Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha’s Hand Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Plant Material
2.2. Hydrodistillation
2.3. Extract Peparation
2.4. SPME Sampling of Exocarp and Mesocarp
2.5. HS Sampling of Hy
2.6. GC-MS Analysis of EO and Hy
2.7. GC-MS Analysis of EEX and MEX
2.8. Determination of Total Polyphenols
2.9. Determination of Total Flavonoids
2.10. DPPH Test
2.11. ABTS Test
2.12. Antibacterial Activity
2.13. Cell Culturing and Cytotoxicity Test (MTT)
2.14. Statistical Analysis
3. Results
3.1. Vapor Phase Chemical Composition
3.2. EEX and MEX Chemical Composition
3.3. EO and Hy Chemical Composition
3.4. Content of Polyphenols and Flavonoids
3.5. Antiradical Activity
3.6. EO, Hy, EEX and MEX Antibacterial Activity
3.7. Cytotoxicity Test on HL60 Cell Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Albergamo, A.; Costa, R.; Dugo, G. Cold pressed lemon (Citrus limon) seed oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: New York, NY, USA, 2020; pp. 159–180. [Google Scholar]
- Citrus—FAO (Food and Agricultural Organization). Available online: https://www.fao.org/markets-and-trade/commodities/citrus/en/ (accessed on 22 February 2022).
- Raghavan, S.; Gurunathan, J. Citrus species—A golden treasure box of metabolites that is beneficial against disorders. J. Herb. Med. 2021, 28, 100438. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Lee, Y.R. Extraction, characterization and biological activity of citrus flavonoids. Rev. Chem. Eng. 2019, 35, 265–284. [Google Scholar] [CrossRef]
- Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Xiao, C.; Lu, C.; Liu, Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 2015, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (CEOs) and their applications in food: An overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Flora of China. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200012432 (accessed on 25 January 2022).
- Mahdi, A.A.; Al-Ansi, W.; Ahmed, M.I.; Wang, H. Bioactive compounds and functional benefits of the Foshou Fruit: A Review. J. Food Nutr. Res. 2018, 6, 486–491. [Google Scholar] [CrossRef]
- Wu, Z. Effect of different drying methods on chemical composition and bioactivity of finger citron polysaccharides. Int. J. Biol. Macromol. 2015, 76, 218–223. [Google Scholar] [CrossRef]
- Theanphong, O.; Songsak, T.; Mingvanish, W. Chemical composition and antimicrobial activity of the essential oil from Citrus medica L. var. sarcodactylis (Sieber) Swingle leaf. Mahidol Univ. J. Pharm. Sci. 2008, 35, 57–61. [Google Scholar]
- Chan, Y.Y.; Li, C.H.; Shen, Y.C.; Wu, T.S. Anti-inflammatory principles from the stem and root barks of Citrus medica. Chem. Pharm. Bull. 2010, 58, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.Y.; Wu, T.S.; Kuo, Y.H. Chemical constituents and cytotoxicity from the stem bark of Citrus medica. Heterocycles 2009, 78, 1309–1316. [Google Scholar]
- Peng, C.H.; Ker, Y.B.; Weng, C.F.; Peng, C.C.; Huang, C.N.; Lin, L.Y.; Peng, R.Y. Insulin secretagogue bioactivity of finger citron fruit (Citrus medica L. var. sarcodactylis Hort, Rutaceae). J. Agric. Food Chem. 2009, 57, 8812–8819. [Google Scholar] [CrossRef]
