Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,960)

Search Parameters:
Keywords = Cl2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4981 KB  
Article
LT1-3, a Slit2-Derived Peptide, Exhibits Anti-Tumor Activity and Improves Cisplatin Therapy
by Ting-Chien Wu, Chen-Yi Liao, Yu-Ying Lin, Shu-Ming Chuang, Szu-Yu Liu, Chi-Hsiang Wang, Shang-Er Su, Siang-Wei Wu, Ling-I Wang, Wei-Ting Chen, Sheng-Wen Cheng, Yu-Tang Huang, Yao-Bin Zheng, Cheng-Yen Chuang, Feng-Di Lung and Jinghua Tsai Chang
Cells 2025, 14(21), 1654; https://doi.org/10.3390/cells14211654 (registering DOI) - 22 Oct 2025
Abstract
The Slit2/Robo signaling pathway acts as a tumor suppressor in various cancers. This study identified an 8-amino acid peptide, LT1-3, derived from the Slit2 LamG domain, and demonstrated its ability to inhibit lung cancer cell proliferation and invasion independently of Robo receptors. Notably, [...] Read more.
The Slit2/Robo signaling pathway acts as a tumor suppressor in various cancers. This study identified an 8-amino acid peptide, LT1-3, derived from the Slit2 LamG domain, and demonstrated its ability to inhibit lung cancer cell proliferation and invasion independently of Robo receptors. Notably, LT1-3 was non-toxic to normal cells (Beas-2B, MRC5, and HUVECs). Combination treatment of LT1-3 and cisplatin synergistically inhibited the proliferation of lung cancer cells (CL1-5, A549, H1355, H460, H23, H661), but had no inhibitory effect on H1299 and H1975. Furthermore, combination therapy prolonged the median survival of tumor-bearing immunodeficient nude mice from 27.5 days (control) to 37.5 days (LT1-3 or cisplatin) and further to 47.5 days (LT1-3/cisplatin combination). The tumor suppressor TP53 positively influences LT1-3-mediated proliferation inhibition, while MAPK8 (JNK1) and PRKACA (PKA) have been identified as negative regulators. With the exception of the p53R273 variants, most TP53 mutants retained their function in this context. The p53 reactivator APR-246 restores sensitivity of p53R273H-expressing cells to LT1-3. JNK inhibition sensitizes p53-deficient or p53R273H-expressing cells to LT1-3-mediated proliferation inhibition. LT1-3, alone or in combination with a JNK inhibitor, enhances cisplatin efficacy, even in the presence of p53 mutations. Therefore, LT1-3 possesses multifunctional antitumor properties, directly inhibiting tumor cells and enhancing the efficacy of cisplatin, without causing toxicity to normal cells. Combining LT1-3 with cisplatin holds promise as a first-line therapy for lung cancer, while LT1-3 alone may be suitable for maintenance therapy. Full article
20 pages, 5750 KB  
Article
Bone Formation and Anti-Inflammatory Properties of Iodine-Loaded Titanium Implants: An Animal Study
by Kazuto Yamada, Kazuya Inoue, Nanako Shimada, Tatsuya Kakutani, Yasuhisa Sawai, Naoko Imagawa-Fujimura, Kayoko Yamamoto, Nahoko Kato-Kogoe, Seiji Yamaguchi and Takaaki Ueno
Materials 2025, 18(21), 4836; https://doi.org/10.3390/ma18214836 (registering DOI) - 22 Oct 2025
Abstract
Titanium implants are subjected to various surface treatments to improve their in vivo function. In this study, we evaluated the usefulness of titanium implants treated with acid, NaOH, CaCl2, heat, and ICl3 (Ac-NaCaThIo) in terms of in vivo bone-bonding strength, [...] Read more.
Titanium implants are subjected to various surface treatments to improve their in vivo function. In this study, we evaluated the usefulness of titanium implants treated with acid, NaOH, CaCl2, heat, and ICl3 (Ac-NaCaThIo) in terms of in vivo bone-bonding strength, bone formation, and histological anti-inflammatory properties. Iodine-loaded experimental dental implants and commercial control dental implants were placed in rabbit femurs, and bone-bonding strength was evaluated by measuring the implant stability quotient (ISQ), bone formation using tissue specimens, and the effect of iodine using thyroid-stimulating hormone (TSH) levels. Iodine-loaded titanium plates and untreated titanium plates were placed on rat skulls and inoculated with Streptococcus mitis (S. mitis) solution to evaluate anti-inflammatory properties. Consequently, the experimental implants did not demonstrate non-inferiority in bone-bonding strength (ISQ) compared with the controls; however, histological specimens revealed dense bone contact and favorable bone formation. TSH levels showed no differences at 13 weeks, indicating no long-term adverse effects of iodine. The experimental tissue specimens of the soft tissue had fewer inflammatory cells than the control at 2 weeks after placement, demonstrating an anti-inflammatory effect. These results suggest that, although non-inferiority in ISQ was not demonstrated, Ac-NaCaThIo-treated implants showed favorable bone formation, dense bone contact, anti-inflammatory properties, and biosafety, indicating potential for future applications. Full article
(This article belongs to the Special Issue Materials for Drug Delivery and Medical Engineering)
Show Figures

