. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tucci, M.; Martini, D.; Del Bo, C.; Marino, M.; Battezzati, A.; Bertoli, S.; Porrini, M.; Riso, P. An Italian-Mediterranean dietary pattern developed based on the EAT-Lancet reference diet (EAT-IT): A nutritional evaluation. Foods 2021, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Trigueiro, H.; Gambera, A.; Alonzo, E.; et al. Nut and legume consumption and human health: An umbrella review of observational studies. Int. J. Food. Sci. Nutr. 2021, 72, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and new food uses of pulses. Cereal Chem. 2017, 94, 66–73. [Google Scholar] [CrossRef]
- Martini, D.; Tucci, M.; Bradfield, J.; Di Giorgio, A.; Marino, M.; Del Bo, C.; Porrini, M.; Riso, P. Principles of sustainable healthy diets in worldwide dietary guidelines: Efforts so far and future perspectives. Nutrients 2021, 13, 1827. [Google Scholar] [CrossRef]
- Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Hall, C.; Hillen, C.; Garden Robinson, J. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Bresciani, A.; Marti, A. Using pulses in baked products: Lights, shadows, and potential solutions. Foods 2019, 8, 451. [Google Scholar] [CrossRef] [Green Version]
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as functional ingredients in gluten-free bakery and pasta products. Annu. Rev. Food. 2017, 8, 75–96. [Google Scholar] [CrossRef]
- Witczak, M.; Ziobro, R.; Juszczak, L.; Korus, J. Starch and starch derivatives in gluten-free systems—A review. J. Cereal Sci. 2016, 67, 46–57. [Google Scholar] [CrossRef]
- Gómez, M.; Martínez, M.M. Changing flour functionality through physical treatments for the production of gluten-free baking goods. J. Cereal Sci. 2016, 67, 68–74. [Google Scholar] [CrossRef]
- Marti, A.; Pagani, M.A. What can play the role of gluten in gluten free pasta? Trends Food Sci. Technol. 2013, 31, 63–71. [Google Scholar] [CrossRef]
- Patterson, C.A.; Curran, J.; Der, T. Effect of processing on antinutrient compounds in pulses. Cereal Chem. 2017, 94, 2–10. [Google Scholar] [CrossRef]
- Marchini, M.; Carini, E.; Cataldi, N.; Boukid, F.; Blandino, M.; Ganino, T.; Vittadini, E.; Pellegrini, N. The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough? LWT Food Sci. Technol. 2021, 136, 110299. [Google Scholar] [CrossRef]
- Bresciani, A.; Iametti, S.; Emide, D.; Marti, A.; Barbiroli, A. Molecular features and cooking behavior of pasta from pulses. Cereal Chem. 2021, 1–5. [Google Scholar] [CrossRef]
- Fois, S.; Campus, M.; Piu, P.P.; Siliani, S.; Sanna, M.; Roggio, T.; Catzeddu, P. Fresh pasta manufactured with fermented whole wheat semolina: Physicochemical, sensorial, and nutritional properties. Foods 2019, 8, 422. [Google Scholar] [CrossRef] [Green Version]
- Marti, A.; Caramanico, R.; Bottega, G.; Pagani, M.A. Cooking behavior of rice pasta: Effect of thermal treatments and extrusion conditions. LWT Food Sci. Technol. 2013, 54, 229–235. [Google Scholar] [CrossRef]
- Asif, M.; Rooney, L.W.; Ali, R.; Riaz, M.N. Application and opportunities of pulses in food system: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef]
- Hoover, R.; Hughes, T.; Chung, H.J.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- Bresciani, A.; Giordano, D.; Vanara, F.; Blandino, M.; Marti, A. The effect of the amylose content and milling fractions on the physico-chemical features of co-extruded snacks from corn. Food Chem. 2021, 343, 128503. [Google Scholar] [CrossRef] [PubMed]
