Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. By-Products Fatty Acids, Amino Acids and Volatile Profiles
2.1.1. By-Products Fatty Acids Content
2.1.2. By-Products Amino Acids Content
2.1.3. Apple By-Products Aroma Volatile Profile
2.2. Biscuit’s Aroma Profile, Color Characteristics and Sensory Analysis
2.2.1. Biscuit’s Aroma Profile
2.2.2. Biscuits and By-Products Color Characteristics
2.2.3. Sensory Analysis
3. Discussion
4. Materials and Methods
4.1. Materials, Reagents
4.2. Apple Pomace (AP) and Biscuits Manufacturing
4.3. Fatty Acids
4.4. Amino Acids
4.5. Aroma Volatile Compounds
4.6. By-Products and Biscuits Color Characteristics
4.7. Sensory Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zheng, J.; Li, H.; Wang, D.; Li, R.; Wang, S.; Ling, B. Radio frequency assisted extraction of pectin from apple pomace: Process optimization and comparison with microwave and conventional methods. Food Hydrocoll. 2021, 121, 3–11. [Google Scholar] [CrossRef]
- Ergün, Z. Determination of Biochemical Contents of Fresh, Oven-Dried, and Sun-Dried Peels and Pulps of Five Apple Cultivars (Amasya, Braeburn, Golden Delicious, Granny Smith, and Starking). J. Food Qual. 2021, 2021, 9916694. [Google Scholar] [CrossRef]
- Di Matteo, G.; Spano, M.; Esposito, C.; Santarcangelo, C.; Baldi, A.; Daglia, M.; Mannina, L.; Ingallina, C.; Sobolev, A. NMR Characterization of Ten Apple Cultivars from the Piedmont Region. Foods 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of Apple Pomace by Extraction of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geană, E.I.; Ciucure, C.T.; Ionete, R.E.; Ciocârlan, A.; Aricu, A.; Ficai, A.; Andronescu, E. Profiling of phenolic compounds and triterpene acids of twelve apple (Malus domestica borkh.) cultivars. Foods 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lahaye, M. Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll. 2021, 115, 106601. [Google Scholar] [CrossRef]
- Jung, J.; Cavender, G.; Zhao, Y. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. J. Food Sci. Technol. 2015, 52, 5568–5578. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.R.; Bastos, R.; Calvão, J.; Neto, F.; Coelho, E.; Wessel, D.F.; Cardoso, S.M.; Coimbra, M.A.; Passos, C.P. Microwave hydrodiffusion and gravity as a sustainable alternative approach for an efficient apple pomace drying. Bioresour. Technol. 2021, 333, 125207. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple pomace as a potential valuable resource for full-components utilization: A review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Büker, M.; Angın, P.; Nurman, N.; Rasouli Pirouzian, H.; Akdeniz, E.; Toker, O.S.; Sagdic, O.; Tamtürk, F. Effects of apple pomace as a sucrose substitute on the quality characteristics of compound chocolate and spread. J. Food Process. Preserv. 2021, 45, e15773. [Google Scholar] [CrossRef]
- Masoodi, F.A.; Sharma, B.; Chauhan, G.S. Use of apple pomace as a source of dietary fiber in cakes. Plant. Foods Hum. Nutr. 2002, 57, 121–128. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Pinto, A.; Coelho, E.; Passos, C.P.; Coimbra, M.A.; Cardoso, S.M.; et al. Apple pomace extract as a sustainable food ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Pobiega, K. Propionic acid production from apple pomace in bioreactor using Propionibacterium freudenreichii: An economic analysis of the process. 3 Biotech 2021, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Solís-Contreras, G.; Rodríguez-Guillermo, M.; Reyes-Vega, M.D.L.L.; Aguilar, C.; Rebolloso-Padilla, O.; Corona-Flores, J.; Soriano-Melgar, L.D.A.A.; Ruelas-Chacon, X. Extending Shelf-Life and Quality of Minimally Processed Golden Delicious Apples with Three Bioactive Coatings Combined with Cinnamon Essential Oil. Foods 2021, 10, 597. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Foti, L.; Carlucci, G.; Scrano, L.; Martelli, G.; Brienza, M.; Coviello, D.; Bianco, G.; Lelario, F. Analytical methods for extraction and identification of primary and secondary metabolites of apple (Malus domestica) fruits: A review. Separations 2021, 8, 91. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem. Cent. J. 2016, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Kadir, S.A. Fruit Quality at Harvest of “Jonathan” Apple Treated with Foliarly-Applied Calcium Chloride. J. Plant. Nutr. 2005, 27, 1991–2006. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef]
