Lignin from Agro-Industrial Waste to an Efficient Magnetic Adsorbent for Hazardous Crystal Violet Removal
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Material and Chemical Agents
2.2. Adsorbent Synthesis
2.2.1. Lignin Extraction
2.2.2. Synthesis of Lignin Copper Ferrite
2.3. Characterization of LCF
2.4. Adsorption Investigates
2.5. Zero-Point Charge (pHPZC)
2.6. Ionic Strength
2.7. Reusability Study
2.8. Removal Mechanism
2.9. Isothermal Studies
2.10. Thermodynamics Studies
3. Results and Discussion
3.1. Adsorbent Characterization
3.2. Effect of Experimental Conditions
3.2.1. Effect of Adsorption Contact Time and Kinetic Models
3.2.2. Effect of Adsorbent Weight on CV Removal
3.2.3. Effect of Initial Dye Concentration and Isotherm Models
3.2.4. Effect of Temperature and Thermodynamics Outcome
3.2.5. Effect of Adsorption pH and Point of Zero Charge
3.2.6. Ionic Strength
3.2.7. Reusability of LCF
3.2.8. Comparative Study of CV Dye Uptake Capacity with Different Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kamel, D.A.; Farag, H.A.; Amin, N.K.; Zatout, A.A.; Ali, R.M. Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism. Ind. Cro. Prod. 2018, 111, 407–413. [Google Scholar] [CrossRef]
- Ali, R.M.; Elkatory, M.R.; Hassaan, M.A.; Geiheini, A.S. Highly Crystalline Heterogeneous Catalyst Synthesis from Industrial Waste for Sustainable Biodiesel Production. Egypt. J. Chem. 2020, 63, 1161–1178. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Duarah, P.; Haldar, D.; Purkait, M.K. Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review. Int. J. Biol. Macromol. 2020, 163, 1828–1843. [Google Scholar] [CrossRef]
- Nerella, A. Cellulose on Miscibility and Thermal Studies of Acetate and Modified Industrial Waste Lignin Blends. Iarjset 2017, 4, 87–91. [Google Scholar] [CrossRef]
- Hamdy, A.; Abd Elhafez, S.E.; Hamad, H.; Ali, R.M. The Interplay of Autoclaving with Oxalate as Pretreatment Technique in the View of Bioethanol Production Based on Corn Stover. Polymers 2021, 13, 3762. [Google Scholar] [CrossRef]
- Saisa, S.; Kasturi; Husin, H.; Mahidin, A.T. Increased Cellulose Levels in Organosolv Pretreatment Process in Bioethanol Production. J. Phys. Conf. Ser. 2019, 1232, 3–8. [Google Scholar] [CrossRef]
- Ali, R.M.; El-Sayed, E.M.; Hamad, H.A. Journey from ceramic waste to highly efficient toxic dye adsorption from aqueous solutions via one-pot synthesis of CaSO4 rod-shape with silica. J. Mater. Res. Technol. 2020, 9, 16051–16063. [Google Scholar]
- Abd Elhafez, S.E.; Hamad, H.A.; Zaatout, A.A.; Malash, G.F. Management of agricultural waste for removal of heavy metals from aqueous solution: Adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ. Sci. Pollut. Res. 2017, 24, 1397–1415. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Hosny, S.; Elkatory, M.R.; Ali, R.M.; Rangreez, T.A.; El Nemr, A. Dual action of both green and chemically synthesized zinc oxide nanoparticles: Antibacterial activity and removal of congo red dye. Desalin. Water Treat 2021, 218, 423–435. [Google Scholar] [CrossRef]
- Hamadi, A.; Yeddou-Mezenner, N.; Lounis, A.; Ali, R.M. Upgrading of agro-industrial green biomass residues from chocolate industry for adsorption process: Diffusion and mechanistic insights. J. Food Sci. Technol. 2021, 58, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Taha, N.A.; Abd Elhafez, S.E.; El-maghraby, A. chemical and physical preparation of activated carbon using raw bagasse pith for cationic dye adsorption. Glob. Nest J. 2016, 18, 402–415. [Google Scholar]