- Kim, K.N.; Ko, Y.J.; Yang, H.M.; Ham, Y.M.; Roh, S.W.; Jeon, Y.J.; Ahn, G.; Kang, M.C.; Yoon, W.J.; Kim, D. Antiinflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS activated RAW 264.7 cells. Food Chem. Toxicol. 2013, 57, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, H.; Yang, Y.; Zhan, Y.; Tu, D. Variation in the components and antioxidant activity of Citrus medica L. var. sarcodactylis essential oils at different stages of maturity. Ind. Crops Prod. 2013, 46, 311–316. [Google Scholar] [CrossRef]
- Al-Kalifawi, E.J. The antimicrobial activity of essential oils of Al-Abbas’s (AS) hand fruit peel (Citrus medica) var. sarcodactylis Swingle. J. Nat. Sci. Res. 2015, 5, 19–27. [Google Scholar]
- Zhang, Q.W. Citrus medica L. var. sarcodactylis Swingle (Foshou, Finger Citron). In Dietary Chinese Herbs: Chemistry, Pharmacology and Clinical Evidence; Liu, Y., Wang, Z., Zhang, J., Eds.; Springer: Vienna, Austria, 2015; pp. 327–331. [Google Scholar]
- Vitalini, S.; Gardana, C.; Zanzotto, A.; Simonetti, P.; Faoro, F.; Fico, G.; Iriti, M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J. Pineal Res. 2011, 51, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Iriti, M.; Vinciguerra, V.; Garzoli, S. A Comparative study of the chemical composition by SPME-GC/MS and antiradical activity of less common Citrus Species. Molecules 2021, 26, 5378. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Laghezza Masci, V.; Franceschi, S.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Headspace/GC–MS analysis and investigation of antibacterial, antioxidant and cytotoxic activity of essential oils and hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller. Foods 2021, 10, 1768. [Google Scholar] [CrossRef] [PubMed]
- Ovidi, E.; Laghezza Masci, V.; Zambelli, M.; Tiezzi, A.; Vitalini, S.; Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis essential oils and hydrolates: Evaluation of liquid and vapor phase chemical composition and biological activities. Plants 2021, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Laghezza Masci, V.; Ovidi, E.; Turchetti, G.; Zago, D.; Tiezzi, A. Chemical investigation of a biologically active Schinus molle L. leaf extract. J. Anal. Methods Chem. 2019, 2019, 8391263. [Google Scholar] [CrossRef] [Green Version]
- Vitalini, S.; Madeo, M.; Tava, A.; Iriti, M.; Vallone, L.; Avato, P.; Cocuzza, C.E.; Simonetti, P.; Argentieri, M.P. Chemical profile, antioxidant and antibacterial activities of Achillea moschata Wulfen, an endemic species from the Alps. Molecules 2016, 21, 830. [Google Scholar] [CrossRef] [Green Version]
- Assefa, A.D.; Ko, E.Y.; Moon, S.H.; Keum, Y. Antioxidant and antiplatelet activities of flavonoid-rich fractions of three citrus fruits from Korea. 3 Biotech 2016, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriti, M.; Vitalini, S.; Apostolides, N.A.; El Beyrouthy, M. Chemical composition and antiradical capacity of essential oils from Lebanese medicinal plants. J. Essent. Oil Res. 2014, 26, 466–472. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci Laghezza, V.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Ovidi, E.; Laghezza Masci, V.; Taddei, A.R.; Paolicelli, P.; Petralito, S.; Trilli, J.; Mastrogiovanni, F.; Tiezzi, A.; Casadei, M.A.; Giacomello, P.; et al. Chemical investigation and screening of anti-proliferative activity on human cell lines of pure and nano-formulated lavandin essential oil. Pharmaceuticals 2020, 13, 352. [Google Scholar] [CrossRef]