- Grigoras, C.G.; Destandau, E.; Fougère, L.; Elfakir, C. Evaluation of apple pomace extracts as a source of bioactive compounds. Ind. Crops Prod. 2013, 49, 794–804. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem. 2008, 109, 340–347. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the chemistry of apple pomace polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Endreß, H.U.; Rentschler, C.; Carle, R. A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 2003, 4, 99–107. [Google Scholar] [CrossRef]
- Rana, S.; Kumar, S.; Rana, A.; Padwad, Y.; Bhushan, S. Biological activity of phenolics enriched extracts from industrial apple pomace. Ind. Crops Prod. 2021, 160, 113158. [Google Scholar] [CrossRef]
- Pollini, L.; Cossignani, L.; Juan, C.; Mañes, J. Extraction of phenolic compounds from fresh apple pomace by different non-conventional techniques. Molecules 2021, 26, 4272. [Google Scholar] [CrossRef] [PubMed]
- Egüés, I.; Hernandez-Ramos, F.; Rivilla, I.; Labidi, J. Optimization of ultrasound assisted extraction of bioactive compounds from apple pomace. Molecules 2021, 26, 3783. [Google Scholar] [CrossRef] [PubMed]
- Francini, A.; Fidalgo-illesca, C.; Raffaelli, A.; Sebastiani, L. Phenolics and Mineral Elements Composition in Underutilized Apple Varieties. Horticulturae 2021, 8, 40. [Google Scholar] [CrossRef]
- Dos Santos, C.M.E.; Pietrowski, G.D.A.M.; Braga, C.M.; Rossi, M.J.; Ninow, J.; Dos Santos, T.P.M.; Wosiacki, G.; Jorge, R.M.M.; Nogueira, A. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production. J. Food Sci. 2015, 80, C1170–C1177. [Google Scholar] [CrossRef]
- Dadwal, V.; Agrawal, H.; Sonkhla, K.; Joshi, R.; Gupta, M. Characterization of phenolics, amino acids, fatty acids and antioxidant activity in pulp and seeds of high altitude Himalayan crab apple fruits (Malus baccata). J. Food Sci. Technol. 2018, 55, 2160–2169. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.; Pinto, M.; Bastos, R.; Cruz, M.; Nunes, C.; Rocha, S.M.; Coimbra, M.A. Concentrate apple juice industry: Aroma and pomace valuation as food ingredients. Appl. Sci. 2021, 11, 2443. [Google Scholar] [CrossRef]
- Wicklund, T.; Guyot, S.; Le Quéré, J.-M. Chemical Composition of Apples Cultivated in Norway. Crops 2021, 1, 8–19. [Google Scholar] [CrossRef]
- Lamani, S.; Anu-appaiah, K.A.; Murthy, H.N.; Dewir, Y.H. Analysis of Free Sugars, Organic Acids, and Fatty Acids of Wood Apple (Limonia acidissima L.) Fruit Pulp. Horticulturae 2022, 8, 67. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Chiș, M.S.; Paucean, A.; Stan, L.; Muste, S.; Suharoschi, R.; Man, S.M. Protein metabolic conversion of nutritional features during quinoa sourdough fermentation and its impact on baked goods. J. Biotechnol. 2018, 280, S64. [Google Scholar] [CrossRef]
- Kati, K.; Kaisa, P.; Karin, A. Influence and Interactions of Processing Conditions and Starter Culture on Formation of Acids, Volatile Compounds, and Amino Acids in Wheat Sourdoughs. Cereal Chem. 2004, 81, 598–610. [Google Scholar] [CrossRef]