Graphical abstract

16 pages, 820 KB  
Article
Sustainable Recovery of Valuable Constituents from Octopus (Octopus vulgaris) Cooking Liquor
by Ricardo Prego, Antonio Cobelo-García, Marcos Trigo, Susana Calvo and Santiago P. Aubourg
Sustainability 2025, 17(21), 9391; https://doi.org/10.3390/su17219391 (registering DOI) - 22 Oct 2025
Abstract
Cooking liquor (CL) from marine species processing has been reported to include a wide range of valuable constituents. In this study, the chemical composition of CL from octopus (Octopus vulgaris) processing, with and without a filtration process, was analysed. Regarding non-filtered [...] Read more.
Cooking liquor (CL) from marine species processing has been reported to include a wide range of valuable constituents. In this study, the chemical composition of CL from octopus (Octopus vulgaris) processing, with and without a filtration process, was analysed. Regarding non-filtered CL, values of 15.30, 0.29, 8.85 and 174.53 g·L−1 CL for protein, lipids, ash, and total volatile base-nitrogen (TVB-N), respectively, were detected. The most abundant fatty acids (FAs) (g·100 g−1 total FAs) were C16:0 (37.8), C18:0 (20.8), and C22:6ω3 (13.4). Values of 0.40 and 2.10 were obtained for polyunsaturated FA/saturated FA and ω3 FA/ω6 FA ratios. Macroelement content varied from 0.036 (Ca) to 1.81 (Na) g·L−1 CL. For microelements, values ranged between 0.0015 (Co) and 1.95 (As) mg·L−1 CL. Industrial filtration of CL led to decreased values of protein, lipid, ash, TVB-N, and C22:5ω3; in contrast, an increased presence of C14:0, C18:1ω9, C20:1ω9, and C22:1ω9 was detected. Filtration led to a ca. 50% decrease in macroelement presence. For microelements, this process led to losses of 20–40% (Ba, Pb), 40–60% (As, Fe, Mn), 60–70% (Co, Zn), and 84% (Cd). This study provides a first comprehensive characterisation of octopus cooking liquor as a potential source of bioactive compounds. Full article
Show Figures

