67Cu Production Capabilities: A Mini Review
Abstract
:1. Introduction
2. Production Methods of 67Cu
2.1. Accelerator-Based Production
2.1.1. Charged-Particle Induced Reactions
2.1.2. Photonuclear Production
2.2. Reactor-Based Production
2.3. Targetry
2.4. Radiochemistry
2.5. Recovery
2.6. Quality of 67Cu as Radiopharmaceutical Precursor
2.6.1. Identity
2.6.2. Specific Activity
2.6.3. Radionuclidic Purity
2.6.4. Chemical Purity
3. The Use of 67Cu for Medical Applications
3.1. Chelators for Copper
3.2. Pre-Clinical Studies
3.3. Clinical Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, S.C. A Bridge Not Too Far: Personalized Medicine with the Use of Theragnostic Radiopharmaceuticals. J. Postgrad. Med. Educ. Res. 2013, 47, 31–46. [Google Scholar] [CrossRef]
- Mirzadeh, S.; Mausner, L.F.; Srivastava, S.C. Production of No-Carrier Added 67Cu. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1986, 37, 29–36. [Google Scholar] [CrossRef]
- Kolsky, K.L.; Joshi, V.; Meinken, G.E. Improved Production, and Evaluation of Cu-67 for Tumor Radioimmunotherapy. J. Nucl. Med. 1992, 35, 259. [Google Scholar]
- Smith, A.; Alberto, R.; Blaeuenstein, P.; Novak-Hofer, I.; Maecke, H.R.; Schubiger, P.A. Preclinical Evaluation of 67Cu-Labeled Intact and Fragmented Anti-Colon Carcinoma Monocional Antibody MAb35. Cancer Res. 1993, 53, 5727–5733. [Google Scholar] [PubMed]
- International Atomic Energy Agency. Therapeutic Radiopharmaceuticals Labelled with Copper-67, Rhenium-186 and Scandium-47; IAEA-TECDOC-1945; IAEA: Vienna, Austria, 2021. [Google Scholar]
- Jalilian, A.R.; Gizawy, M.A.; Alliot, C.; Takacs, S.; Chakarborty, S.; Rovais, M.R.A.; Pupillo, G.; Nagatsu, K.; Park, J.H.; Khandaker, M.U.; et al. IAEA Activities on 67Cu, 186Re, 47Sc Theranostic Radionuclides and Radiopharmaceuticals. Curr. Radiopharm. 2021, 14, 306–314. [Google Scholar] [CrossRef]
- NNDC.BNL NuDat 3.0. Available online: https://www.nndc.bnl.gov/nudat3/ (accessed on 25 January 2022).
- Hao, G.; Singh, A.N.; Liu, W.; Sun, X. PET with Non-Standard Nuclides. Curr. Top. Med. Chem. 2010, 10, 1096–1112. [Google Scholar] [CrossRef]
- Takacs, S. Therapeutic Radionuclides. Available online: https://www-nds.iaea.org/medical/therapeutic_2019.html (accessed on 25 January 2022).
- Merrick, M.J.; Rotsch, D.A.; Tiwari, A.; Nolen, J.; Brossard, T.; Song, J.; Wadas, T.J.; Sunderland, J.J.; Graves, S.A. Imaging and Dosimetric Characteristics of 67Cu. Phys. Med. Biol. 2021, 66, 035002. [Google Scholar] [CrossRef]
- IAEA. Alternative Radionuclide Production with a Cyclotron; IAEA Radioisotopes and Radiopharmaceuticals reports No. 4; IAEA: Vienna, Austria, 2021. [Google Scholar]
- NDS-IAEA Recommended Cross Sections for 68Zn(p,2p)67Cu Reaction. Available online: https://www-nds.iaea.org/medical/zn867cu0.html (accessed on 9 September 2021).
- Medvedev, D.G.; Mausner, L.F.; Meinken, G.E.; Kurczak, S.O.; Schnakenberg, H.; Dodge, C.J.; Korach, E.M.; Srivastava, S.C. Development of a Large Scale Production of 67Cu from 68Zn at the High Energy Proton Accelerator: Closing the 68Zn Cycle. Appl. Radiat. Isot. 2012, 70, 423–429. [Google Scholar] [CrossRef]
- Qaim, S.M. Medical Radionuclide Production: Science and Technology; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- NDS-IAEA Recommended Cross Sections for 70Zn(p,a)67Cu Reaction. Available online: https://www-nds.iaea.org/medical/zn067cu0.html (accessed on 9 September 2021).