- Chis, M.S.; Paucean, A.; Man, S.M.; Bonta, V.; Pop, A.; Stan, L.; Beldean, B.V.; Pop, C.R.; Muresan, V.; Muste, S. Effect of Rice Flour Fermentation with Lactobacillus spicheri DSM 15429 on the Nutritional Features of Gluten-Free Muffins. Foods 2020, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Man, S.M.; Stan, L.; Păucean, A.; Chiş, M.S.; Mureşan, V.; Socaci, S.A.; Pop, A.; Muste, S. Nutritional, sensory, texture properties and volatile compounds profile of biscuits with roasted flaxseed flour partially substituting for wheat flour. Appl. Sci. 2021, 11, 4791. [Google Scholar] [CrossRef]
- Chiş, M.S.; Păucean, A.; Man, S.M.; Mureşan, V.; Socaci, S.A.; Pop, A.; Stan, L.; Rusu, B.; Muste, S. Textural and Sensory Features Changes of Gluten Free Muffins Based on Rice Sourdough Fermented with Lactobacillus spicheri DSM 15429. Foods 2020, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Bangerth, F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol. Technol. 2003, 30, 113–121. [Google Scholar] [CrossRef]
- Radenkovs, V.; Kviesis, J.; Juhnevica-Radenkova, K.; Valdovska, A.; Püssa, T.; Klavins, M.; Drudze, I. Valorization of wild apple (Malus spp.) by-products as a source of essential fatty acids, tocopherols and phytosterols with antimicrobial activity. Plants 2018, 7, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrera, R.R.; Bedriñana, R.P.; Valles, B.S. Enhancement of the nutritional properties of apple pomace by fermentation with autochthonous yeasts. LWT Food Sci. Technol. 2017, 79, 27–33. [Google Scholar] [CrossRef]
- Berto, A.; Da Silva, A.F.; Visentainer, J.V.; Matsushita, M.; De Souza, N.E. Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res. Int. 2015, 77, 441–449. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. J. Food Compos. Anal. 2020, 93, 103608. [Google Scholar] [CrossRef]
- Botoran, O.R.; Ionete, R.E.; Miricioiu, M.G.; Costinel, D.; Radu, G.L.; Popescu, R. Amino acid profile of fruits as potential fingerprints of varietal origin. Molecules 2019, 24, 4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, H.; Ueno, H.; Kikuzaki, H. Nutrition and Dietetic Practice Free Amino Acid Compositions for Fruits. J. Nutr. Diet. Pract. 2017, 1, 2017–2018. [Google Scholar]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol. Biotechnol. 2016, 54, 375–394. [Google Scholar] [CrossRef]
- Culea, M.; Scrob, S.; Suvar, S.; Podea, P.; Haş, I.; Muste, S. Determination of Amino Acids in Corn Seed by Gas Chromatography–Mass Spectrometry. Anal. Lett. 2015, 48, 37–46. [Google Scholar] [CrossRef]
- Ichikawa, S.; Gohda, T.; Murakoshi, M.; Li, Z.; Adachi, E.; Koshida, T.; Suzuki, Y. Aspartic Acid Supplementation Ameliorates Symptoms of Diabetic Kidney Disease in Mice; Wiley: Cambridge, UK, 2020; Volume 10, ISBN 0000000205. [Google Scholar]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in “Honeycrisp” apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Di Maro, A.; Dosi, R.; Ferrara, L.; Rocco, M.; Sepe, J.; Ferrari, G.; Parente, A. Free amino acid profile in Malus domestica cv Annurca apples from the Campania region and other Italian vegetables. Aust. J. Crop. Sci. 2011, 5, 154–161. [Google Scholar]
- Mosa, W.F.A.; Ali, H.M.; Abdelsalam, N.R. The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environ. Sci. Pollut. Res. 2021, 28, 1983–1991. [Google Scholar] [CrossRef]
- Păucean, A.; Mureșan, V.; Maria-Man, S.; Chiș, M.S.; Mureșan, A.E.; Șerban, L.R.; Pop, A.; Muste, S. Metabolomics as a tool to elucidate the sensory, nutritional and safety quality of wheat bread—A review. Int. J. Mol. Sci. 2021, 22, 8945. [Google Scholar] [CrossRef] [PubMed]
- Chiș, M.S.; Păucean, A.; Stan, L.; Suharoschi, R.; Socaci, S.A.; Man, S.M.; Pop, C.R.; Muste, S. Impact of protein metabolic conversion and volatile derivatives on gluten-free muffins made with quinoa sourdough. CYTA J. Food 2019, 17, 744–753. [Google Scholar] [CrossRef]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bourvellec, C.; Bureau, S.; Renard, C.M.; Plenet, D.; Gautier, H.; Touloumet, L.; Girard, T.; Simon, S. Cultivar and year rather than agricultural practices affect primary and secondary metabolites in apple fruit. PLoS ONE 2015, 10, e0141916. [Google Scholar] [CrossRef]