Figure 1

12 pages, 1272 KB  
Article
Molecular Dynamics Study on the Molar Ratio-Dependent Interaction Regulation Mechanisms in CL-20/FOX-7 Energetic Cocrystal Explosives
by Ruikang Zheng, Yuling Wang, Tao Wang, Shuchang Li, Yibo Luo, Xingyu Liu, Kaizeng Quan and Shusheng Zhang
Crystals 2025, 15(11), 912; https://doi.org/10.3390/cryst15110912 (registering DOI) - 22 Oct 2025
Abstract
The growing demand for safe and reliable weaponry has heightened performance requirements for explosives. Cocrystal systems, offering a balance between high energy density and safety, have become key targets in advanced energetic material research. However, the influence of molar ratios and crystal facets [...] Read more.
The growing demand for safe and reliable weaponry has heightened performance requirements for explosives. Cocrystal systems, offering a balance between high energy density and safety, have become key targets in advanced energetic material research. However, the influence of molar ratios and crystal facets on thermal sensitivity, mechanical strength, and detonation properties remains underexplored. This study investigates cocrystals of hexanitrohexaazaisowurtzitane (CL-20) and 1,1-diamino-2,2-dinitroethylene (FOX-7) with molar ratios of 3:1, 5:1, and 8:1 on the (1 0 1) crystal facet, using the Forcite module in Materials Studio. Comparative analysis with (0 1 1) facet and pure explosives revealed that the 5:1 cocrystal achieved the highest cohesive energy density (0.773 kJ/cm3) and theoretical crystal density (1.953 g/cm3), driven by strong electrostatic and non-bonded interactions—indicating superior detonation performance. In contrast, the 3:1 cocrystal displayed optimal mechanical strength, with an elastic modulus of 8.562 GPa and shear modulus of 3.365 GPa, suitable for practical applications. The results suggest increasing CL-20 content enhances energy performance up to a point, beyond which structural loosening occurs (8:1 ratio) due to steric hindrance weakening van der Waals forces. This work clarifies how molar ratio regulates the influence between sensitivity, strength, and energy, providing guidance for designing application-specific high-energy cocrystals. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 769 KB  
Article
Removal of Persistent Bacterial Contaminants from In Vitro Shoot Cultures of Raspberry (Rubus idaeus L.) Using Vacuum Infiltration and Its Effect on Multiplication Efficiency
by Aleksandra Trzewik, Tadeusz Malinowski, Angelika Niewiadomska-Wnuk, Katarzyna Mynett and Teresa Orlikowska
Agronomy 2025, 15(11), 2452; https://doi.org/10.3390/agronomy15112452 (registering DOI) - 22 Oct 2025
Abstract
The aim of this study was to find a way to remove persistent bacteria inhabiting in vitro shoot cultures of raspberry. Often, decontamination treatments fail to reach bacteria residing in internal tissues, leading to contaminated cultures later. Three raspberry cultivars, each harboring a [...] Read more.
The aim of this study was to find a way to remove persistent bacteria inhabiting in vitro shoot cultures of raspberry. Often, decontamination treatments fail to reach bacteria residing in internal tissues, leading to contaminated cultures later. Three raspberry cultivars, each harboring a unique bacterial contaminant, were used in this study. Experiments were conducted to assess the potential for eliminating these bacteria using biocide infiltration at 30 mbar. The following biocides were used: mercuric chloride (HgCl2 at 0.05 and 0.1%), Plant Preservative Mixture (PPMTM 0.2–4%), rifampicin (50–200 mg L−1), and sodium hypochlorite (NaOCl 0.1–60%). Only 0.05 or 0.1% HgCl2 applied via infiltration successfully eliminated all of the bacteria from the shoots, which remained bacteria-free for several years, as confirmed by indexing explants on bacterial media at each subculture. While most treated shoots became necrotic and died due to infiltration, the surviving shoots remained vital and provided bacteria-free material for long-term propagation. Results from experiments comparing micropropagation potential in bacteria-contaminated and bacteria-free cultures showed that bacteria-free shoots produced longer shoots, and the total number of shoots did not differ, except for “Norna”/Curtobacbacteria-free cultures, which were more productive. Bacteria-contaminated shoots rooted at higher percentages, but roots were much shorter, and plantlets initiated growth during acclimatization later. Cultures that were contaminated did not survive storage at 4 °C in the dark for 4–6 months. Full article
14 pages, 2616 KB  
Article
GC Content and Thermal Stability of Double-Stranded RNA: Fragments of Microsporidia Vairimorpha ceranae and Nosema bombycis AT-Rich Genes Are Sensitive to Standard Heat Treatment
by Ruslan R. Fadeev, Sergey A. Timofeev, Igor V. Senderskiy and Viacheslav V. Dolgikh
Int. J. Mol. Sci. 2025, 26(21), 10270; https://doi.org/10.3390/ijms262110270 (registering DOI) - 22 Oct 2025
Abstract
Heating at 95 °C or boiling E. coli HT115 (DE3) cells is often used to extract heterologous dsRNA or kill bacteria, although these temperatures cause dsRNA denaturation and destruction. In this study, we examined the risk of degradation of dsRNA fragments of AT-rich [...] Read more.
Heating at 95 °C or boiling E. coli HT115 (DE3) cells is often used to extract heterologous dsRNA or kill bacteria, although these temperatures cause dsRNA denaturation and destruction. In this study, we examined the risk of degradation of dsRNA fragments of AT-rich genes at high temperature. The expression of dsRNA fragments of AT-rich genes encoding DNA replication enzymes from the microsporidia Vairimorpha ceranae and Nosema bombycis in E. coli HT115 (DE3) was accompanied by heating the bacteria at 95 °C for 30 min. In contrast to four control fragments with normal GC content, the AT-rich dsRNAs of microsporidia were destroyed by this treatment. The in vitro synthesis and heating of the studied dsRNAs showed the degradation of both microsporidia and control fragments. The thermal degradation of in vitro-synthesized control dsRNA with a normal GC content of 47.6% was prevented by the addition of 2 × YT media, NaCl, or low concentrations of MgSO4. This demonstrates the important role of mono- and divalent cations in stabilizing heated fragments and helps explain the preservation of their integrity and RNAi-initiating activity despite the treatment of bacteria at temperatures that denature dsRNA. Feeding Colorado potato beetle larvae with the same in vitro-synthesized dsRNA containing fragments of three Leptinotarsa decemlineata genes showed that their thermal destruction was accompanied by a decrease in pest-suppressing activity. No dsRNA degradation was observed at 80 °C or after E. coli sonication, and these treatments, as well as increasing cation content, may help to avoid the degradation of heat-sensitive dsRNA. Full article
Show Figures