- Fessas, D.; Schiraldi, A. Starch gelatinization kinetics in bread dough. DSC investigations on ‘simulated’ baking processes. J. Therm. Anal. Calorim. 2000, 61, 411–423. [Google Scholar] [CrossRef]
- Jarpa-Parra, M. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. Int. J. Food Sci. Technol. 2018, 53, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Saitta, F.; Signorelli, M.; Bramanti, E.; Pizzimenti, S.; Pelosi, C.; Duce, C.; Fessas, D.; Bonaduce, I.; Tinè, M.R. DSC on ovalbumin-hematite “tempera” paints: The role of water and pigment on protein stability. Thermochim. Acta 2020, 694, 178780. [Google Scholar] [CrossRef]
- Riva, M.; Fessas, D.; Schiraldi, A. Starch retrogradation in cooked pasta and rice. Cereal Chem. 2000, 77, 433–438. [Google Scholar] [CrossRef]
- Bresciani, A.; Giuberti, G.; Cervini, M.; Marti, A. Pasta from yellow lentils: How process affects starch features and pasta quality. Food Chem. 2021, 364, 130387. [Google Scholar] [CrossRef]
- Sopiwnyk, E.; Bourré, L.; Young, G.; Borsuk, Y.; Lagassé, S.; Boyd, L.; Sarkar, A.; Jones, S.; Dyck, A.; Malcolmson, L. Flour and bread making properties of whole and split yellow peas treated with dry and steam heat used as premilling treatment. Cereal Chem. 2020, 97, 1290–1302. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Pulkkinen, M.; Wang, Y.J.; Lampi, A.M.; Stoddard, F.L.; Salovaara, H.; Piironen, V.; Sontag-Strohm, T. Faba bean flavour and technological property improvement by thermal pre-treatments. LWT Food Sci. Technol. 2016, 68, 295–305. [Google Scholar] [CrossRef]
- Xie, L.; Chen, N.; Duan, B.; Zhu, Z.; Liao, X. Impact of proteins on pasting and cooking properties of waxy and non-waxy rice. J. Cereal Sci. 2008, 47, 372–379. [Google Scholar] [CrossRef]
- Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C.; Baxterb, G. Rice ageing. I. Effect of changes in protein on starch behaviour. Starch 2003, 55, 162–169. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Colombo, A.; León, A.E.; Añón, M.C. Effects of soy protein on physical and rheological properties of wheat starch. Starch 2007, 59, 614–623. [Google Scholar] [CrossRef]
- Iametti, S.; Donnizzelli, E.; Pittia, P.; Rovere, P.P.; Squarcina, N.; Bonomi, F. Characterization of high-pressure-treated egg albumen. J. Agric. Food. Chem. 1999, 47, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.; Wright, D.J.; Boulter, D. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 1976, 15, 3–24. [Google Scholar] [CrossRef]
- Marti, A.; Barbiroli, A.; Marengo, M.; Fongaro, L.; Iametti, S.; Pagani, M.A. Structuring and texturing gluten-free pasta: Egg albumen or whey proteins? Eur. Food Res. Technol. 2014, 238, 217–224. [Google Scholar] [CrossRef]
- Bonomi, F.; D’Egidio, M.G.; Iametti, S.; Marengo, M.; Marti, A.; Pagani, M.A.; Ragg, E.M. Structure-quality relationship in commercial pasta: A molecular glimpse. Food Chem. 2012, 135, 348–355. [Google Scholar] [CrossRef]
- Barbiroli, A.; Bonomi, F.; Casiraghi, M.C.; Iametti, S.; Pagani, M.A.; Marti, A. Process conditions affect starch structure and its interactions with proteins in rice pasta. Carbohydr. Polym. 2013, 92, 1865–1872. [Google Scholar] [CrossRef]
- Bonomi, F.; Mora, G.; Pagani, M.A.; Iametti, S. Probing structural features of water-insoluble proteins by front-face fluorescence. Anal. Biochem. 2004, 329, 104–111. [Google Scholar] [CrossRef]
- Mariotti, M.; Lucisano, M.; Pagani, M.A.; Iametti, S. Macromolecular interactions and rheological properties of buckwheat-based dough obtained from differently processed grains. J. Agric. Food Chem. 2008, 56, 4258–4267. [Google Scholar] [CrossRef]