- Song, S.; Tong, Y.; Feng, T.; Zhu, J. Multi-analysis of Odorous Compounds in Finger Citron (Citrus medica L. var. sarcodactylis Swingle) and Certification of Key Compounds. J. Essent. Oil Bear. Plants 2018, 2, 600–613. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of volatile flavour compounds in finger citron (Citrus medica L.var. sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS and HS-GC-IMS. Int. Food Res. J. 2020, 138, 109717. [Google Scholar] [CrossRef]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [Green Version]
- Shiota, H. Volatile components in the peel oil from fingered citron (Citrus medica L. var. sarcodactylis swingle). Flavour Frag. J. 1990, 5, 33–37. [Google Scholar] [CrossRef]
- Sayorwan, W.; Rumruay, V. Chemical compositions of fingered citron peel (citrus medica L. var. sarcodactylis) and its effect on the autonomic nervous system. J. Health Res. 2017, 31, 307–313. [Google Scholar]
- Dang, N.H.; Nhung, P.H.; Anh, B.T.M.; Thuy, D.T.T.; Minh, C.V.; Dat, N.T. Chemical composition and 𝛼-glucosidase inhibitory activity of Vietnamese Citrus peels essential oils. J. Chem. 2016, 2016, 6787952. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhong, W.; Chen, K.; Tang, P.; Gu, J. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Ind. Crops Prod. 2020, 144, 112036. [Google Scholar] [CrossRef]
- Luo, C.; Li, D.; Wang, Y.; Guo, S.; Zhang, D.; Du, S. Chemical composition and insecticide efficacy of essential oils from Citrus medica L. var. sarcodactylis Swingle against Tribolium castaneum Herbst in stored medicinal materials. J. Essent. Oil Bear. Plants 2019, 22, 1182–1194. [Google Scholar] [CrossRef]
- Deng, G.; Craft, J.D.; Steinberg, K.M.; Li, P.L.; Pokharel, S.K.; Setzer, W.N. Influence of different isolation methods on chemical composition and bioactivities of the fruit peel oil of Citrus medica L. var. sarcodactylis (Noot.) Swingle. Medicines 2017, 4, 1. [Google Scholar] [CrossRef]
- Tava, A.; Iriti, M.; Vitalini, S. Composition and antioxidant activity of the essential oil from Achillea moschata Wulfen growing in Valchiavenna and Valmalenco (Italian Central Alps). Int. J. Hort. Sci. Technol. 2020, 7, 335–341. [Google Scholar]
- Xu, Y.Q.; Ji, W.B.; Yu, P.; Chen, J.X.; Wang, F.; Yin, J.F. Effect of extraction methods on the chemical components and taste quality of green tea extract. Food Chem. 2018, 15, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Li, M.T.; Jin, W.W.; Li, S.; Zhang, S.Q.; Yu, L.J. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering. Food Chem. 2009, 114, 233–236. [Google Scholar] [CrossRef]
- Hosni, K.; Zahed, N.; Chrif, R.; Abid, I.; Medfei, W.; Kallel, M.; Brahim, N.B.; Sebei, H. Composition of peel essential oils from four selected tunisian Citrus Species: Evidence for the genotypic influence. Food Chem. 2010, 123, 1098–1104. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lanteri, P.; Clement, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Chen, W.R.; Zheng, J.S.; Li, Y.Q.; Guo, W.D. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ. J. Plant Physiol. 2012, 59, 732–740. [Google Scholar] [CrossRef]