Figure 1

18 pages, 811 KB  
Article
Compressive Learning for the Classification and Reconstruction of Synthetic Aperture Radar Data
by Mobina Keymasi, Omid Ghozatlou, Miguel Heredia Conde and Mihai Datcu
Sensors 2025, 25(21), 6508; https://doi.org/10.3390/s25216508 (registering DOI) - 22 Oct 2025
Abstract
Compressive learning (CL) for synthetic aperture radar (SAR) aims to reduce the volume of data required for effective SAR image processing while preserving classification performance and minimizing reconstruction loss. This study introduces a novel CL framework comprising three distinct scenarios: (I) direct classification [...] Read more.
Compressive learning (CL) for synthetic aperture radar (SAR) aims to reduce the volume of data required for effective SAR image processing while preserving classification performance and minimizing reconstruction loss. This study introduces a novel CL framework comprising three distinct scenarios: (I) direct classification from compressed measurements, (II) image reconstruction from compressed measurements, and (III) joint classification and reconstruction using a trainable compression layer. The proposed network includes a linear transformation layer that performs data compression, followed by multilayer perceptrons (MLPs) tailored for classification and reconstruction tasks. In the joint scenario, end-to-end training enables the compression layer to learn task-specific representations that improve both inference and data recovery. We evaluate our approach on the MNIST and MSTAR datasets across various compression ratios. Experimental results show that joint training significantly improves classification accuracy and reconstruction quality compared to fixed compression schemes. These findings highlight the potential of adaptive compressive learning for enhancing SAR data processing efficiency. Full article
Show Figures

Figure 1

22 pages, 1281 KB  
Article
Preparation and Characterization of New pH-Sensitive Polyurethane Hydrogels as Anti-Cancer Drug Delivery Systems for 5-Fluorouracyl and Fluorodeoxyuridine
by Marcin Sobczak, Adam Kasiński, Karolina Kędra, Joachim Frankowski, Matylda Kurzątkowska, Karolina Watrakiewicz, Karolina Mulas, Katarzyna Strzelecka, Marcin Chodkowski, Małgorzata Krzyżowska, Andrzej Deptała and Ewa Oledzka
Int. J. Mol. Sci. 2025, 26(21), 10258; https://doi.org/10.3390/ijms262110258 (registering DOI) - 22 Oct 2025
Abstract
In this study, non-toxic, biodegradable, and pH-sensitive polyurethane hydrogels (PUs) were prepared by using hexamethylene diisocyanate (HDI), copolymers of є-caprolactone (CL), rac-lactide (LA), and poly(ethylene glycol) (PEG), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-bPPO-b-PEO), 1,4-butanediol (BD), and L-glutamine (Gln). The [...] Read more.
In this study, non-toxic, biodegradable, and pH-sensitive polyurethane hydrogels (PUs) were prepared by using hexamethylene diisocyanate (HDI), copolymers of є-caprolactone (CL), rac-lactide (LA), and poly(ethylene glycol) (PEG), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-bPPO-b-PEO), 1,4-butanediol (BD), and L-glutamine (Gln). The CL, LA, and PEG copolymers were obtained in the presence of a new synthesized catalytic system: diethylzinc/ethyl-3,4-dihydroxybenzoate. Obtained PUs were screened for their cytotoxicity, evaluated for their swelling behavior and hydrolytic degradation, and employed as hydrogel pH-responsive anti-cancer drug delivery systems (DDSs). The novel and promising hydrogel DDSs, capable of releasing 5-fluorouracyl (5-FU) and fluorodeoxyuridine (5-fluoro-2′-deoxyuridine, FUdR) in a sustained and controlled manner, were prepared and were nontoxic. Most prepared hydrogel DDSs were found to release anti-cancer drugs with first-order or zero-order kinetics. The drug release mechanism was generally denoted as Fickian or non-Fickian transport. The possibility of controlling the kinetics of drug release by changing the pH of the environment was also observed. The findings indicate that these PU hydrogels are suitable for use as intelligent DDSs for the targeted delivery of 5-FU or FUdR. We expect that the hydrogel DDSs developed will be utilized in the treatment of pancreatic cancer. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Graphical abstract

