Critical Computational Evidence Regarding the Long-Standing Controversy over the Main Electrophilic Species in Hypochlorous Acid Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. HOCl Molecule Reaction Pathways
3.1.1. The Cl Group in the HOCl Molecule Adding Pathway
3.1.2. The OH Group in the HOCl Molecule Adding Pathway
3.1.3. Oxonium Ion Intermediate vs. Chlorium Ion Intermediate
3.1.4. Other Hypohalous Acids (HOF, HOBr, and HOI)
3.2. The Cl2 Reaction Pathway
3.3. Another Active Electrophile: The Cl2O Reaction Pathway
3.4. The Whole PES for the Formation of Chlorohydrins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, L.; Bassiri, M.; Najafi, R.; Najafi, K.; Yang, J.; Khosrovi, B.; Hwong, W.; Barati, E.; Belisle, B.; Celeri, C.; et al. Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity. J. Burns Wounds 2007, 6, e5. [Google Scholar] [PubMed]
- Aratani, Y. Role of Myeloperoxidase in the host defense against fungal infection. Jpn. J. Med. Mycol. 2006, 47, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.; Lampert, M.; Test, S. Long-lived oxidants generated by human neutrophils: Characterization and bioactivity. Science 1983, 222, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Panasenko, O.; Gorudko, I.; Sokolov, A. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry 2013, 78, 1466–1489. [Google Scholar] [CrossRef]
- Malle, E.; Marsche, G.; Arnhold, J.; Davies, M.J. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2006, 1761, 392–415. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Elfarra, A.A. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties. Expert Opin. Drug Metab. Toxicol. 2017, 13, 513–524. [Google Scholar] [CrossRef]
- Rodriguez, J.; Dulcère, J.-P. Cohalogenation in organic synthesis. Synthesis 1993, 1993, 1177–1205. [Google Scholar] [CrossRef]
- Smietana, M.; Gouverneur, V.; Mioskowski, C. An improved synthesis of iodohydrins from alkenes. Tetrahedron Lett. 2000, 41, 193–195. [Google Scholar] [CrossRef]
- Block, M.S.; Rowan, B.G. Hypochlorous acid: A review. J. Oral. Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef]
- Leow, W.R.; Lum, Y.; Ozden, A.; Wang, Y.; Nam, D.-H.; Chen, B.; Wicks, J.; Zhuang, T.-T.; Li, F.; Sinton, D. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228–1233. [Google Scholar] [CrossRef]
- Gahleitner, M.; Paulik, C. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014. [Google Scholar]
- Pech, G.A.; Witzl, W.J. Process for Producing Chlorohydrins.U.S. Patent. US5523425 A, 1995. [Google Scholar]
- Spickett, C.M.; Jerlich, A.; Panasenko, O.M.; Arnhold, J.; Pitt, A.R.; Stelmaszyńska, T.; Schaur, R.J. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 2000, 47, 889–899. [Google Scholar] [CrossRef] [Green Version]
- McMurry, J.E. Organic Chemistry, 9th ed.; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Bruice, P.Y. Organic Chemistry; Pearson Education: London, UK, 2016. [Google Scholar]
- Rawn, J.D.; Ouellette, R.J. Organic Chemistry: Structure, Mechanism, Synthesis; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Smith, M.B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Loudon, M.; Parise, J. Organic Chemistry, 6th ed.; W. H. Freeman: New York, NY, USA, 2016. [Google Scholar]
- Brown, W.H.; Iverson, B.L.; Anslyn, E.; Foote, C.S.; Novak, B.M. Organic Chemistry, 8th ed.; Brooks Cole: Pacific Grove, CA, USA, 2018. [Google Scholar]
- Winterbourn, C.C.; van den Berg, J.J.; Roitman, E.; Kuypers, F.A. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch. Biochem. Biophys. 1992, 296, 547–555. [Google Scholar] [CrossRef]
- Arnhold, J.; Osipov, A.N.; Spalteholz, H.; Panasenko, O.M.; Schiller, J. Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free. Radic. Biol. Med. 2001, 31, 1111–1119. [Google Scholar] [CrossRef]
- Pattison, D.I.; Hawkins, C.L.; Davies, M.J. Hypochlorous acid-mediated protein oxidation: How important are chloramine transfer reactions and protein tertiary structure? Biochemistry 2007, 46, 9853–9864. [Google Scholar] [CrossRef] [PubMed]
- Güngör, N.; Knaapen, A.M.; Munnia, A.; Peluso, M.; Haenen, G.R.; Chiu, R.K.; Godschalk, R.W.; van Schooten, F.J. Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 2010, 25, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.D.; Houghton, A.M. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 2011, 71, 2411–2416. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, C.L. Hypochlorous acid-mediated modification of proteins and its consequences. Essays Biochem. 2020, 64, 75–86. [Google Scholar] [CrossRef]
- Yap, Y.W.; Whiteman, M.; Bay, B.H.; Li, Y.; Sheu, F.S.; Qi, R.Z.; Tan, C.H.; Cheung, N.S. Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. J. Neurochem. 2006, 98, 1597–1609. [Google Scholar] [CrossRef]
- Yang, Y.T.; Whiteman, M.; Gieseg, S.P. HOCl causes necrotic cell death in human monocyte derived macrophages through calcium dependent calpain activation. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2012, 1823, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.Q.; Zhang, Y.Z.; Wu, Y.; Zhang, J.J.; Li, T.B.; Jiang, T.; Xiong, X.M.; Luo, X.J.; Ma, Q.L.; Peng, J. Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving beta-catenin signaling in hyperlipidemia. Biochem. Biophys. Res. Commun. 2015, 467, 859–865. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Ling, M.; Lopez, J.A.; Chung, D.W.; Fu, X. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: An oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J. Biol. Chem. 2015, 290, 1422–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal, B.S.; Childers, W.E., Jr.; Pinnick, H.W. Oxidation of α, β-un saturated aldehydes. Tetrahedron 1981, 37, 2091–2096. [Google Scholar] [CrossRef]
