Automated Phasor Segmentation of Fluorescence Lifetime Imaging Data for Discriminating Pigments and Binders Used in Artworks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Setup
2.3. Analytical Procedures
3. Results
3.1. Discrimination of Binders
3.2. Discrimination of Pigments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2008; ISBN 978-1-4757-3061-6. [Google Scholar]
- Hansell, P.; Lunnon, R.J. Ultraviolet and Fluorescence Recording; Photogr. Sci. Acad. Press: London, UK, 1984; pp. 321–354. [Google Scholar]
- Comelli, D.; Valentini, G.; Cubeddu, R.; Toniolo, L. Fluorescence lifetime imaging for the analysis of works of art: Application to fresco paintings and marble sculptures. J. Neutron Res. 2006, 14, 81–90. [Google Scholar] [CrossRef]
- de la Rie, E.R. Fluorescence of paint and varnish layers (part III). Stud. Conserv. 1982, 27, 102–108. [Google Scholar]
- Ghirardello, M.; Valentini, G.; Toniolo, L.; Alberti, R.; Gironda, M.; Comelli, D. Photoluminescence imaging of modern paintings: There is plenty of information at the microsecond timescale. Microchem. J. 2020, 154, 104618. [Google Scholar] [CrossRef]
- Thoury, M.; Elias, M.; Frigerio, J.M.; Barthou, C. Nondestructive Varnish Identification by Ultraviolet Fluorescence Spectroscopy. Appl. Spectrosc. 2007, 61, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Nevin, A.; Comelli, D.; Valentini, G.; Cubeddu, R. Total Synchronous Fluorescence Spectroscopy Combined with Multivariate Analysis: Method for the Classification of Selected Resins, Oils, and Protein-Based Media Used in Paintings. Anal. Chem. 2009, 81, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Clementi, C.; Miliani, C.; Favaro, G. Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Acc. Chem. Res. 2010, 43, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Nevin, A.; Spoto, G.; Anglos, D. Laser spectroscopies for elemental and molecular analysis in art and archaeology. Appl. Phys. A 2012, 106, 339–361. [Google Scholar] [CrossRef]
- Verri, G.; Saunders, D. Xenon flash for reflectance and luminescence (multispectral) imaging in cultural heritage applications. Br. Mus. Tech. Bull. 2014, 8, 83–92. [Google Scholar]
- Striova, J.; Dal Fovo, A.; Fontana, R. Reflectance imaging spectroscopy in heritage science. Riv. Nuovo Cimento 2020, 43, 515–566. [Google Scholar] [CrossRef]
- Clementi, C.; Miliani, C.; Verri, G.; Sotiropoulou, S.; Romani, A.; Brunetti, B.G.; Sgamellotti, A. Application of the Kubelka—Munk Correction for Self-Absorption of Fluorescence Emission in Carmine Lake Paint Layers. Appl. Spectrosc. 2009, 63, 1323–1330. [Google Scholar] [CrossRef]
- Nevin, A.; Cesaratto, A.; Bellei, S.; D’Andrea, C.; Toniolo, L.; Valentini, G.; Comelli, D. Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 2014, 14, 6338–6355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verri, G.; Clementi, C.; Comelli, D.; Cather, S.; Piqué, F. Correction of Ultraviolet-Induced Fluorescence Spectra for the Examination of Polychromy. Appl. Spectrosc. 2008, 62, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Nevin, A.; Comelli, D.; Valentini, G.; Anglos, D.; Burnstock, A.; Cather, S.; Cubeddu, R. Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings. Anal. Bioanal. Chem. 2007, 388, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Nevin, A.; Anglos, D. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy. Laser Chem. 2006, 2006, 82823. [Google Scholar] [CrossRef] [Green Version]