24 pages, 4476 KB  
Article
Successive Harvesting Interval and Salinity Level Modulate Biomass Production and Nutritional Value in Sarcocornia fruticosa and Arthrocaulon macrostachyum
by Tesfaye Asmare Sisay, Jaykumar Patel, Kusum Khatri, Babita Choudhary, Dominic Standing, Zai Du Nja, Muki Shpigel, Luísa Margarida Batista Custódio, Ilya Gelfand and Moshe Sagi
Agriculture 2025, 15(21), 2182; https://doi.org/10.3390/agriculture15212182 (registering DOI) - 22 Oct 2025
Abstract
Halophyte bio-saline agriculture can supplement conventional farm methods in salinized soils and salty water. The current study compares the yield and nutritional value of new Sarcocornia fruticosa ecotypes (Shikmona, Megadim, Naaman, and Ruhama) to those of the current ecotype (VM). Additionally, Arthrocaulon macrostachyum [...] Read more.
Halophyte bio-saline agriculture can supplement conventional farm methods in salinized soils and salty water. The current study compares the yield and nutritional value of new Sarcocornia fruticosa ecotypes (Shikmona, Megadim, Naaman, and Ruhama) to those of the current ecotype (VM). Additionally, Arthrocaulon macrostachyum, phenotypically similar to Sarcocornia, was compared to Sarcocornia ecotypes, and the effects of the harvesting regime and irrigation water salinity on yield and nutritional value were studied. At both salinity levels (50 and 150 mM NaCl), 30-day harvesting intervals over a 210-day growth period increased plant yield compared to a 21-day regime. It also tended to improve electrical conductivity (EC) and total soluble sugars (TSS), lower malondialdehyde levels (a marker of toxic stress), and enhance radical inhibition activity in most ecotypes. Compared to VM, the Sarcocornia ecotypes Ruh and Naa exhibited much higher biomass with similar radical inhibition activity but lower total protein content. Higher salinity improved fresh biomass, shoot diameter, relative water content, chlorophyll level, TSS, and EC and tended to increase anthocyanin and carotenoid levels. In contrast, lower salinity tended to increase total flavonoids, polyphenols, and radical inhibition activity. In the 30-day harvest regime, A. macrostachyum exhibited the highest and second-highest yields at high and low salinity, respectively; the highest shoot diameter, total flavonoids, and radical inhibition activity; and one of the lowest malondialdehyde levels. The current study highlights the importance of optimizing harvest frequency and the advantages of employing A. macrostachyum and the Sarcocornia ecotypes Ruhama, Naaman, and Megadim with a 30-day harvesting regime under higher-salinity conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

21 pages, 3252 KB  
Article
Carbon-Oriented Eco-Efficiency of Cultivated Land Utilization Under Different Ownership Structures: Evidence from Arid Oases in Northwest China
by Jianlong Zhang, Weizhong Liu, Hongqi Wu, Ling Xie and Suhong Liu
Sustainability 2025, 17(21), 9369; https://doi.org/10.3390/su17219369 (registering DOI) - 22 Oct 2025
Abstract
Cultivated land (CL) is essential for human survival, as its coordinated utilization plays a crucial role in both food production and ecological protection. In this study, we focus on Aksu, a typical oasis in arid areas of Xinjiang, to explore how to improve [...] Read more.
Cultivated land (CL) is essential for human survival, as its coordinated utilization plays a crucial role in both food production and ecological protection. In this study, we focus on Aksu, a typical oasis in arid areas of Xinjiang, to explore how to improve the eco-efficiency of cultivated land utilization (ECLU) from the perspective of carbon emissions under different ownership structures. The goal is to provide policy support for the sustainable intensification of CL in Aksu. The super-efficiency slack-based measure (Super-SBM) model was used to calculate the ECLU, while the carbon emissions coefficient method was employed to estimate cultivated land carbon emissions (CLCE). Additionally, the random forest regression (RFR) model was utilized to analyze differences in CLCE between collective and state-owned cultivated lands. Finally, a Geo-detector analysis was conducted to identify driving factors of CLCE. The findings indicate that the overall ECLU values in Aksu initially increased and subsequently decreased over time. During the study period, Kalpin showed the highest ECLU, followed by Wensu and Wushi. The total CLCE in Aksu demonstrated an initial increase followed by a decrease, but the overall trend was growth, from 3.7 t in 2008 to 5.63 t in 2019, on average. It was observed that carbon emissions from state-owned cultivated land were greater than those from collective cultivated land, and carbon emissions from non-food crops were higher than those from food crops. Furthermore, spatial heterogeneity was evident in the CLCE. The single factor detection results showed that the Local_GDP (q = 0.763, representing the explanatory power of the Local_GDP on cultivated land carbon emissions) was identified as the main driver of CLCE in Aksu. The interactive detection results indicated that the Local_GDP and Farmer income (0.839) had stronger effects on CLCE in Aksu than any other two factors. It was also found that ownership of CL directly affects CLCE and indirectly affects the ECLU. In conclusion, it is necessary to formulate corresponding countermeasures for improving the ECLU involving government intervention, as well as cooperation with farmers and other stakeholders, to address these issues effectively within Aksu’s agricultural sector. Full article
Show Figures