- Pupillo, G.; Mou, L.; Martini, P.; Pasquali, M.; Boschi, A.; Cicoria, G.; Duatti, A.; Haddad, F.; Esposito, J. Production of 67Cu by Enriched 70Zn Targets: First Measurements of Formation Cross Sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in Interactions of 70Zn with Protons above 45 MeV. Radiochim. Acta 2020, 108, 593–602. [Google Scholar] [CrossRef]
- Qaim, S.M.; Hussain, M.; Spahn, I.; Neumaier, B. Continuing Nuclear Data Research for Production of Accelerator-Based Novel Radionuclides for Medical Use: A Mini-Review. Front. Phys. 2021, 9, 639290. [Google Scholar] [CrossRef]
- Porile, N.T.; Tanaka, S.; Amano, H.; Furukawa, M.; Iwata, S.; Yagi, M. Nuclear Reactions of Ga-69 and Ga-71 with 13–56 MeV Protons. Nucl. Phys. 1963, 43, 500–522. [Google Scholar] [CrossRef]
- IAEA ISOTOPIA. Available online: https://www-nds.iaea.org/relnsd/isotopia/isotopia.html (accessed on 2 April 2021).
- NDS-IAEA Experimental Nuclear Reaction Data (EXFOR). Available online: https://www-nds.iaea.org/exfor/exfor.htm (accessed on 25 January 2022).
- Mou, L.; Pupillo, G.; Martini, P.; Pasquali, M. A Method and a Target for the Production of 67Cu 2019. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019220224 (accessed on 18 November 2021).
- Kozempel, J.; Abbas, K.; Simonelli, F.; Bulgheroni, A.; Holzwarth, U.; Gibson, N. Preparation of 67Cu via Deuteron Irradiation of 70Zn. Radiochim. Acta 2012, 100, 419–423. [Google Scholar] [CrossRef]
- Nigron, E.; Guertin, A.; Haddad, F.; Sounalet, T. Is 70Zn(d,x)67Cu the Best Way to Produce 67Cu for Medical Applications? Front. Med. 2021, 8, 1059. [Google Scholar] [CrossRef]
- Takács, S.; Aikawa, M.; Haba, H.; Komori, Y.; Ditrói, F.; Szűcs, Z.; Saito, M.; Murata, T.; Sakaguchi, M.; Ukon, N. Cross Sections of Alpha-Particle Induced Reactions on NatNi: Production of 67Cu. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 479, 125–136. [Google Scholar] [CrossRef]
- Shigeo, T. Reactions of Nickel with Alpha-Particles. J. Phys. Soc. Jpn. 1960, 15, 2159–2167. [Google Scholar] [CrossRef]
- Antropov, A.E.; Zarubin, P.P.; Aleksandrov, Y.A.; Gorshkov, I.Y. Cross Sections Measurements of (p,n),(Alpha,Pn), (Alpha,Xn) Reactions on Nuclei of Middle Atomic Weight. In Proceedings of the 35th Conference on Nuclear Spectroscopy and Nuclear Structure, Leningrad, Russia, 16–18 April 1985; p. 369. [Google Scholar]
- Levkovskij, V.N. Cross Sections of Medium Mass Nuclide Activation (A = 40–100) by Medium Energy Protons and Alpha-Particles (E = 10–50 MeV); Inter-Vesi: Moscow, Russia, 1991; ISBN 5-265-02732-7. [Google Scholar]
- Skakun, Y.; Qaim, S.M. Excitation Function of the 64Ni(α,p)67Cu Reaction for Production of 67Cu. Appl. Radiat. Isot. 2004, 60, 33–39. [Google Scholar] [CrossRef]
- Mausner, L.F.; Mirzadeh, S.; Schnakenberg, H.; Srivastava, S.C. The Design and Operation of the Upgraded BLIP Facility for Radionuclide Research and Production. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1990, 41, 367–374. [Google Scholar] [CrossRef]
- Stoner, J.; Gardner, T.; Gardner, T. A Comparison of DOTA and DiamSar Chelates of High Specific Activity ELINAC Produced 67Cu. J. Nucl. Med. 2016, 57, 1107. [Google Scholar]
- Ehst, D.A.; Smith, N.A.; Bowers, D.L.; Makarashvili, V. Copper-67 Production on Electron Linacs—Photonuclear Technology Development. AIP Conf. Proc. 2012, 1509, 157–161. [Google Scholar]
- Hovhannisyan, G.H.; Bakhshiyan, T.M.; Dallakyan, R.K. Photonuclear Production of the Medical Isotope 67Cu. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2021, 498, 48–51. [Google Scholar] [CrossRef]
- Aliev, R.A.; Belyshev, S.S.; Kuznetsov, A.A.; Dzhilavyan, L.Z.; Khankin, V.V.; Aleshin, G.Y.; Kazakov, A.G.; Priselkova, A.B.; Kalmykov, S.N.; Ishkhanov, B.S. Photonuclear Production and Radiochemical Separation of Medically Relevant Radionuclides: 67Cu. J. Radioanal. Nucl. Chem. 2019, 321, 125–132. [Google Scholar] [CrossRef]
- Polak, P.; Geradts, J.; Vlist, R.V.A.N.D.E.R.; Lindner, L. Photonuclear Production of 67Cu from ZnO Targets. Radiochim. Acta 1986, 40, 169–174. [Google Scholar] [CrossRef]
- Starovoitova, V.; Foote, D.; Harris, J.; Makarashvili, V.; Segebade, C.R.; Sinha, V.; Wells, D.P. Cu-67 Photonuclear Production. AIP Conf. Proc. 2011, 1336, 502–504. [Google Scholar] [CrossRef]
- Gopalakrishna, A.; Suryanarayana, S.V.; Naik, H.; Dixit, T.S.; Nayak, B.K.; Kumar, A.; Maletha, P.; Thakur, K.; Deshpande, A.; Krishnan, R.; et al. Production, Separation and Supply Prospects of 67Cu with the Development of Fast Neutron Sources and Photonuclear Technology. Radiochim. Acta 2018, 106, 549–557. [Google Scholar] [CrossRef]
- NNDC.BNL NuDat 2.8. Available online: https://www.nndc.bnl.gov/nudat2/ (accessed on 9 September 2021).