- Karam, F.F.; Hassan, F.F.; Hessoon, H.M. Adsorption of toxic crystal violet dye using (Chitosan-OMWCNTs) from aqueous solution. J. Phys. Conf. Ser. 2021, 1999, 012015. [Google Scholar] [CrossRef]
- Yan, G.; Wang, P.; Li, Y.; Qin, Z.; Lan, S.; Yan, Y. Adsorption-Oxidation Mechanism of δ -MnO2 to Remove Methylene Blue. Adsorpt. Sci. Technol. 2021, 2021, 3069392. [Google Scholar] [CrossRef]
- Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Khalid, M.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; Nizamuddin, S.; Mazari, S.A. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J. Hazard. Mater. 2021, 413, 125375. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.Y.; Raman, A.A.A.; Bello, M.M.; Buthiyappan, A. Magnetic graphene oxide-biomass activated carbon composite for dye removal. Korean J. Chem. Eng. 2020, 37, 2179–2191. [Google Scholar] [CrossRef]
- Amiralian, N.; Mustapic, M.; Hossain, M.S.A.; Wang, C.; Konarova, M.; Tang, J.; Na, J.; Khan, A.; Rowan, A. Magnetic nanocellulose: A potential material for removal of dye from water. J. Hazard. Mater. 2020, 394, 122571. [Google Scholar] [CrossRef]
- Hao, W.; Björkman, E.; Yun, Y.; Lilliestr, M.; Hedin, N. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass. ChemSusChem 2014, 7, 875–882. [Google Scholar] [CrossRef]
- Momina, M.S.; Isamil, S. Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating. J. Water Process Eng. 2020, 34, 101155. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Elkatory, M.R.; Ali, R.M.; El Nemr, A. Photocatalytic degradation of reactive black 5 using photo-fenton and ZnO nanoparticles under UV irradiation. Egypt. J. Chem. 2020, 63, 1443–1459. [Google Scholar] [CrossRef]
- Elyamny, S.; Ali Hamdy, A.; Ali, R.; Hamad, H. Role of combined Na2HPO4 and ZnCl2 in the unprecedented catalysis of the sequential pretreatment of sustainable agricultural and agro-industrial wastes in boosting bioethanol production. Int. J. Mol. Sci. 2022, 23, 1777. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.M.; Hassaan, M.A.; Elkatory, M.R. Towards potential removal of malachite green from wastewater: Adsorption process optimization and prediction. Mater. Sci. Forum 2020, 1008, 213–221. [Google Scholar] [CrossRef]
- Masoumi, A.; Hemmati, K.; Ghaemy, M. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water. Chemosphere 2016, 146, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.M.; Elkatory, M.R.; Hamad, H.A. Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 2020, 268, 117297. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Mcsweeny, J.D.; Ralph, A.S. FT—Raman Investigation of Milled-Wood Lignins: Softwood, Hardwood, and Chemically Modified Black Spruce Lignins. J. Wood Chem. 2011, 31, 324–344. [Google Scholar] [CrossRef]
- Silva, M.D.P.; Silva, F.C.; Sinfrônio, F.S.M.; Paschoal, A.R.; Silva, E.N.; Paschoal, C.W.A. The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. J. Alloys Compd. 2014, 584, 573–580. [Google Scholar] [CrossRef]
- El-Remaily, M.A.; Hamad, H.A. Synthesis and characterization of highly stable superparamagnetic CoFe2O4 nanoparticles as a catalyst for novel synthesis of thiazolo[4,5-b]quinolin-9-one derivatives in aqueous medium. J. Mol. Catal. A Chem. 2015, 404, 148–155. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-odayni, A.; Saeed, W.S.; Alharthi, F.A. Adsorption of Azo Dye Methyl Orange from Aqueous Solutions Using Alkali-Activated Polypyrrole-Based Graphene Oxide. Molecules 2019, 24, 3685. [Google Scholar] [CrossRef] [Green Version]