- Comelli, D.; Nevin, A.B.; Verri, G.; Valentini, G.; Cubeddu, R. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging for the Analysis of Organic Materials in Wall Painting Replicas. In Organic Materials in Wall Paintings; Getty Conservation Institute: Los Angeles, CA, USA, 2015. [Google Scholar]
- Accorsi, G.; Verri, G.; Bolognesi, M.; Armaroli, N.; Clementi, C.; Miliani, C.; Romani, A. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 2009, 23, 3392–3394. [Google Scholar] [CrossRef]
- Grazia, C.; Clementi, C.; Miliani, C.; Romani, A. Photophysical properties of alizarin and purpurin Al(iii) complexes in solution and in solid state. Photochem. Photobiol. Sci. 2011, 10, 1249–1254. [Google Scholar] [CrossRef]
- Comelli, D.; Nevin, A.; Valentini, G.; Osticioli, I.; Castellucci, E.M.; Toniolo, L.; Gulotta, D.; Cubeddu, R. Insights into Masolino’s wall paintings in Castiglione Olona: Advanced reflectance and fluorescence imaging analysis. J. Cult. Herit. 2011, 12, 11–18. [Google Scholar] [CrossRef]
- Artesani, A.; Ghirardello, M.; Mosca, S.; Nevin, A.; Valentini, G.; Comelli, D. Combined photoluminescence and Raman microscopy for the identification of modern pigments: Explanatory examples on cross-sections from Russian avant-garde paintings. Herit. Sci. 2019, 7, 17. [Google Scholar] [CrossRef]
- Comelli, D.; Valentini, G.; Cubeddu, R.; Toniolo, L. Fluorescence Lifetime Imaging and Fourier Transform Infrared Spectroscopy of Michelangelo’s David. Appl. Spectrosc. 2005, 59, 1174–1181. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Mattana, S.; Chaban, A.; Balbas, D.Q.; Lagarto, J.L.; Striova, J.; Cicchi, R.; Fontana, R. Fluorescence Lifetime Phasor Analysis and Raman Spectroscopy of Pigmented Organic Binders and Coatings Used in Artworks. Appl. Sci. 2021, 12, 179. [Google Scholar] [CrossRef]
- Lagarto, J.L.; Shcheslavskiy, V.; Pavone, F.S.; Cicchi, R. Real-time fiber-based fluorescence lifetime imaging with synchronous external illumination: A new path for clinical translation. J. Biophotonics 2019, 13, e201700113. [Google Scholar] [CrossRef] [PubMed]
- Lagarto, J.L.; Villa, F.; Tisa, S.; Zappa, F.; Shcheslavskiy, V.; Pavone, F.S.; Cicchi, R. Real-time multispectral fluorescence lifetime imaging using Single Photon Avalanche Diode arrays. Sci. Rep. 2020, 10, 8116. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-C.; Sun, Y.; Coskun, U. FLIM Analysis Using the Phasor Plots; ISS Inc.: Champaign, IL, USA, 2014; Volume 61822. [Google Scholar]
- Stringari, C.; Nourse, J.L.; Flanagan, L.A.; Gratton, E. Phasor Fluorescence Lifetime Microscopy of Free and Protein-Bound NADH Reveals Neural Stem Cell Differentiation Potential. PLoS ONE 2012, 7, e48014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjit, S.; Malacrida, L.; Jameson, D.M.; Gratton, E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat. Protoc. 2018, 13, 1979–2004. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Vallmitjana, A.; Torrado, B.; Gratton, E. Phasor-based image segmentation: Machine learning clustering techniques. Biomed. Opt. Express 2021, 12, 3410–3422. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 1977, 39, 1–22. [Google Scholar]