- NIDC: National Isotope Development Center, Product Catalog Resources. Available online: https://isotopes.gov/sites/default/files/2021-02/Cu-67.pdf (accessed on 14 December 2021).
- Mirzadeh, S.; Knapp, F.F. Spontaneous Electrochemical Separation of Carrier-Free Copper-64 and Copper-67 from Zinc Targets. Radiochim. Acta 1992, 57, 193–200. [Google Scholar] [CrossRef]
- Mikolajczak, R.; Parus, J.L. Reactor Produced Beta-Emitting Nuclides for Nuclear Medicine. World J. Nucl. Med. 2005, 36, 184–190. [Google Scholar]
- O’Brien, H.A. The Preparation of 67Cu from 67Zn in a Nuclear Reactor. Int. J. Appl. Radiat. Isot. 1969, 20, 121–124. [Google Scholar] [CrossRef]
- Shikata, E. Research of Radioisotope Production with Fast Neutrons, (VI). J. Nucl. Sci. Technol. 1964, 1, 177–180. [Google Scholar] [CrossRef]
- Smith, N.A.; Bowers, D.L.; Ehst, D.A. The Production, Separation, and Use of 67Cu for Radioimmunotherapy: A Review. Appl. Radiat. Isot. 2012, 70, 2377–2383. [Google Scholar] [CrossRef]
- IAEA. Manual for Reactor Produced Radioisotopes; IAEA-TECDOC-1340; International Atomic Energy Agency: Vienna, Austria, 2003; pp. 1–254. ISBN 92-0-101103-2. [Google Scholar]
- Johnsen, A.M.; Heidrich, B.J.; Durrant, C.B.; Bascom, A.J.; Ünlü, K. Reactor Production of 64Cu and 67Cu Using Enriched Zinc Target Material. J. Radioanal. Nucl. Chem. 2015, 305, 61–71. [Google Scholar] [CrossRef]
- Zinn, K.R.; Chaudhuri, T.R.; Cheng, T.P.; Morris, J.S.; Meyer, W.A.J. Production of No-Carrier-Added 64Cu from Zinc Metal Irradiated under Boron Shielding. Cancer 1994, 73, 774–778. [Google Scholar] [CrossRef]
- Vimalnath, K.V.; Rajeswari, A.; Jagadeesan, K.C.; Viju, C.; Joshi, P.V.; Venkatesh, M. Studies on the Production Feasibility of 64Cu by (n,p) Reactions on Zn Targets in Dhruva Research Reactor. J. Radioanal. Nucl. Chem. 2012, 294, 43–47. [Google Scholar] [CrossRef]
- Pupillo, G.; Sounalet, T.; Michel, N.; Mou, L.; Esposito, J.; Haddad, F. New Production Cross Sections for the Theranostic Radionuclide 67Cu. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 415, 41–47. [Google Scholar] [CrossRef]
- Rowshanfarzad, P.; Sabet, M.; Reza Jalilian, A.; Kamalidehghan, M. An Overview of Copper Radionuclides and Production of 61Cu by Proton Irradiation of NatZn at a Medical Cyclotron. Appl. Radiat. Isot. 2006, 64, 1563–1573. [Google Scholar] [CrossRef]
- Ohya, T.; Nagatsu, K.; Suzuki, H.; Fukada, M.; Minegishi, K.; Hanyu, M.; Zhang, M.R. Small-Scale Production of 67Cu for a Preclinical Study via the 64Ni(α,p) 67Cu Channel. Nucl. Med. Biol. 2018, 59, 56–60. [Google Scholar] [CrossRef]
- Karimi, Z.; Sadeghi, M.; Hosseini, S.F. Experimental Production and Theoretical Assessment of 67Cu via Neutron Induced Reaction. Ann. Nucl. Energy 2019, 133, 665–668. [Google Scholar] [CrossRef]
- Mushtaq, A.; Karim, H.M.A.; Khan, M.A. Cu and 67Cu in a Reactor. J. Radioanal. Nucl. Chem. 1990, 141, 261–269. [Google Scholar] [CrossRef]
- Uddin, M.S.; Rumman-Uz-Zaman, M.; Hossain, S.M.; Qaim, S.M. Radiochemical Measurement of Neutron-Spectrum Averaged Cross Sections for the Formation of 64Cu and 67Cu via the (n,p) Reaction at a TRIGAMark-II Reactor: Feasibility of Simultaneous Production of the Theragnostic Pair 64Cu/67Cu. Radiochim. Acta 2014, 102, 473–480. [Google Scholar] [CrossRef]
- Yagi, M.; Kondo, K. Preparation of carrier-free 67Cu by the 68Zn(g,p) reaction. Int. Appl. Radiat. Isot. 1978, 29, 757–759. [Google Scholar] [CrossRef]