- Madrera, R.R.; Valles, B.S. Determination of Volatile Compounds in Apple Pomace by Stir Bar Sorptive Extraction and Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). J. Food Sci. 2011, 76, C1326–C1334. [Google Scholar] [CrossRef]
- Mehinagic, E.; Royer, G.; Symoneaux, R.; Jourjon, F.; Prost, C. Characterization of odor-active volatiles in apples: Influence of cultivars and maturity stage. J. Agric. Food Chem. 2006, 54, 2678–2687. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Chiș, M.S.; Pop, O.L.; Fogarasi, M.; Păucean, A.; Igual, M.; Michiu, D. Reintegration of brewers spent grains in the food chain: Nutritional, functional and sensorial aspects. Plants 2021, 10, 2504. [Google Scholar] [CrossRef]
- Antoniewska, A.; Rutkowska, J.; Pineda, M.M.; Adamska, A. Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT 2018, 89, 217–223. [Google Scholar] [CrossRef]
- Garvey, E.C.; O’Sullivan, M.G.; Kerry, J.P.; Milner, L.; Gallagher, E.; Kilcawley, K.N. Characterising the sensory quality and volatile aroma profile of clean-label sucrose reduced sponge cakes. Food Chem. 2021, 342, 128124. [Google Scholar] [CrossRef]
- Honda, C.; Kotoda, N.; Wada, M.; Kondo, S.; Kobayashi, S.; Soejima, J.; Zhang, Z.; Tsuda, T.; Moriguchi, T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant. Physiol. Biochem. 2002, 40, 955–962. [Google Scholar] [CrossRef]
- Melnic, V.; Bunea, A.; Chira, R.O.; Bunea, C.I.; Socaci, I.; Mitre, V. Phytochemical Content and Antioxidant Activity of Malus domestica Borkh Peel Extracts. Molecules 2021, 26, 7636. [Google Scholar]
- Cárdenas-Pérez, S.; Chanona-Pérez, J.; Méndez-Méndez, J.V.; Calderón-Domínguez, G.; López-Santiago, R.; Perea-Flores, M.J.; Arzate-Vázquez, I. Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosyst. Eng. 2017, 159, 46–58. [Google Scholar] [CrossRef]
- Catalkaya, G.; Ceylan, F.D.; Ozkan, G.; Buldiken, G.; Capanoglu, E. Consumption, Bioacessibility, Bioavailability of Anthocyanins and Their Interactıons with Gut Mıcrobıota. In Anthocyanins, Antioxidant Properties, Source and Health Benefits, 1st ed.; Lorezno, J.M., Barba, F.J., Munekata, P.E.S., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2016; pp. 107–140. [Google Scholar]
- Le Deun, E.; Van Der Werf, R.; Le Bail, G.; Le Quéré, J.M.; Guyot, S. HPLC-DAD-MS Profiling of Polyphenols Responsible for the Yellow-Orange Color in Apple Juices of Different French Cider Apple Varieties. J. Agric. Food Chem. 2015, 63, 7675–7684. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.A.; Saftner, R.A.; Gross, K.C.; Vinyard, B.T.; Janick, J. Consumer evaluation and quality measurement of fresh-cut slices of “Fuji,” “Golden Delicious,” “GoldRush,” and “Granny Smith” apples. Postharvest Biol. Technol. 2004, 33, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Sudha, M.L.; Dharmesh, S.M.; Pynam, H.; Bhimangouder, S.V.; Eipson, S.W.; Somasundaram, R.; Nanjarajurs, S.M. Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. J. Food Sci. Technol. 2016, 53, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Drogoudi, P.D.; Michailidis, Z.; Pantelidis, G. Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Sci. Hortic. 2008, 115, 149–153. [Google Scholar] [CrossRef]
- Naibaho, J.; Korzeniowska, M. Brewers’ spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J. Food Sci. 2021, 86, 1532–1551. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- National Sanitary Veterinary and Food Safety Authority. ORDER No. 27 of June 6, on the Approval of Microbiological and Hygiene Criteria Applicable to Foodstuffs. In Official Gazette No. 435; European Commision: Bucharest, Romania, 2011. [Google Scholar]
- ISO 21527-2; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. International Organization for Standardization: Geneva, Switzerland, 2008.