- Abd Elhafez, S.E.; El-Maghraby, A.; Taha, N.A. Adsorption Studies of Cationic Dye on Raw and Modified Sugarcane Bagasse from Aqueous Solutions: Kinetic and Isotherm Aspects. Egypt. J. Chem. 2021, 64, 1593–1600. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimoa, J.J.; Maina, E.N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour. Technol. 2017, 3, 71–77. [Google Scholar] [CrossRef]
- Al-Shehri, H.S.; Almudaifer, E.; Alorabi, A.Q.; Alanazi, H.S.; Alkorbi, A.S.; Alharthi, F.A. Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: Equilibrium, mechanism studies and modeling analysis. Environ. Pollut. Bioavailab. 2021, 33, 214–226. [Google Scholar] [CrossRef]
- Wu, F.C.; Liu, B.L.; Wu, K.T.; Tseng, R.L. A new linear form analysis of Redlich—Peterson isotherm equation for the adsorptions of dyes. Chem. Eng. J. 2010, 162, 21–27. [Google Scholar] [CrossRef]
- Qin, J.; Qiu, F.; Rong, X.; Yan, J.; Zhao, H.; Yang, D. Adsorption behavior of crystal violet from aqueous solutions with chitosan-graphite oxide modified polyurethane as an adsorbent. J. Appl. Polym. Sci. 2015, 132, 41828. [Google Scholar] [CrossRef]
- Esmadi, F.; Simm, J. Sorption of cobalt(II) by amorphous ferric hydroxide. Colloids Surf. A Physicochem. Eng. As. 1995, 104, 265–270. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, D.; Guilong, Z.; Cai, C. Applied Clay Science Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl. Clay Sci. 2013, 83, 137–143. [Google Scholar] [CrossRef]
- Al-Abadi, S.I.; Al-Da’Amy, M.A.; Kareem, E.T. Thermodynamic Study for Removing of Crystal Violet Dye on Iraqi Porcelanite Rocks Powder. In Proceedings of the IOP Conference Series: Earth and Environmental Science 2021, Jakarta, Indonesia, 24–25 March 2021; p. 790. [Google Scholar] [CrossRef]
- Vithalkar, S.H.; Jugade, R.M. Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Mater. Today Proc. 2020, 29, 1025–1032. [Google Scholar] [CrossRef]
- Hassan, M.R.; Yakout, S.M.; Abdeltawab, A.A.; Aly, M.I. Ultrasound facilitates and improves removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal: A kinetic study. J. Saudi Chem. Soc. 2021, 25, 101231. [Google Scholar] [CrossRef]
- Wu, Y.H.; Xue, K.; Ma, Q.L.; Ma, T.; Ma, Y.L.; Sun, Y.G.; Ji, W.X. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag. Microporous Mesoporous Mater. 2021, 312, 110742. [Google Scholar] [CrossRef]
- Priya, R.; Stanly, S.; Dhanalekshmi, S.B.; Mohammad, F.; Allohedar, H.A.; Oh, W.C.; Sagadevan, S. Comparative studies of crystal violet dye removal between semiconductor nanoparticles and natural adsorbents. Optik 2020, 206, 164281. [Google Scholar] [CrossRef]
- Saini, B.; Dey, A. Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Mahmood, O.A.A.Q.; Waisi, B.I. Crystal violet dye removal from aqueous water using polyacrylonitrile precursor beads. Mater. Today Proc. 2021, 42, 2185–2192. [Google Scholar] [CrossRef]
- Kassem, K.O.; Hussein, M.A.T.; Motawea, M.M.; Gomaa, H.; Alrowaili, Z.A.; Ezzeldien, M. Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. J. Clean. Prod. 2021, 326, 129416. [Google Scholar] [CrossRef]
- Alshabanat, M.; Alsenani, G.; Almufarij, R. Removal of Crystal Violet Dye from Aqueous Solutions onto Date Palm Fiber by Adsorption Technique. J. Chem. 2013, 2013, 210239. [Google Scholar] [CrossRef] [Green Version]