- Chakravarty, R.; Rajeswari, A.; Shetty, P.; Jagadeesan, K.C.; Ram, R.; Jadhav, S.; Sarma, H.D.; Dash, A.; Chakraborty, S. A Simple and Robust Method for Radiochemical Separation of No-Carrier-Added 64Cu Produced in a Research Reactor for Radiopharmaceutical Preparation. Appl. Radiat. Isot. 2020, 165, 109341. [Google Scholar] [CrossRef]
- Schwarzbach, R.; Zimmermann, K.; Bluenstein, P.; Smith, A.; Schubiger, P.A. Development of a Simple and Selective Separation of 67Cu from Irradiated Zinc for Use in Antibody Labelling: A Comparison of Methods. Appl. Radiat. Isot. 1995, 46, 329–336. [Google Scholar] [CrossRef]
- Dasgupta, A.K.; Mausner, L.F.; Srivastava, S.C. A New Separation Procedure for 67Cu from Proton Irradiated Zn. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1991, 42, 371–376. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.; Chun, K.S. Effective Separation Method of 64Cu from 67Ga Waste Product with a Solvent Extraction and Chromatography. Appl. Radiat. Isot. 2010, 68, 1623–1626. [Google Scholar] [CrossRef]
- Sen, N.; Chakravarty, R.; Singh, K.K.; Chakraborty, S.; Shenoy, K.T. Selective Separation of Cu from Large Excess of Zn Using a Microfluidic Platform. Chem. Eng. Process.—Process Intensif. 2021, 159, 108215. [Google Scholar] [CrossRef]
- Dolley, S.G.; van der Walt, T.N.; Steyn, G.F.; Szelecsényi, F.; Kovács, Z. The Production and Isolation of Cu-64 and Cu-67 from Zinc Target Material and Other Radionuclides. Czechoslov. J. Phys. 2006, 56, 539–544. [Google Scholar] [CrossRef]
- Dolley, S.G.; van der Walt, T.N. Isolation of Cu Radionuclides with Dithizone Impregnated Xad-8. Radiochim. Acta 2014, 102, 263–269. [Google Scholar] [CrossRef]
- Roberts, J.C.; Newmyer, S.L.; Mercer-Smith, J.A.; Schreyer, S.A.; Lavallee, D.K. Labeling Antibodies with Copper Radionuclides Using N-4-Nitrobenzyl-5-(4-Carboxyphenyl)-10,15,20-Tris(4-Sulfophenyl) Porphine. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1989, 40, 775–781. [Google Scholar] [CrossRef]
- Ohya, T.; Nagatsu, K.; Hanyu, M.; Minegishi, K.; Zhang, M.R. Simple Separation of 67Cu from Bulk Zinc by Coprecipitation Using Hydrogen Sulfide Gas and Silver Nitrate. Radiochim. Acta 2020, 108, 469–476. [Google Scholar] [CrossRef]
- Ohya, T.; Nagatsu, K.; Suzuki, H.; Fukada, M.; Minegishi, K.; Hanyu, M.; Fukumura, T.; Zhang, M.-R. Efficient Preparation of High-Quality 64Cu for Routine Use. Nucl. Med. Biol. 2016, 43, 685–691. [Google Scholar] [CrossRef]
- McCarthy, D.W.; Shefer, R.E.; Klinkowstein, R.E.; Bass, L.A.; Margeneau, W.H.; Cutler, C.S.; Anderson, C.J.; Welch, M.J. Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nucl. Med. Biol. 1997, 24, 35–43. [Google Scholar] [CrossRef]
- Le, V.S.; Howse, J.; Zaw, M.; Pellegrini, P.; Katsifis, A.; Greguric, I.; Weiner, R. Alternative Method for 64Cu Radioisotope Production. Appl. Radiat. Isot. Incl. Data Instrum. Methods Use Agric. Ind. Med. 2009, 67, 1324–1331. [Google Scholar] [CrossRef]
- EDQM. Radiopharmaceutical Preparations, General Monograph: 0125. In European Pharmacopeia; Council of Europe: Strasbourg, France, 2020. [Google Scholar]
- Coenen, H.H.; Gee, A.D.; Adam, M.; Antoni, G.; Cutler, C.S.; Fujibayashi, Y.; Jeong, J.M.; Mach, R.H.; Mindt, T.L.; Pike, V.W.; et al. Consensus Nomenclature Rules for Radiopharmaceutical Chemistry—Setting the Record Straight. Nucl. Med. Biol. 2017, 55, v-xi. [Google Scholar] [CrossRef] [Green Version]
- van So, L.; Pellegrini, P.; Katsifis, A.; Howse, J.; Greguric, I. Radiochemical Separation and Quality Assessment for the 68Zn Target Based 64Cu Radioisotope Production. J. Radioanal. Nucl. Chem. 2008, 277, 451–466. [Google Scholar] [CrossRef]