- Zhang, Y.; Hato, T.; Dagher, P.C.; Nichols, E.L.; Smith, C.J.; Dunn, K.W.; Howard, S.S. Automatic segmentation of intravital fluorescence microscopy images by K-means clustering of FLIM phasors. Opt. Lett. 2019, 44, 3928–3931. [Google Scholar] [CrossRef]
- Shirshin, E.A.; Shirmanova, M.V.; Gayer, A.V.; Lukina, M.M.; Nikonova, E.E.; Yakimov, B.P.; Dudenkova, V.V.; Ignatova, N.I.; Komarov, D.V.; Scully, M.O.; et al. Label-free sensing of cells with fluorescence lifetime imaging: The quest for metabolic heterogeneity. bioRxiv 2022. [Google Scholar] [CrossRef]
- Lagarto, J.L.; Shcheslavskiy, V.; Pavone, F.S.; Cicchi, R. Simultaneous fluorescence lifetime and Raman fiber-based mapping of tissues. Opt. Lett. 2020, 45, 2247–2250. [Google Scholar] [CrossRef]
Pigment | Binder | Acronym | Emission Wavelength | Mean τ-Phase ± SD (ns) |
---|---|---|---|---|
Cerulean Blue | Rabbit glue | B-A1 | 456–484 nm | 3.7 ± 0.3 |
Egg yolk | B-B1 | 2.8 ± 0.5 | ||
Acrylic PVA | B-C1 | 3.7 ± 0.8 | ||
Linseed oil | B-D1 | 1.7 ± 0.3 | ||
Ultramarine Blue | Rabbit glue | B-A2 | 3.9 ± 0.3 | |
Egg yolk | B-B2 | 3.4 ± 0.4 | ||
Acrylic PVA | B-C2 | 4.5 ± 0.8 | ||
Linseed oil | B-D2 | 2.1 ± 0.2 | ||
Cobalt Blue | Rabbit glue | B-A3 | 3.0 ± 0.2 | |
Egg yolk | B-B3 | 2.8 ± 0.2 | ||
Acrylic PVA | B-C3 | 3.1 ± 1.3 | ||
Linseed oil | B-D3 | 1.9 ± 0.1 | ||
Green Earth | Linseed oil | G-D1 | 524–544 nm | 2.5 ± 0.1 |
Chrome Oxide | G-D2 | 2.9 ± 0.3 | ||
Cobalt Green | G-D3 | 2.9 ± 0.2 | ||
Light Cadmium Yellow | Y-D1 | 2.8 ± 0.2 | ||
Medium Cadmium Yellow | Y-D2 | 3.8 ± 0.5 | ||
Dark Cadmium Yellow | Y-D3 | 3.6 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattana, S.; Dal Fovo, A.; Lagarto, J.L.; Bossuto, M.C.; Shcheslavskiy, V.; Fontana, R.; Cicchi, R. Automated Phasor Segmentation of Fluorescence Lifetime Imaging Data for Discriminating Pigments and Binders Used in Artworks. Molecules 2022, 27, 1475. https://doi.org/10.3390/molecules27051475
Mattana S, Dal Fovo A, Lagarto JL, Bossuto MC, Shcheslavskiy V, Fontana R, Cicchi R. Automated Phasor Segmentation of Fluorescence Lifetime Imaging Data for Discriminating Pigments and Binders Used in Artworks. Molecules. 2022; 27(5):1475. https://doi.org/10.3390/molecules27051475
Chicago/Turabian StyleMattana, Sara, Alice Dal Fovo, João Luís Lagarto, Maria Chiara Bossuto, Vladislav Shcheslavskiy, Raffaella Fontana, and Riccardo Cicchi. 2022. "Automated Phasor Segmentation of Fluorescence Lifetime Imaging Data for Discriminating Pigments and Binders Used in Artworks" Molecules 27, no. 5: 1475. https://doi.org/10.3390/molecules27051475
APA StyleMattana, S., Dal Fovo, A., Lagarto, J. L., Bossuto, M. C., Shcheslavskiy, V., Fontana, R., & Cicchi, R. (2022). Automated Phasor Segmentation of Fluorescence Lifetime Imaging Data for Discriminating Pigments and Binders Used in Artworks. Molecules, 27(5), 1475. https://doi.org/10.3390/molecules27051475