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Fărcaş, A.C.; Socaci, S.A.; Dulf, F.V.; Tofană, M.; Mudura, E.; Diaconeasa, Z. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Igual, M.; Chiş, M.S.; Socaci, S.A.; Vodnar, D.C.; Ranga, F.; Martínez-Monzó, J.; García-Segovia, P. Effect of Medicago sativa Addition on Physicochemical, Nutritional and Functional Characteristics of Corn Extrudates. Foods 2021, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- The Pherobase Database of Pheromones and Semiochemicals. Available online: https://www.pherobase.com/ (accessed on 10 December 2021).
- Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 9 November 2021).
Shorthand Nomenclature | Fatty Acid Name | Type | JS (%) | JP (%) | GS (%) | GP (%) |
---|---|---|---|---|---|---|
12:0 | Lauric | SFA | 0.08 ± 0.02 a | n.d. | 0.06± 0.01 a | n.d. |
14:0 | Myristic | SFA | 0.13±0.01 a | n.d. | 0.09 ± 0.02 a | n.d. |
16:0 | Palmitic | SFA | 3.83 ± 0.14 ab | 9.27 ± 0.31 c | 2.97 ± 0.06 a | 9.17 ± 0.15 c |
16:1 (n−9) | Z-7-Hexadecenoic | MUFA | n.d. | 0.29 ± 0.02 a | n.d. | 0.27 ±0.02 a |
17:0 | Margaric acid | SFA | 0.39 ± 0.02 a | 0.70 ± 0.02 ab | 0.17 ± 0.02 a | 0.77 ± 0.03 ab |
18:0 | Stearic acid | SFA | 2.78 ± 0.21 a | 9.93 ± 0.34 b | 2.53 ± 0.57 a | 9.70 ± 0.05 b |
18:1 (n−9) | Oleic acid | MUFA | 3.17 ± 0.03 a | 13.27 ± 0.05 c | 7.61 ± 0.25 b | 13.64 ± 0.05 c |
18:1 (n−7) | Vaccenic acid | MUFA | n.d. | 0.11 ± 0.02 a | n.d. | 0.19 ± 0.02 a |
18:2 (n−6) | Linoleic acid | PUFA | 85.08 ± 0.63 b | 37.86 ± 0.33 a | 83.44 ±0.31 c | 38.27± 0.03 a |
18:3 (n−3) | α-linolenic acid | PUFA | 0.39 ± 0.02 a | 3.92 ± 0.05 b | 0.41 ±0.03 a | 3.99 ± 0.21 b |
20:0 | Arachidic | SFA | 1.36 ± 0.05 b | 7.52 ± 0.03 c | 0.58 ± 0.03 a | 7.26 ± 0.05 c |
21:0 | Heneicosanoic | SFA | n.d. | 1.88 ± 0.12 b | 0.08 ± 0.02 a | 1.93 ± 0.02 b |
22:0 | Behenic acid | SFA | 1.88 ± 0.03 ab | 9.32 ± 0.11 c | 1.34 ± 0.05 a | 9.46 ± 0.04 c |
23:0 | Tricosanoic | SFA | n.d. | 0.40 ± 0.03 a | n.d. | 0.43 ± 0.02 a |
24:0 | Lignoceric | SFA | 0.90 ± 0.03 a | 5.52 ± 0.05 bc | 0.72 ± 0.03 a | 4.92 ± 0.04 b |
∑ SFA | 11.37 ± 0.69 b | 44.55 ± 0.99 c | 8.54 ± 0.74 a | 43.63 ± 0.40 c | ||
∑ MUFA | 3.17 ± 0. 0.03 a | 13.67 ± 0.09 c | 7.61 ± 0.56 b | 14.11 ± 0.09 c | ||