- EDQM. Lutetium (177Lu) Solution for Radiolabelling, Monograph: 2798. In European Pharmacopeia; Council of Europe: Strasbourg, France, 2020. [Google Scholar]
- Wadas, T.; Wong, E.; Weisman, G.; Anderson, C. Copper Chelation Chemistry and Its Role in Copper Radiopharmaceuticals. Curr. Pharm. Des. 2006, 13, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem. Rev. 2010, 110, 2858–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moi, M.K.; Meares, C.F.; McCall, M.J.; Cole, W.C.; DeNardo, S.J. Copper Chelates as Probes of Biological Systems: Stable Copper Complexes with a Macrocyclic Bifunctional Chelating Agent. Anal. Biochem. 1985, 148, 249–253. [Google Scholar] [CrossRef]
- Boschi, A.; Martini, P.; Janevik-Ivanovska, E.; Duatti, A. The Emerging Role of Copper-64 Radiopharmaceuticals as Cancer Theranostics. Drug Discov. Today 2018, 23, 1489–1501. [Google Scholar] [CrossRef]
- Anderson, C.J.; Ferdani, R. Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research. Cancer Biother. Radiopharm. 2009, 24, 379–393. [Google Scholar] [CrossRef]
- Bass, L.A.; Wang, M.; Welch, M.J.; Anderson, C.J. In Vivo Transchelation of Copper-64 from TETA-Octreotide to Superoxide Dismutase in Rat Liver. Bioconjug. Chem. 2000, 11, 527–532. [Google Scholar] [CrossRef]
- Hao, G.; Singh, A.N.; Oz, O.K.; Sun, X. Recent Advances in Copper Radiopharmaceuticals. Curr. Radiopharm. 2011, 4, 109–121. [Google Scholar] [CrossRef]
- Busch, D.H. The Complete Coordination Chemistry—One Practioner’s Perspective. Chem. Rev. 1993, 93, 847–860. [Google Scholar] [CrossRef]
- Sun, X.; Wuest, M.; Weisman, G.R.; Wong, E.H.; Reed, D.P.; Boswell, C.A.; Motekaitis, R.; Martell, A.E.; Welch, M.J.; Anderson, C.J. Radiolabeling and In Vivo Behavior of Copper-64-Labeled Cross-Bridged Cyclam Ligands. J. Med. Chem. 2002, 45, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Boswell, C.A.; Sun, X.; Niu, W.; Weisman, G.R.; Wong, E.H.; Rheingold, A.L.; Anderson, C.J. Comparative in Vivo Stability of Copper-64-Labeled Cross-Bridged and Conventional Tetraazamacrocyclic Complexes. J. Med. Chem. 2004, 47, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, A.; Brasuń, J. Somatostatin Analogues Labeled with Copper Radioisotopes: Current Status. J. Radioanal. Nucl. Chem. 2017, 313, 279–289. [Google Scholar] [CrossRef]
- Sun, X.; Wuest, M.; Kovacs, Z.; Sherry, A.D.; Motekaitis, R.; Wang, Z.; Martell, A.E.; Welch, M.J.; Anderson, C.J. In Vivo Behavior of Copper-64-Labeled Methanephosphonate Tetraaza Macrocyclic Ligands. J. Biol. Inorg. Chem. JBIC Publ. Soc. Biol. Inorg. Chem. 2003, 8, 217–225. [Google Scholar] [CrossRef]
- di Bartolo, N.M.; Sargeson, A.M.; Donlevy, T.M.; Smith, S. v Synthesis of a New Cage Ligand, SarAr, and Its Complexation with Selected Transition Metal Ions for Potential Use in Radioimaging. J. Chem. Soc., Dalton Trans. 2001, 2303–2309. [Google Scholar] [CrossRef]
- Cooper, M.S.; Ma, M.T.; Sunassee, K.; Shaw, K.P.; Williams, J.D.; Paul, R.L.; Donnelly, P.S.; Blower, P.J. Comparison of 64Cu-Complexing Bifunctional Chelators for Radioimmunoconjugation: Labeling Efficiency, Specific Activity, and in Vitro / in Vivo Stability. Bioconjug. Chem. 2012, 23, 1029–1039. [Google Scholar] [CrossRef] [Green Version]
- Dearling, J.L.J.; Voss, S.D.; Dunning, P.; Snay, E.; Fahey, F.; Smith, S.V.; Huston, J.S.; Meares, C.F.; Treves, S.T.; Packard, A.B. Imaging Cancer Using PET—The Effect of the Bifunctional Chelator on the Biodistribution of a 64Cu-Labeled Antibody. Nucl. Med. Biol. 2011, 38, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Maheshwari, V.; Dearling, J.; Treves, S.; Packard, A. Measurement of the Rate of Copper(II) Exchange for 64Cu Complexes of Bifunctional Chelators. Inorg. Chim. Acta 2012, 393, 318–323. [Google Scholar] [CrossRef]