- Guo, J.-j.; Gao, Z.-p.; Xia, J.-l.; Ritenour, M.A.; Li, G.-y.; Shan, Y. Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China. LWT 2018, 97, 825–839. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT 2017, 80, 371–377. [Google Scholar] [CrossRef]
- Mahdi, A.A.; Al-Ansi, W.; Ahmed, M.I.; Xiaoyun, C.; Mohammed, J.K.; Sulieman, A.A.; Sajid, B.; Harimana, Y.; Wang, H. Microwave assisted extraction of the bioactive compounds from peel/pulp of Citrus medica L. var. sarcodactylis swingle along with its nutritional profiling. J. Food Meas. Charact. 2020, 14, 283–292. [Google Scholar] [CrossRef]
- Böhme, K.; Barros-Velázquez, J.; Calo-Mata, P.; Aubourg, S.P. Antibacterial, antiviral and antifungal activity of essential oils: Mechanisms and applications. In Antimicrobial Compounds; Villa, T., Veiga-Crespo, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 51–81. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, C.R.; Sahoo, J.; Mahapatra, M.; Lenka, D.; Sahu, K.P.; Dehury, B.; Padhy, R.N.; Paidesetty, S.K. Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem. 2021, 14, 102922. [Google Scholar] [CrossRef]
- Wang, F.; You, H.; Guo, Y.; Wei, Y.; Xia, P.; Yang, Z.; Ren, M.; Guo, H.; Han, R.; Yang, D. Essential oils from three kinds of fingered citrons and their antibacterial activities. Ind. Crops Prod. 2020, 147, 112172. [Google Scholar] [CrossRef]
- Gupta, A.; Jeyakumar, E.; Lawrence, R. Strategic approach of multifaceted antibacterial mechanism of limonene traced in Escherichia coli. Sci. Rep. 2021, 11, 13816. [Google Scholar] [CrossRef]
- Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2020, 25, 33. [Google Scholar] [CrossRef] [Green Version]
- Pathirana, H.N.; Wimalasena, S.H.; De Silva, B.C.; Hossain, S.; Heo, G.J. Antibacterial activity of lime (Citrus aurantifolia) essential oil and limonene against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus). Fish. Aquat. Sci. 2018, 26, 131–139. [Google Scholar] [CrossRef]
- Oyedemi, S.O.; Okoh, A.I.; Mabinya, L.V.; Pirochenva, G.; Afolayan, A.J. The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. J. Appl. Bacteriol. 2009, 8, 1280–1286. [Google Scholar]
- Akkol, E.K.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2017, 12, 1959. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol. 2020, 10, 2720. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, Y.; Zheng, C.; Feng, K. Biotransformation of 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran by Ganoderma sessile and toxicological assessment of both compounds. AMB Expr. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Li, Y.; Qian, Z.J.; Kim, M.M.; Kim, S.K. In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free radical mediated oxidative systems. J. Microbiol. Biotechnol. 2009, 19, 1319–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairlamb, I.J.S.; Lester, R.; Marrison, L.R.; Dickinson, J.M.; Lu, F.J.; Schmidt, J.P. 2-Pyrones possessing antimicrobial and cytotoxic activities. Bioorg. Med. Chem. 2004, 12, 4285–4299. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, S.O.; Fontaine, V.; Mathieu, V.; Zhiri, A.; Baudoux, D.; Stévigny, C.; Souard, F. Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils. Antibiotics 2020, 9, 717. [Google Scholar] [CrossRef]