∑ PUFA | 85.47 ± 0.65 b | 41.78 ± 0.38 a | 83.85 ± 0.34 bc | 42.26 ±0.24 a | ||
∑ n−3 PUFA | 0.39 ± 0.02 c | 3.92 ± 0.05 b | 0.41 ± 0.03 a | 3.99 ± 0.21 b | ||
∑ n−6 PUFA | 85.08 ± 0.63 b | 37.86 ±0.33 a | 83.44 ± 0.31 bc | 38.27 ± 0.03 a | ||
∑ n−6/n−3 | 216.67 c | 9.66 ± 0.28 a | 203.30 b | 9.59 a | ||
∑ PUFAs/SFAs | 7.52 b | 0.94 a | 9.82 c | 0.97 a |
Amino Acid Name | Type | JS mg/100 g | JP mg/100 g | GS mg/100 g | GP mg/100 g |
---|---|---|---|---|---|
Ala | NEAA | 4.09 ± 0.03 a | 7.16 ± 0.05 d | 5.14 ± 0.04 b | 5.69 ± 0.07 bc |
Gly | NEAA | 6.66 ±0.04 a | 14.24 ± 0.16 d | 7.57 ± 0.11 b | 12.53 ± 0.16 c |
Thr | EAA | 0.57 ± 0.07 a | 0.56 ± 0.12 a | 0.88 ± 0.03 ab | 0.70 ± 0.03 a |
Ser | NEAA | 0.78 ± 0.05 a | 1.24 ± 0.03 b | 1.17 ±0.09 b | 1.58 ± 0.05 bc |
Val | EAA | 3.14 ± 0.08 d | 1.13 ± 0.05 a | 1.58 ± 0.05 ab | 2.21 ± 0.12 c |
Leu | EAA | 1.14 ± 0.11 c | 1.71 ± 0.09 d | 0.72 ± 0.05 ab | 0.52 ± 0.03 a |
Ile | EAA | 3.41 ± 0.06 c | 1.85 ± 0.08 b | 4.14 ± 0.11 d | 1.10 ± 0.06 a |
GABA | NEAA | 1.06 ± 0.03 b | 0.40 ± 0.03 a | 3.38 ± 0.22 c | 1.01 ± 0.02 b |
Met | EAA | 1.35 ± 0.02 a | 1.22 ± 0.11 a | 1.32 ± 0.02 a | 1.92 ± 0.07 b |
Pro | NEAA | 2.79 ± 0.07 b | 0.14 ± 0.04 a | 0.24 ± 0.03 a | 0.06 ± 0.02 a |
Asp | NEAA | 28.10 ± 0.19 a | 51.06 ± 0.16 c | 31.05 ± 0.17 b | 63.57 ± 0.05 d |
Phe | EAA | 0.82 ± 0.03 a | 0.46 ± 0.09 a | 0.67 ± 0.05 a | 0.66 ± 0.02 a |
Lys | EAA | 1.82 ± 0.06 c | 3.02 ± 0.09 d | 1.56 ± 0.03 b | 0.25 ± 0.02 a |
Glu | NEAA | 1.09 ± 0.05 a | 3.17 ± 0.05 c | 1.16 ± 0.01 a | 2.56 ± 0.01 b |
∑ TAA | 56.82 ± 0.89 a | 87.37 ± 1.15 c | 60.58 ± 1.01 b | 94.38 ± 0.73 d | |
∑ EAA | 12.25 ± 0.43 d | 9.95 ± 0.66 b | 10.86 ± 0.32 c | 7.37 ± 0.35 a | |
∑ EAA/TAA | 0.22 b | 0.11 a | 0.18 b | 0.08 a |
Volatile Compounds | JS | JP | GS | GP | Odor Perception |
---|---|---|---|---|---|
Alcohols | |||||
1-Pentanol | n.d. | 0.12 ± 0.02 a | n.d | 0.38 ± 0.03 ab | Pungent, fermented, bready, fusel, wine, solvent |
2-methyl-1-butanol | 0.75 ±0.03 a | 0.80 ± 0.03 a | 1.12 ±0.02 b | 1.26 ± 0.02 b | Acidic, sharp, spicy, fusel, wine |
1-butanol | 2.93 ± 0.03 c | 1.25 ± 0.05 b | 0.27 ± 0.02 a | n.d. | Sweet, balsamic, oily, whiskey |
1-octanol | 0.29 ± 0.02 ab | 0.79 ± 0.02 c | 0.13 ± 0.01 a | 0.45 ±0.01 b | Herbal, waxy, fruity nuance |