- Eynard, L.; Iametti, S.; Relkin, P.; Bonomi, F. Surface hydrophobicity changes and heat-induced modifications of alpha-lactalbumin. J. Agric. Food Chem. 1992, 40, 1731–1736. [Google Scholar] [CrossRef]
- Fessas, D.; Schiraldi, A. Water properties in wheat flour dough I: Classical thermogravimetry approach. Food Chem. 2001, 72, 237–244. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Labarbuta, R.; Summo, C. Production of extruded-cooked lentil flours at industrial level: Effect of processing conditions on starch gelatinization, dough rheological properties and techno-functional parameters. LWT Food Sci. Technol. 2021, 147, 111580. [Google Scholar] [CrossRef]
- Aguilera, Y.; Esteban, R.M.; Benitez, V.; Molla, E.; Martin-Cabrejas, M.A. Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing. J. Agric. Food Chem. 2009, 57, 10682–10688. [Google Scholar] [CrossRef] [PubMed]
- Singh, U. Functional properties of grain legume flours. J. Food Sci. Technol. 2001, 38, 191–199. [Google Scholar]
- Bresciani, A.; Annor, G.A.; Gardella, M.; Marti, A. Use of the farinograph for gluten-free grains. In The Farinograph Handbook: Advances in Technology, Science and Applications, 4th ed.; Bock, J.E., Don., C., Eds.; Woodhead Publ. & Cereals & Grains Assoc. Bookstore: Saint Paul, MN, USA, 2021. [Google Scholar]
- AACC International. Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: Saint Paul, MN, USA, 2011. [Google Scholar]
- Marengo, M.; Barbiroli, A.; Bonomi, F.; Casiraghi, M.C.; Marti, A.; Pagani, M.A.; Manful, J.; Graham-Acquaah, S.; Ragg, E.; Fessas, D.; et al. Macromolecular traits in the African rice Oryza glaberrima and in glaberrima/sativa crosses, and their relevance to processing. J. Food Sci. 2017, 82, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Iametti, S.; Bonomi, F.; Pagani, M.A.; Zardi, M.; Cecchini, C.; D’Egidio, M.G. Properties of the protein and carbohydrate fractions in immature wheat kernels. J. Agric. Food. Chem. 2006, 54, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Caramanico, R.; Barbiroli, A.; Marengo, M.; Fessas, D.; Bonomi, F.; Lucisano, M.; Pagani, M.A.; Iametti, S.; Marti, A. Interplay between starch and proteins in waxy wheat. J. Cereal Sci. 2017, 75, 198–204. [Google Scholar] [CrossRef]
- Monahan, F.J.; German, J.B.; Kinsella, J.E. Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 1995, 43, 46–52. [Google Scholar] [CrossRef]
- Mine, Y.; Noutomi, T.; Haga, N. Thermally induced changes in egg white proteins. J. Agric. Food Chem. 1990, 38, 2122–2125. [Google Scholar] [CrossRef]
- Shewry, P.R.; Tatham, A.S. Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 1997, 25, 207–227. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bresciani, A.; Emide, D.; Saitta, F.; Fessas, D.; Iametti, S.; Barbiroli, A.; Marti, A. Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties. Molecules 2022, 27, 1266. https://doi.org/10.3390/molecules27041266
Bresciani A, Emide D, Saitta F, Fessas D, Iametti S, Barbiroli A, Marti A. Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties. Molecules. 2022; 27(4):1266. https://doi.org/10.3390/molecules27041266
Chicago/Turabian StyleBresciani, Andrea, Davide Emide, Francesca Saitta, Dimitrios Fessas, Stefania Iametti, Alberto Barbiroli, and Alessandra Marti. 2022. "Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties" Molecules 27, no. 4: 1266. https://doi.org/10.3390/molecules27041266
APA StyleBresciani, A., Emide, D., Saitta, F., Fessas, D., Iametti, S., Barbiroli, A., & Marti, A. (2022). Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties. Molecules, 27(4), 1266. https://doi.org/10.3390/molecules27041266