- Boros, E.; Packard, A.B. Radioactive Transition Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 870–901. [Google Scholar] [CrossRef]
- Pasquali, M.; Martini, P.; Shahi, A.; Jalilian, A.R.; Osso, J.A.; Boschi, A. Copper-64 Based Radiopharmaceuticals for Brain Tumors and Hypoxia Imaging. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Paterson, B.M.; Donnelly, P.S. Copper Complexes of Bis(Thiosemicarbazones): From Chemotherapeutics to Diagnostic and Therapeutic Radiopharmaceuticals. Chem. Soc. Rev. 2011, 40, 3005–3018. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.V.; DeNardo, S.J.; Meares, C.F.; McCall, M.J.; Adams, G.P.; Moi, M.K.; DeNardo, G.L. Copper-67-Labeled Monoclonal Antibody Lym-1, a Potential Radiopharmaceutical for Cancer Therapy: Labeling and Biodistribution in RAJI Tumored Mice. J. Nucl. Med. 1988, 29, 217–225. [Google Scholar]
- DeNardo, G.L.; Kukis, D.L.; Shen, S.; Mausner, L.F.; Meares, C.F.; Srivastava, S.C.; Miers, L.A.; DeNardo, S.J. Efficacy and Toxicity of 67Cu-2IT-BAT-Lym-1 Radioimmunoconjugate in Mice Implanted with Human Burkitt’s Lymphoma (Raji). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1997, 3, 71–79. [Google Scholar]
- Connett, J.M.; Anderson, C.J.; Guo, L.W.; Schwarz, S.W.; Zinn, K.R.; Rogers, B.E.; Siegel, B.A.; Philpott, G.W.; Welch, M.J. Radioimmunotherapy with a 64Cu-Labeled Monoclonal Antibody: A Comparison with 67Cu. Proc. Natl. Acad. Sci. USA 1996, 93, 6814–6818. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, K.; Grünberg, J.; Honer, M.; Ametamey, S.; August Schubiger, P.; Novak-Hofer, I. Targeting of Renal Carcinoma with 67/64Cu-Labeled Anti-L1-CAM Antibody ChCE7: Selection of Copper Ligands and PET Imaging. Nucl. Med. Biol. 2003, 30, 417–427. [Google Scholar] [CrossRef]
- Hughes, O.D.M.; Bishop, M.C.; Perkins, A.C.; Frier, M.; Price, M.R.; Denton, G.; Smith, A.; Rutherford, R.; Schubiger, P.A. Preclinical Evaluation of Copper-67 Labelled Anti-MUC1 Mucin Antibody C595 for Therapeutic Use in Bladder Cancer. Eur. J. Nucl. Med. 1997, 24, 439–443. [Google Scholar] [CrossRef]
- Fani, M.; del Pozzo, L.; Abiraj, K.; Mansi, R.; Tamma, M.L.; Cescato, R.; Waser, B.; Weber, W.A.; Reubi, J.C.; Maecke, H.R. PET of Somatostatin Receptor Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference. J. Nucl. Med. 2011, 52, 1110–1118. [Google Scholar] [CrossRef] [Green Version]
- Cullinane, C.; Jeffery, C.M.; Roselt, P.D.; van Dam, E.M.; Jackson, S.; Kuan, K.; Jackson, P.; Binns, D.; van Zuylekom, J.; Harris, M.J.; et al. Peptide Receptor Radionuclide Therapy with 67Cu-CuSarTATE Is Highly Efficacious Against a Somatostatin-Positive Neuroendocrine Tumor Model. J. Nucl. Med. 2020, 61, 1800. [Google Scholar] [CrossRef]
- McInnes, L.; Zia, N.; Cullinane, C.; van Zuylekom, J.; Jackson, S.; Stoner, J.; Haskali, M.; Roselt, P.; van Dam, E.; Harris, M.; et al. A Cu-64/Cu-67 Bifunctional PSMA Ligand as a Theranostic for Prostate Cancer. J. Nucl. Med. 2020, 61, 1215. [Google Scholar]