(Z)-hexen-3-ol | 0.22 ± 0.02 ab | n.d. | 0.13 ± 0.01 a | n.d. | Fresh, green, raw fruity with a pungent depth |
1-hexanol | 2.18 ± 0.11 a | 3.73 ± 0.02 b | 2.50 ± 0.02 a | 4.11 ± 0.03 c | Green, sweet, herbaceous, fermented note, fruity, apple skin, and oily |
Total | 6.37 ± 0.04 b | 6.69 ± 0.04 bc | 4.15 ± 0.03 a | 6.20 ± 0.01 b | |
Esters | |||||
Ethyl hexanoate | 5.29 ± 0.13 d | 3.51 ± 0.02 c | 0.11 ± 0.02 a | 1.23 ± 0.03 b | Fruity, apple peel fruits, pineapple, green banana nuance, waxy, fatty |
Ethyl butanoate | 0.57 ± 0.03 a | 5.19 ± 0.04 c | n.d. | 0.94 ± 0.03 ab | Fruity, pineapple, apple, cognac |
Ethyl 2-methylbutanoate | n.d. | 0.12 ± 0.02 a | 1.8 ± 0.02 c | 1.14 ± 0.03 b | Sharp sweet, fruity, green, apple peel, pineapple skin |
Butyl acetate | 19.76 ± 0.05 d | 3.18 ±0.05 a | 16.20 ± 0.03 c | 3.83 ± 0.04 ab | Sweet, ripe banana, ethereal |
2-methylbutanoate | 0.21 ± 0.03 a | 0.32 ± 0.02 a | n.d. | 0.79 ± 0.03 b | Fruity, apple, fresh pear, and tropical nuance |
2-methylbutyl acetate | 9.23 ± 0.04 b | 17.57 ± 0.03 d | 4.93 ± 0.05 a | 12.04 ± 0.06 c | Sweet, fruity, ripe banana, pear, apple |
Hexyl acetate | 7.18 ± 0.21 c | 4.26 ± 0.07 a | 6.30 ± 0.04 b | 4.71 ± 0.04 a | Fresh, fruity, apple, pear, and banana note |
Butyl-butyrate | n.d. | 0.80 ± 0.02 ab | n.d. | 0.49 ± 0.03 a | Sweet, fresh, fruity, slightly fatty |
Butyl 2-methylbutanoate | 2.11 ± 0.03 d | 1.29 ± 0.03 b | 1.70 ± 0.02 c | 0.85 ± 0.02 a | Fruity, apple, tropical, cocoa |
Butyl hexanoate | n.d. | 0.61 ± 0.03 ab | n.d. | 0.14 ± 0.02 a | Fruity, pineapple, waxy, green, juicy |
2-methylbutyl 2-methylbutanoate | 4.11 ± 0.05 d | 0.83 ± 0.03 a | 2.54 ± 0.04 c | 1.36 ± 0.05 b | Fruits, apple, with green, waxy, and woody nuances |
Hexyl butanoate | 0.81 ± 0.02 c | 0.34 ± 0.02 ab | 0.11 ± 0.05 a | n.d. | Green, sweet, fruity, apple waxy, wine |
Hexyl 2-methylbutanoate | 3.59 ± 0.06 b | 3.12 ± 0.22 a | 11.12 ± 0.11 c | 16.30 ± 0.21 d | Green, waxy, fruity, apple, banana, and woody with a tropical, spicy nuance |
Hexyl hexanoate | 0.43 ± 0.11 a | 0.41 ± 0.03 a | n.d. | 3.98 ± 0.05 b | Fruity, wine, orange peel, apple, cucumber |
Total | 53.29 ± 0.76 d | 41.55 ± 0.63 a | 44.81 ± 0.38 b | 47.80 ± 0.64 c | |