Figure 1

19 pages, 1387 KB  
Article
Integrating Physiologic Assessment into Virtual Reality-Based Pediatric Pain Intervention: A Feasibility Study
by Harsheen Marwah, Stefania R. Moldovanu, Talis Reks, Brian Anthony and Deirdre E. Logan
Virtual Worlds 2025, 4(4), 47; https://doi.org/10.3390/virtualworlds4040047 - 22 Oct 2025
Abstract
This feasibility study explored the integration of physiological monitoring into a virtual reality (VR) intervention for pediatric pain management. The goal of this study is to identify a feasible strategy for collecting physiologic data in the context of a VR intervention currently being [...] Read more.
This feasibility study explored the integration of physiological monitoring into a virtual reality (VR) intervention for pediatric pain management. The goal of this study is to identify a feasible strategy for collecting physiologic data in the context of a VR intervention currently being developed for youth with chronic pain. We assess the potential of Cognitive Load (CL)—derived from heart rate and pupillometry/eye-tracking data—as a marker of arousal and user engagement in a VR simulation to promote school functioning in youth with chronic pain. The HP Reverb G2 Omnicept headset and Polar H10 heart-rate sensor were utilized. The Child Presence Questionnaire (CPQ) assessed participants’ self-reported immersion and engagement. Data collection focused on feasibility and utility of physiologic data in assessing arousal and correlations with self-reported experience. Nine participants engaged in the simulation, with eight yielding complete data. The simulation and headset were well tolerated. CPQ Transportation subscale showed trend-level correlation with mean CL. Due to small sample and feasibility focus, individual-level results were examined. Combining multiple physiologic markers into a construct like CL is intriguing, but data interpretability was limited. Pupillometry and related metrics show promise as feasible markers of engagement and arousal for VR-based intervention but require appropriate expertise to fully interpret. The study found that integration of physiologic monitoring is feasible, but further work is needed to standardize metrics and identify the most useful and user-friendly markers. Full article
Show Figures

Figure 1

18 pages, 2529 KB  
Article
Unlocking the Potential of vB_EfaS_LOK1: A Newly Isolated Bacteriophage Against Enterococcus faecalis
by Laura Marcela Plata Suarez, Salvador Del Valle Balbuena, Isamar Leticia Becerra Mejía, Alejandra Aidee Loera Piedra, Cristina Domínguez Espinoza, Arantxa Monserrat Ángeles González, Araceli Contreras Rodríguez, Alejandra Aquino Andrade, Sergio Francisco Martínez Díaz and Ma. Guadalupe Aguilera Arreola
Microorganisms 2025, 13(10), 2414; https://doi.org/10.3390/microorganisms13102414 - 21 Oct 2025
Abstract
Phage therapy has emerged as a promising alternative for combating infections caused by drug-resistant pathogens. Among these, Enterococcus faecalis remains a significant public health concern due to its persistence in clinical settings and frequent involvement in healthcare-associated infections (HAIs). In this study, we [...] Read more.
Phage therapy has emerged as a promising alternative for combating infections caused by drug-resistant pathogens. Among these, Enterococcus faecalis remains a significant public health concern due to its persistence in clinical settings and frequent involvement in healthcare-associated infections (HAIs). In this study, we report the characterization of the lytic bacteriophage vB_EfaS_LOK1, isolated from urban sewage using E. faecalis strain IIH-74.4 as the host. Transmission electron microscopy revealed morphological features consistent with the phages formerly classified within the Siphoviridae family. The phage exhibited high thermal and pH stability, remaining viable up to 70 °C and within a pH range of 4–11. It displayed a latent period of 20 min and a burst size of 72 PFU/cell. Notably, vB_EfaS_LOK1 exhibited a narrow host range, lysing only the strain used for their isolation. Genomic analysis revealed a 41.2 kb double-stranded DNA genome devoid of known virulence or antibiotic resistance genes. Phylogenomic analysis classified the phage within the genus Efquatrovirus (Caudoviricetes), suggesting it represents a newly isolated bacteriophage species. Functional annotation identified genes related to DNA replication, host interaction, and bacterial lysis, including endolysins and holins with putative antimicrobial properties. Long-term stability assays demonstrated that tryptic soy broth (TSB) with CaCl2/MgCl2 at 4 °C maintained viability for at least 90 days. Collectively, these findings support the potential of vB_EfaS_LOK1 as a potential candidate for the development of phage-based therapies targeting E. faecalis. Full article
Show Figures