- Kelly, J.M.; Ponnala, S.; Amor-Coarasa, A.; Zia, N.A.; Nikolopoulou, A.; Nikolopoulou, A.; Williams, C.; Schlyer, D.J.; Schlyer, D.J.; Dimagno, S.G.; et al. Preclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for 64Cu/67Cu-Based Theranostics in Prostate Cancer. Mol. Pharm. 2020, 17, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Keinänen, O.; Fung, K.; Brennan, J.M.; Zia, N.; Harris, M.; van Dam, E.; Biggin, C.; Hedt, A.; Stoner, J.; Donnelly, P.S.; et al. Harnessing 64Cu/ 67Cu for a Theranostic Approach to Pretargeted Radioimmunotherapy. Proc. Natl. Acad. Sci. USA 2020, 117, 28316–28327. [Google Scholar] [CrossRef] [PubMed]
- Strickland, G.T.; Beckner, W.M.; Leu, M.-L. Absorption of Copper in Homozygotes and Heterozygotes for Wilson’s Disease and Controls: Isotope Tracer Studies with 67Cu and 64Cu. Clin. Sci. 1972, 43, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Denardo, G.L.; Denardo, S.J.; Kukis, D.L.; O’Donnell, R.T.; Shen, S.; Goldstein, D.S.; Kroger, L.A.; Salako, Q.; Denardo, D.A.; Mirick, G.R.; et al. Maximum Tolerated Dose of 67Cu-2IT-BAT-LYM-1 for Fractionated Radioimmunotherapy of Non-Hodgkin’s Lymphoma: A Pilot Study. Anticancer Res. 1998, 18, 2779–2788. [Google Scholar] [PubMed]
- O’Donnell, R.T.; DeNardo, G.L.; Kukis, D.L.; Lamborn, K.R.; Shen, S.; Yuan, A.; Goldstein, D.S.; Carr, C.E.; Mirick, G.R.; DeNardo, S.J. A Clinical Trial of Radioimmunotherapy with 67Cu-21T-BAT-Lym-1 for Non-Hodgkins Lymphoma. J. Nucl. Med. 1999, 40, 2014. [Google Scholar] [PubMed]
- Bailey, D.; Schembri, G.; Willowson, K.; Hedt, A.; Lengyelova, E.; Harris, M. A Novel Theranostic Trial Design Using 64Cu/67Cu with Fully 3D Pre-Treatment Dosimetry. J. Nucl. Med. 2019, 60, 204. [Google Scholar]
- A Phase I/IIA Study of 64Cu-SARTATE and 67Cu-SARTATE for Imaging and Treating Children and Young Adults with High-Risk Neuroblastoma. Available online: https://www.mskcc.org/cancer-care/clinical-trials/20-218 (accessed on 11 January 2022).
- 67Cu-SARTATETM Peptide Receptor Radionuclide Therapy Administered to Pediatric Patients with High-Risk, Relapsed, Refractory Neuroblastoma. Available online: https://clinicaltrials.gov/ct2/show/NCT04023331 (accessed on 11 January 2022).
- Biggin, C.; van Dam, E.; Harris, M.; Parker, M.; Schembri, G. Estimating External Exposure from Patients after Treatment with Cu-67 SARTATE. J. Nucl. Med. 2019, 60, 1624a. [Google Scholar]
- Willowson, K.; Harris, M.; Jeffery, C.; Biggin, C.; Hedt, A.; Stoner, J.; Bailey, D. Development of 67Cu Quantitative SPECT for Clinical Dosimetry. J. Nucl. Med. 2018, 59, 1748. [Google Scholar]
- Hao, G.; Mastren, T.; Silvers, W.; Hassan, G.; Öz, O.K.; Sun, X. Copper-67 Radioimmunotheranostics for Simultaneous Immunotherapy and Immuno-SPECT. Sci. Rep. 2021, 11, 3622. [Google Scholar] [CrossRef]
- Haddad, F.; Ferrer, L.; Guertin, A.; Carlier, T.; Michel, N.; Barbet, J.; Chatal, J.-F. ARRONAX, a High-Energy and High-Intensity Cyclotron for Nuclear Medicine. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1377–1387. [Google Scholar] [CrossRef]
- Esposito, J.; Bettoni, D.; Boschi, A.; Calderolla, M.; Cisternino, S.; Fiorentini, G.; Keppel, G.; Martini, P.; Maggiore, M.; Mou, L.; et al. Laramed: A Laboratory for Radioisotopes of Medical Interest. Molecules 2019, 24, 20. [Google Scholar] [CrossRef] [Green Version]
- de Nardo, L.; Pupillo, G.; Mou, L.; Esposito, J.; Rosato, A.; Meléndez-Alafort, L. A Feasibility Study of the Therapeutic Application of a Mixture of 64/67Cu Radioisotopes Produced by Cyclotrons with Proton Irradiation. Phys. Med. Biol. 2022; in press. [Google Scholar]
- PRISMAP—Building a European Network for Medical Radionuclides. Available online: https://www.arronax-nantes.fr/en/radionuclide-production/news/prismap-building-a-european-network-for-medical-radionuclides/ (accessed on 10 January 2022).