- Taib, M.; Rezzak, Y.; Bouyazza, L.; Lyoussi, B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evid. Based Complement. Altern. Med. 2020, 2020, 1920683. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Tuchowska, A.; Janda-Milczarek, K. Plant hydrolates—Antioxidant properties, chemical composition and potential applications. Biomed. Pharmacother. 2021, 142, 112033. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Fitsiou, E.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Bardouki, H.; Vamvakias, M.; Panas, P.; Chlichlia, K.; Pappa, A.; Kourkoutas, Y. Citrus medica essential oil exhibits significant antimicrobial and antiproliferative activity. LWT 2017, 84, 344–352. [Google Scholar] [CrossRef]
- Laghezza Masci, V.; Ovidi, E.; Taddei, A.R.; Turchetti, G.; Tiezzi, A.; Giacomello, P.; Garzoli, S. Apoptotic effects on HL60 human leukaemia cells induced by lavandin essential oil treatment. Molecules 2020, 25, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
No. | Component 1 | LRI 2 | LRI 3 | Exocarp 4 (%) | Mesocarp 5 (%) |
---|---|---|---|---|---|
1 | α-thujene | 923 | 925 | 0.5 ± 0.02 | 0.4 ± 0.03 |
2 | α-pinene | 941 | 943 | 1.6 ± 0.02 | 1.4 ± 0.01 |
3 | β-thujene | 966 | 968 | 0.2 ± 0.01 | - |
4 | β-pinene | 980 | 986 | 2.5 ± 0.02 | 2.4 ± 0.02 |
5 | α-phellandrene | 998 | 996 | - | tr |
6 | p-cymene | 1020 | 1016 | 0.2 ± 0.02 | 0.7 ± 0.03 |
7 | limonene | 1024 | 1023 | 75.8 ± 0.02 | 76.2 ± 0.02 |
8 | cis-β-ocimene | 1035 | 1032 | 1.2 ± 0.02 | 1.1 ± 0.02 |
9 | γ-terpinene | 1057 | 1054 | 16.5 ± 0.02 | 15.0 ± 0.02 |
10 | α-terpinolene | 1081 | 1078 | 0.2 ± 0.02 | 0.6 ± 0.02 |
11 | α-terpineol | 1185 | 1183 | 0.1 ± 0.01 | 0.4 ± 0.02 |
12 | carveol | 1205 | 1201 | - | 0.1 ± 0.00 |
13 | 4-terpinenyl acetate | 1282 | 1286 | 0.5 ± 0.02 | 0.1 ± 0.02 |
14 | α-citral | 1285 | 1287 | - | 0.1 ± 0.00 |
15 | α-bergamotene | 1433 | 1431 | 0.3 ± 0.02 | 0.6 ± 0.02 |
16 | α-himachalene | 1451 | 1447 | 0.1 ± 0.02 | 0.6 ± 0.02 |
17 | γ-gurjunene | 1482 | 1479 | - | tr |
18 | α-farnesene | 1510 | 1506 | 0.2 ± 0.02 | - |
SUM | 99.9 | 99.7 | |||
Monoterpene hydrocarbons | 98.7 | 97.8 | |||
Oxygenated monoterpenes | 0.6 | 0.7 | |||
Sesquiterpene hydrocarbons | 0.6 | 1.2 |
No. | Component 1 | LRI 2 | LRI 3 | EEX 4 (%) | MEX 5 (%) |
---|---|---|---|---|---|
1 | 2,3-butanediol | 785 | 789 | - | 23.7 ± 0.02 |
2 | furfural | 796 | 794 | 1.8 ± 0.01 | 3.9 ± 0.03 |
3 | 2(3H)-furanone, 5-methyl- | 832 | 830 | 0.9 ± 0.02 | - |
4 | 2-furanmethanol | 860 | 856 | 3.9 ± 0.02 | 6.7 ± 0.04 |
5 | furfural, 5-methyl- | 970 | 965 | - | 1.9 ± 0.03 |
6 | furaneol | 1052 | 1055 | 3.1 ± 0.02 | 3.6 ± 0.01 |
7 | 2-pyrone | 1130 | 1134 | 23.4 ± 0.02 | 33.1 ± 0.01 |
8 | 5-HMF | 1210 | 1208 | 14.7 ± 0.02 | 24.8 ± 0.02 |
9 | (E)-β-farnesene | 1461 | * | 1.0 ± 0.02 | - |
10 | (Z,E)-α-farnesene | 1480 | 1475 | 0.6 ± 0.02 | - |
11 | coumarin, 5,7-dimethoxy | 1920 | 1916 | 50.6 ± 0.02 | 0.7 ± 0.02 |
12 | hexadecanoic acid | 1960 | 1954 | - | 1.6 ± 0.02 |
SUM | 100.0 | 100.0 |
No. | Component 1 | LRI 2 | LRI 3 | EO 4 (%) | Hy 5 (%) |
---|---|---|---|---|---|
1 | α-thujene | 923 | 925 | 0.2 ± 0.02 | - |
2 | α-pinene | 941 | 943 | 0.6 ± 0.03 | - |
3 | β-thujene | 966 | 968 | 0.1 ± 0.00 | - |
4 | β-myrcene | 983 | 980 | 0.9 ± 0.01 | - |
5 | β-pinene | 980 | 986 | 0.8 ± 0.01 | - |