Figure 1

31 pages, 7877 KB  
Article
Shear Performance Degradation of Fiber-Reinforced Recycled Aggregate Concrete Beams Under Salt Freeze–Thaw Cycles
by Shefeng Guo, Jin Wu, Jingmiao Zhao, Zhehong Zeng, Xiangyu Wang, Yiyuan Wang, Haoxiang Luan, Yulin Wang and Dongxia Hu
Materials 2025, 18(20), 4817; https://doi.org/10.3390/ma18204817 - 21 Oct 2025
Abstract
In saline soil and alpine regions of northwest China, fiber-reinforced recycled aggregate concrete (FR-RAC) beams are subjected to coupled degradation from a chloride–sulfate composite salt attack and freeze–thaw cycling. Existing studies predominantly focus on natural aggregate concrete in freshwater environments or single-salt solutions, [...] Read more.
In saline soil and alpine regions of northwest China, fiber-reinforced recycled aggregate concrete (FR-RAC) beams are subjected to coupled degradation from a chloride–sulfate composite salt attack and freeze–thaw cycling. Existing studies predominantly focus on natural aggregate concrete in freshwater environments or single-salt solutions, with limited documentation on the shear performance of FR-RAC beams after freeze–thaw exposure in chloride–sulfate composite salt solutions. To investigate the durability degradation patterns of FR-RAC beams in Xinjiang’s saline soil regions, two exposure environments (pure water and 5% NaCl + 2.0% Na2SO4 composite salt solution) were established. Shear performance tests were conducted on nine groups of FR-RAC beams after 0–175 freeze–thaw cycles, with measurements focusing on failure modes, cracking loads, and ultimate shear capacities. The results revealed that under composite salt freeze–thaw conditions: after 100 cycles, the cracking load and shear capacity of tested beams decreased by 39.8% and 22.2%, respectively, compared to unfrozen specimens representing reductions 29.6% and 82.0% greater than those in freshwater environments; at 175 cycles, cumulative damage intensified, with total reductions reaching 56.8% (cracking load) and 36.1% (shear capacity). A shear capacity degradation prediction model for FR-RAC beams under composite salt freeze–thaw coupling was developed, accounting for concrete strength attenuation and interfacial bond degradation. Model validation demonstrated excellent agreement between predicted and experimental values, confirming its robust applicability. Full article
Show Figures