Half-Life | Main γ-ray Energy, Intensity (keV) (%) | Mean β+ Energy, Intensity (keV) (%) | Mean β− Energy, Intensity (keV) (%) | Auger and IC Electrons | |
---|---|---|---|---|---|
67Cu | 61.83 h | 184.577 (48.7) | - | 141 (100) | Yes |
64Cu | 12.701 h | 1345.77 (0.475) | 278 (17.6) | 191 (38.5) | Yes |
61Cu | 3.336 h | 282.956 (12.7) 656.008 (10.4) | 500 (61) | - | Yes |
60Cu | 23.7 m | 826.4 (21.7) 1332.5 (88.0) 1791.6 (45.4) | 970 (93) | - | Yes |
Target | Energy Range (MeV) | 67Cu @ EOB (MBq/µA) | 64Cu @ EOB (MBq/µA) | 67Cu/(64Cu + 67Cu) @ EOB | 67Cu/(64Cu + 67Cu) @ 24 h Post EOB |
---|---|---|---|---|---|
70Zn | 25–10 [9] | 2.13 × 102 | - | 100% | 100% |
68Zn | 70–35 [9] | 1.24 × 103 | 6.51 × 103 | 16% | 35% |
70Zn + 68Zn | 70–55 + 55–35 [16] | 1.86 × 103 | 5.71 × 103 | 25% | 48% |
Beam | Target | Energy Range (MeV) | Thickness (mm) | 67Cu @ EOB (MBq) | 64Cu @ EOB (MBq) |
---|---|---|---|---|---|
Protons | 70Zn | 25–10 | 1.22 | 3.01 × 103 | - |
68Zn | 70–35 | 6.43 | 1.75 × 104 | 1.48 × 105 | |
70Zn + 68Zn | 70–55 + 55–35 | 3.26 + 3.27 | 2.62 × 104 | 1.30 × 105 | |
Deuterons | 70Zn | 26–16 | 0.58 | 4.01 × 103 | - |
Alpha | 64Ni | 30–10 | 0.16 | 1.00 × 103 | - |
Ref. | Target | Dissolution | Radiochemical Separation Method | Processing Time | Yield |
---|---|---|---|---|---|
[36,53] | natZn foil or ZnO | conc. HCl | SE with dithizone | - | >90% |
[56] | natZn plates | 30% HCl (400 K) | SE with dithizone +IE with AG 50 W +IE with AG1-X8 | 5 h | 85 ± 20% for SE |
[57] | ZnO (28–30 g) | conc. HCl | SE with dithizone +IE with AG1-X8 | 5–7 h | >90% |
[44] | 67ZnO | 1 N HCl +30% H2O2 | SE with TTA | - | - |
[51,54] | 68ZnO (100 mg) | conc. HCl | IE with Dowex 1 × 8 | 4 h | 94% |
[52] | natZn (1–2 g) | 8 M HCl | IE with AG1-X8 | 2 h | 95% |
[42] | 67ZnO, 93.4% (50 mg) | 4 M HCl | IE with Diaion SA-100 | - | 95% |
[13] | 68Zn, 99.7% (0.7–4 g) electroplated on Ti or Al | 12 M HCl | IE with AG50-X4 +Chelex-100 +AG1-X8 | - | 92–95% |
[56] | natZn plate | 37% HCl | IE with AG50W +Chelex-100 +AG1-X8 | 4.5 h | 90% |
[16] | 70Zn, >95% metal foils | 10 M HCl | IE with AG50W-X4 +AG1-X8 | 4 h | 95 ± 2% |
[63] | natZnO powder (3.5 g) | 10 M HCl (100 °C) | Double coprecipitation with AgNO3 | <3 h | 81 ± 6% |
[31] | 68Zn metal ingot target (100 g) | - | Sublimation | Rate of Zn separation from Cu: >50 g/h | Removing of >99% of Cu (and other metals) from Zn in each sublimation cycle |
[56] | natZn plate | 30% HCl (400 K) | Electrolysis | 12 h | 60% |
[2] | natZn foil | conc. HCl +HNO3 | Electrolysis + IE with MP-1 | - | 80% |
[39] | 67ZnO, ≥94% (50–100 mg) | 1 M H2SO4 | Spontaneous electrochemical separation | 1.5 h | 95% |
Beam | Target | Energy Range (MeV) | Thickness (mm) | Target Cost ($) | 67Cu @ EOB (GBq) (mCi) | 67Cu Cost ($/GBq) ($/mCi) | 64Cu |
---|---|---|---|---|---|---|---|
Protons | 70Zn | 25–10 | 1.22 | 11,284 | 3 (81) | 3761 (139) | - |
68Zn | 70–35 | 6.43 | 13,758 | 17.5 (473) | 786 (29) | Yes | |
70Zn + 68Zn | 70–55 + 55–35 | 3.26 + 3.27 | 30,186 + 7000 | 26.2 (709) | 1420 (52) | Yes | |
Deuterons | 70Zn | 26–16 | 0.58 | 6500 | 4.1 (110) | 1323 (49) | - |
Alpha | 64Ni | 30–0 | 0.16 | 3300 | 1 (27) | 4272 (158) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, L.; Martini, P.; Pupillo, G.; Cieszykowska, I.; Cutler, C.S.; Mikołajczak, R. 67Cu Production Capabilities: A Mini Review. Molecules 2022, 27, 1501. https://doi.org/10.3390/molecules27051501
Mou L, Martini P, Pupillo G, Cieszykowska I, Cutler CS, Mikołajczak R. 67Cu Production Capabilities: A Mini Review. Molecules. 2022; 27(5):1501. https://doi.org/10.3390/molecules27051501
Chicago/Turabian StyleMou, Liliana, Petra Martini, Gaia Pupillo, Izabela Cieszykowska, Cathy S. Cutler, and Renata Mikołajczak. 2022. "67Cu Production Capabilities: A Mini Review" Molecules 27, no. 5: 1501. https://doi.org/10.3390/molecules27051501