6 | α-phellandrene | 998 | 996 | tr | - |
7 | (+)-4-carene | 1005 | 1001 | 0.2 ± 0.02 | - |
8 | p-cymene | 1020 | 1016 | 1.6 ± 0.02 | 0.4 ± 0.01 |
9 | limonene | 1024 | 1023 | 66.9 ± 0.02 | 3.2 ± 0.02 |
10 | β-terpinene | 1040 | 1036 | - | 1.0 ± 0.01 |
11 | γ-terpinene | 1057 | 1054 | 20.0 ± 0.03 | - |
12 | linalol | 1091 | 1088 | - | 5.7 ± 0.03 |
13 | R-(+)-citronellal | 1158 | 1152 | 0.1 ± 0.02 | - |
14 | terpinen-4-ol | 1186 | 1182 | 0.5 ± 0.02 | 21.6 ± 0.02 |
15 | α-terpineol | 1185 | 1193 | 1.2 ± 0.01 | 44.7 ± 0.01 |
16 | cis-geraniol | 1228 | 1231 | 0.2 ± 0.02 | 7.2 ± 0.01 |
17 | β-citral | 1238 | 1242 | 0.9 ± 0.05 | 5.8 ± 0.03 |
18 | α-citral | 1285 | 1287 | 1.3 ± 0.01 | 8.0 ± 0.02 |
19 | thymol | 1308 | 1310 | - | 1.9 ± 0.02 |
20 | piperitenone | 1316 | 1315 | - | 0.4 ± 0.01 |
21 | nerol acetate | 1362 | 1365 | 0.2 ± 0.02 | - |
22 | geranyl acetate | 1381 | 1380 | 0.1 ± 0.02 | - |
23 | β-caryophyllene | 1455 | 1457 | 1.7 ± 0.02 | - |
24 | humulene | 1470 | 1473 | 0.1 ± 0.00 | - |
25 | germacrene D | 1491 | 1489 | 0.6 ± 0.01 | - |
26 | β-bisabolene | 1505 | 1501 | 1.2 ± 0.01 | - |
27 | bicyclogermacrene | 1510 | * | 0.1 ± 0.00 | - |
28 | δ-cadinene | 1532 | 1530 | 0.1 ± 0.00 | - |
29 | α-bisabolol | 1670 | 1668 | 0.1 ± 0.02 | - |
SUM | 99.7 | 99.9 | |||
Monoterpene hydrocarbons | 91.3 | 10.3 | |||
Oxygenated monoterpenes | 4.5 | 89.6 | |||
Sesquiterpene hydrocarbons | 3.9 | - |
Samples | Total Polyphenols (mg GAE/g Fruit Part) | Total Flavonoids (mg QE/g Fruit Part) |
---|---|---|
EEX | 2.52 ± 0.07 | 2.20 ± 0.26 |
MEX | 1.74 ± 0.02 | 1.50 ± 0.06 |
Samples | ABTS RSA (%) | DPPH RSA (%) |
---|---|---|
EEX | 55.8 ± 5.4 | 55.7 ± 1.20 |
MEX | 52.0 ± 0.4 | 46.7 ± 0.82 |
EO | 54.1 ± 0.2 | 26.4 ± 0.74 |
Hy | 3.1 ± 0.2 | 2.5 ± 0.3 |
EEX | MEX | |||||
---|---|---|---|---|---|---|
Strains | MIC 1 | MBC 2 | MBC/MIC Ratio | MIC 1 | MBC 2 | MBC/MIC Ratio |
B. cereus | 2.5 | 5.0 | 2.0 | 10.0 | 10.0 | 1.0 |
E. coli | 10.0 | na | - | 10.0 | na | - |
EO | Hy | |||||
---|---|---|---|---|---|---|
Strains | MIC 1 | MBC 2 | MBC/MIC Ratio | MIC 1 | MBC 2 | MBC/MIC Ratio |
B. cereus | 0.5 | 1.0 | 2.0 | na | - | - |
E. coli | na | - | - | na | - | - |
Samples | EC50 ± SD |
---|---|
EEX | 1.76 ± 0.32 |
MEX | na |
Samples | EC50 ± SD |
---|---|
EO | 1.24 ± 0.42 |
Hy | 2.97 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitalini, S.; Iriti, M.; Ovidi, E.; Laghezza Masci, V.; Tiezzi, A.; Garzoli, S. Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha’s Hand Fruit. Molecules 2022, 27, 1666. https://doi.org/10.3390/molecules27051666
Vitalini S, Iriti M, Ovidi E, Laghezza Masci V, Tiezzi A, Garzoli S. Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha’s Hand Fruit. Molecules. 2022; 27(5):1666. https://doi.org/10.3390/molecules27051666
Chicago/Turabian StyleVitalini, Sara, Marcello Iriti, Elisa Ovidi, Valentina Laghezza Masci, Antonio Tiezzi, and Stefania Garzoli. 2022. "Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha’s Hand Fruit" Molecules 27, no. 5: 1666. https://doi.org/10.3390/molecules27051666
APA StyleVitalini, S., Iriti, M., Ovidi, E., Laghezza Masci, V., Tiezzi, A., & Garzoli, S. (2022). Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha’s Hand Fruit. Molecules, 27(5), 1666. https://doi.org/10.3390/molecules27051666