Figure 1

25 pages, 12703 KB  
Article
Identification of Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Gene Families of Longan in Relation to On-Tree Preservation
by Meiying He, Liang Shuai, Yijie Zhou, Mubo Song, Feilong Yin and Yunfen Liu
Horticulturae 2025, 11(10), 1270; https://doi.org/10.3390/horticulturae11101270 (registering DOI) - 21 Oct 2025
Abstract
As a typical sucrose-accumulating fruit, longan commonly experiences sugar receding during on-tree preservation, leading to quality deterioration. To investigate the mechanism of sucrose degradation in longan fruit, we conducted genome-wide identification and analysis of key genes involved in sucrose synthesis and catabolism based [...] Read more.
As a typical sucrose-accumulating fruit, longan commonly experiences sugar receding during on-tree preservation, leading to quality deterioration. To investigate the mechanism of sucrose degradation in longan fruit, we conducted genome-wide identification and analysis of key genes involved in sucrose synthesis and catabolism based on the ‘Shixia’ (SX) genome. The results revealed that longan contained 8 sucrose synthases (SUSs), 4 sucrose phosphate synthases (SPSs), and 26 invertases (INVs). Notably, members of the longan SUS, SPS, and cell wall invertase (CWINV) families all contained the motif 10 sequence, while cytoplasmic invertase (CINV) members exhibited diverse motif combinations. Similarity analysis revealed that sequence similarity was reliable only when the sequence lengths of the compared genes were comparable. Cis-acting elements and miRNA prediction showed that these genes were enriched in MYB elements and regulated by miR156/827/171. Additionally, the expansion of SUS, SPS, and INV genes was driven by segmental duplication events under purifying selection. Furthermore, the ‘Chuliang’ (CL) cultivar exhibited slower on-tree sucrose degradation than SX, with sucrose accounting for 72.2% of total sugars at maturity, which is 33.4% higher than SX. Enzyme activity assay during the sucrose decline stage revealed that SUS, SPS, and INV activities were generally higher in SX pulp than in CL. Furthermore, correlation analysis showed that the activities of AINV and A/N-INV were both significantly negatively correlated with TSS and sucrose content, respectively. Additionally, the expression of DlCWINV10 exhibited a negative correlation with TSS (p < 0.05) and sucrose content (r = −0.6, p = 0.07), suggesting that DlCWINV10 may play an important role in the sucrose degradation process. In summary, this study elucidates the characteristics of SUS, SPS, and INV gene families in longan and their potential roles in sucrose metabolism, providing a theoretical foundation for understanding the on-tree sucrose degradation mechanism. Full article
(This article belongs to the Special Issue Molecular Insights into Fruit Ripening and Senescence)
Show Figures

Figure 1

34 pages, 3403 KB  
Article
Groundwater Suitability for Irrigation in the Hennaya Region, Northwest Algeria: A Hydrochemical and GIS-Based Multi-Criteria Assessment
by Abderrahim Badraoui, Chérifa Abdelbaki, Madani Bessedik, Sidi Mohamed Tiar, Yacine Abdelbaset Berrezel, Mahdi Ziane, Amaria Slimani, Ahmed Souafi, Nourredine Boudadi, Bernhard Tischbein and Navneet Kumar
Water 2025, 17(20), 3025; https://doi.org/10.3390/w17203025 - 21 Oct 2025
Abstract
This study investigated groundwater suitability for irrigation in the Hennaya Irrigated region of Northwest Algeria. The research pursued two primary objectives: first, to establish the hydrochemical origin of the groundwater through comprehensive analyses including hydrochemical parameters, diagrams, and hierarchical clustering; and second, to [...] Read more.
This study investigated groundwater suitability for irrigation in the Hennaya Irrigated region of Northwest Algeria. The research pursued two primary objectives: first, to establish the hydrochemical origin of the groundwater through comprehensive analyses including hydrochemical parameters, diagrams, and hierarchical clustering; and second, to assess its suitability for irrigation based on key criteria such as the Water Quality Index (WQI), Wilcox, and US Salinity diagrams. The analysis revealed a high level of groundwater suitability for irrigation, as indicated by various indices: Sodium Adsorption Ratio (SAR) values ranged from 1.69 to 2.55 (Excellent), Sodium Percentage (Na%) ranged from 24.22% to 36.98% (Good), and the Residual Sodium Carbonate (RSC) was negative, falling between −8.91 to −1.70 meq/L (Safe). Kelly’s Ratio (KR) ranged from 0.32 to 0.59 (Good), and the Permeability Index (PI) was between 62% and 99% (Moderate). Supported by the Analytic Hierarchy Process (AHP) and spatial analysis, the Water Quality Index (WQI) values ranged from 69.25 to 88.71, categorizing the groundwater in the study area as ‘Good’ quality. While suitable for irrigation, the groundwater showed slight salinity (EC 1247–2010 μS/cm) and alkalinity (pH 7.09–8.02), with elevated total dissolved solids (TDSs) ranging from 990 to 1930 mg/L, approaching the permissible limits for optimal agricultural use. The dominant ion concentrations (Ca2+ > Na+ > Mg2+ > K+; HCO3 > Cl > SO42− > NO3) indicate a mixed hydrochemical facies influenced by both water–rock interactions and evaporative processes. Although these findings are promising, they highlight the necessity for preventive measures. Ongoing proactive management and continuous monitoring are essential to ensure the long-term sustainability and protection of groundwater resources in the region. Full article
Back to TopTop