- Dalcanale, E.; Montanari, F. Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide. J. Org. Chem. 1986, 51, 567–569. [Google Scholar] [CrossRef]
- Sivey, J.D.; McCullough, C.E.; Roberts, A.L. Chlorine monoxide (Cl2O) and molecular chlorine (Cl2) as active chlorinating agents in reaction of dimethenamid with aqueous free chlorine. Environ. Sci. Technol. 2010, 44, 3357–3362. [Google Scholar] [CrossRef]
- Sivey, J.D.; Roberts, A.L. Assessing the reactivity of free chlorine constituents Cl2, Cl2O, and HOCl toward aromatic ethers. Environ. Sci. Technol. 2012, 46, 2141–2147. [Google Scholar] [CrossRef]
- Lau, S.S.; Reber, K.P.; Roberts, A.L. Aqueous chlorination kinetics of cyclic alkenes-is HOCL the only chlorinating agent that matters? Environ. Sci. Technol. 2019, 53, 11133–11141. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound. J. Chem. Phys. 2008, 128, 184109. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.A.; Kendall, R.A.; Dunning, T.H., Jr. Benchmark calculations with correlated molecular wave functions. II. Configuration interaction calculations on first row diatomic hydrides. J. Chem. Phys. 1993, 99, 1930–1944. [Google Scholar] [CrossRef]
- Dunning, T.H. A road map for the calculation of molecular binding energies. J. Phys. Chem. A 2000, 104, 9062–9080. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 034106. [Google Scholar] [CrossRef] [PubMed]
- Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101. [Google Scholar] [CrossRef]
- Čížek, J. On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 1966, 45, 4256–4266. [Google Scholar] [CrossRef]
- Purvis, G., III; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Liu GY, T.; Richey, W.F.; Betso, J.E.; Hughes, B.; Klapacz, J.; Lindner, J. Chlorohydrins. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Zhang, J.; Tan, J.; Wang, K.; Lu, Y.; Luo, G. Chlorohydrination of allyl chloride to dichloropropanol in a microchemical system. Ind. Eng. Chem. Res. 2012, 51, 14685–14691. [Google Scholar] [CrossRef]
- Kraus, G.A.; Roth, B. Synthetic studies toward Verrucarol. 2. Synthesis of the AB ring system. J. Org. Chem. 1980, 45, 4825–4830. [Google Scholar] [CrossRef] [Green Version]
- Jones, G. The markovnikov rule. J. Chem. Educ. 1961, 38, 297. [Google Scholar] [CrossRef]
- Smith, M.B. Organic Chemistry: An Acid-Base Approach; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Migliorese, K.; Appelman, E.; Tsangaris, M. Reaction of unsaturated compounds with hypofluorous acid. J. Org. Chem. 1979, 44, 1711–1714. [Google Scholar] [CrossRef]
- Sivey, J.D.; Bickley, M.A.; Victor, D.A. Contributions of BrCl, Br2, BrOCl, Br2O, and HOBr to regiospecific bromination rates of anisole and bromoanisoles in aqueous solution. Environ. Sci. Technol. 2015, 49, 4937–4945. [Google Scholar] [CrossRef] [PubMed]
- Kormányos, B.; Nagypál, I.; Peintler, G.; Horváth, A.K. Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid. Inorg. Chem. 2008, 47, 7914–7920. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Simic, N.; Ahlberg, E. Exploring the mechanism of hypochlorous acid decomposition in aqueous solutions. Phys. Chem. Chem. Phys. 2019, 21, 19342–19348. [Google Scholar] [CrossRef]
- Cherney, D.P.; Duirk, S.E.; Tarr, J.C.; Collette, T.W. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with Raman spectroscopy to determine the identity of the potent low-pH oxidant. Appl. Spectrosc. 2006, 60, 764–772. [Google Scholar] [CrossRef]
- Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef]
- Legault, C.Y.; CYLview, 1.0b. Université de Sherbrooke. 2009. Available online: http://www.cylview.org (accessed on 20 December 2021).
- Scott, A.P.; Radom, L. Harmonic vibrational frequencies: An evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996, 100, 16502–16513. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-W.; Wu, Y.-D.; Sun, T.-Y. Critical Computational Evidence Regarding the Long-Standing Controversy over the Main Electrophilic Species in Hypochlorous Acid Solution. Molecules 2022, 27, 1843. https://doi.org/10.3390/molecules27061843
Chen K-W, Wu Y-D, Sun T-Y. Critical Computational Evidence Regarding the Long-Standing Controversy over the Main Electrophilic Species in Hypochlorous Acid Solution. Molecules. 2022; 27(6):1843. https://doi.org/10.3390/molecules27061843
Chicago/Turabian StyleChen, Ke-Wei, Yun-Dong Wu, and Tian-Yu Sun. 2022. "Critical Computational Evidence Regarding the Long-Standing Controversy over the Main Electrophilic Species in Hypochlorous Acid Solution" Molecules 27, no. 6: 1843. https://doi.org/10.3390/molecules27061843
APA StyleChen, K.-W., Wu, Y.-D., & Sun, T.-Y. (2022). Critical Computational Evidence Regarding the Long-Standing Controversy over the Main Electrophilic Species in Hypochlorous Acid Solution. Molecules, 27(6), 1843. https://doi.org/10.3390/molecules27061843