Experiment Type | Concentration of CV (ppm) | Adsorption Time (min) | Adsorbent Weight (g) | pH | Temperature (°C) |
---|---|---|---|---|---|
Influence of time | 50 | 5–15 | 0.05 | 7 | 25 |
Influence of adsorbent weight | 10 | 5 | 0.025–0.125 | 7 | 25 |
Influence of CV concentration | 5–100 | 5 | 0.025 | 7 | 25 |
Influence of pH | 10 | 5 | 0.025 | 2–12 | 25 |
Influence of temperature | 10 | 5 | 0.025 | 8 | 25–70 |
First-Order | Second-Order | Intraparticle Diffusion | Elovich | ||||
---|---|---|---|---|---|---|---|
qe (experimental)mg/g | 34.129 | ||||||
qe(mg/g) | 34.2 | qe mg/g | 14.727 | C (mg/g) | 6.997 | β(mg/g) | 21.505 |
K1(L/min) | 0.0316 | K2(g/mg·min) | 0.2022 | kdif(mg/min0.5·g) | 17.272 | α(g/g·min) | 0.046 |
R2 | 0.9998 | R2 | 0.9782 | R2 | 0.954 | R2 | 0.7874 |
Langmuir | Freundlich | Temkin | |||
---|---|---|---|---|---|
qm(mg/g) | 30.5 | nf | 2.516 | b | 457.48 |
KL(L/mg) | 0.1411 | Kf | 6.01 | Kt | 2.95 |
R2 | 0.9904 | R2 | 0.9925 | R2 | 0.09684 |
RL | 0.013 |
ΔS0 (J/K.mol) | ΔH0 (KJ/mol) | ΔG0(Kj/mol) | ||||
---|---|---|---|---|---|---|
25 °C | 40 °C | 50 °C | 60 °C | 70 °C | ||
4.74 | −1.3 | −2.736 | −2.7836 | −2.831 | −2.8784 | −2.9258 |
Adsorbent | Conditions | Adsorbent Capacity | Time | References |
---|---|---|---|---|
Lignin copper ferrite (LCF) | pH 7, 0.05 g adsorbent dose, 27 °C for dye initial concentration of 50 mg/L | 34.12 mg/g | 5 min | Present study |
Natural Iraqi porcelanite rock powder | pH 8, 0.02 g adsorbent dose, 25 C for dye initial concentration of 30 mg/L | 31.38 mg/g | 20 min | [37] |
Activated charcoal | 200 ultrasonic intensity, 5 g adsorbent dose | 24 mg/g | 90 min. | [38] |
Semiconductor nanoparticles | 1.5–3 g of Nanocatalyst adsorbents in the basic medium | 12.66 mg/g | 100–120 min | [39] |
P-type zeolite/carbon composite | initial dye concentration 100 mg/L, pH 2 | 11.2 mg/g | 120 min | [40] |
Semiconductor nanoparticles TiO2 with natural adsorbents | Adsorbent wight 0.5–1.2 g of nanocatalyst | 9.875 mg/g | 120 min | [41] |
Copolymer adsorbent | pH 10, adsorbent weight 0.1 g, initial concentration 10 ppm | 9.8 mg/g | 180 min. | [42] |
Polyacrylonitrile based-beads | pH 7, Co = 10 mg/L, adsorbent dose = 0.4 gm, 200 rpm, T = 35 °C | 5.46 mg/g | 300 min | [43] |
Mesoporous ZnO @ silica fume-derived SiO2 nanocomposite | 10 ppm initial concentration, at pH 9 | 4.9 mg/g | 60 min | [44] |
Date palm fiber | Adsorbent dose = 0.25 g, pH 7 at room temperature | 0.66 × 10−6 mol g−1 | 150 min | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Elsagan, Z.; AbdElhafez, S. Lignin from Agro-Industrial Waste to an Efficient Magnetic Adsorbent for Hazardous Crystal Violet Removal. Molecules 2022, 27, 1831. https://doi.org/10.3390/molecules27061831
Ali R, Elsagan Z, AbdElhafez S. Lignin from Agro-Industrial Waste to an Efficient Magnetic Adsorbent for Hazardous Crystal Violet Removal. Molecules. 2022; 27(6):1831. https://doi.org/10.3390/molecules27061831
Chicago/Turabian StyleAli, Rehab, Zahwa Elsagan, and Sara AbdElhafez. 2022. "Lignin from Agro-Industrial Waste to an Efficient Magnetic Adsorbent for Hazardous Crystal Violet Removal" Molecules 27, no. 6: 1831. https://doi.org/10.3390/molecules27061831
APA StyleAli, R., Elsagan, Z., & AbdElhafez, S. (2022). Lignin from Agro-Industrial Waste to an Efficient Magnetic Adsorbent for Hazardous Crystal Violet Removal. Molecules, 27(6), 1831. https://doi.org/10.3390/molecules27061831