Aldehydes | |||||
Hexanal | 13.17 ± 0.03 a | 17.58 ± 0.05 c | 20.68 ± 0.23 d | 14.11 ± 0.06 b | Intense green, fruity, aldehydic odor, green apple |
Furfural | 0.71 ± 0.05 a | 1.25 ± 0.05 b | 1.88 ± 0.02 c | 3.32 ± 0.04 d | Caramel, bitter almond, nutty, baked bread |
2-hexenal | 0.96 ± 0.03 a | 2.79 ± 0.02 b | 4.65 ± 0.02 c | 5.72 ± 0.03 d | Fruity, green leaf, apple |
Heptanal | 0.80 ± 0.03 a | 1.95 ± 0.04 c | 1.92 ± 0.02 c | 1.15 ± 0.04 b | Green, oily, citrus |
2-heptenal | 2.85 ± 0.02 a | 3.13 ± 0.02 b | 4.27 ± 0.03 c | 2.79 ± 0.03 a | Intense green, sweet, oily, apple skin nuances, fruity overtones |
Benzaldehyde | 4.21 ± 0.02 c | 6.21 ± 0.03 d | 0.19 ± 0.04 a | 1.55 ± 0.05 b | Almond, fruity, powdery, nutty |
Octanal | 1.91 ± 0.02 a | 4.17 ± 0.07 c | 1.81 ± 0.03 a | 3.38 ± 0.04 b | Green, fat, citrus peel |
E-2-octenal | 3.77 ± 0.03 c | 2.70 ± 0.02 b | 2.54 ± 0.06 b | 1.61 ± 0.04 a | Honey, green, fatty, walnut |
Nonanal | 0.35 ± 0.04 a | 2.18 ± 0.03 c | 0.85 ± 0.01 b | 4.24 ± 0.05 d | Green, floral, sweet orange, rose, waxy |
Decanal | 1.02 ± 0.02 b | 2.03 ± 0.05 c | 0.74 ± 0.03 ab | 0.54 ± 0.02 a | Waxy, fatty, citrus peel, green melon nuance |
Total | 29.75 ± 0.27 a | 43.99 ± 0.38 d | 39.53 ± 0.49 c | 38.41 ± 0.40 b | |
Ketones | |||||
Acetophenone | 2.88 ± 0.03 d | 2.08 ± 0.02 c | 1.12 ± 0.05 b | 0.84 ± 0.03 a | Floral, almond, nutty, must, spicy |
1-octen-3-one | n.d. | n.d | 1.34 ± 0.02 a | 1.93 ± 0.03 b | Mushroom, herbal, earthy |
6-methyl-5-hepten-2-one | 2.52 ± 0.04 ab | 2.06 ± 0.03 a | 3.26± 0.03 c | 2.13 ± 0.05 a | Citrus, green, musty, lemongrass, apple, bittersweet taste |
Total | 5.40 ± 0.06 c | 4.14 ± 0.05 a | 5.72 ± 0.10 d | 4.90 ± 0.11 ab | |
Terpenes and terpenoids | |||||
Camphene | 0.31 ± 0.02 ab | 0.21 ± 0.01 a | 1.10 ± 0.03 c | 0.17 ± 0.02 a | Camphoraceous, green spicy nuances |
Sabinene | 0.15 ± 0.01 ab | 0.07 ± 0.02 a | 0.11 ± 0.02 ab | n.d. | Woody, citrus, oily, fruity, pine, spice nuance |
ß-pinene | n.d. | n.d. | 0.40 ± 0.02 a | 0.36 ± 0.02 a | Woody, pine, resinous, camphoreous balsamic, spicy |
ß -myrcene | n.d. | n.d. | 0.35 ± 0.03 a | 0.20 ± 0.01 a | Herbaceous, woody, spice, balsamic |
3-carene | n.d. | n.d. | 0.50 ± 0.02 | n.d. | Harsh, terpene-like, coniferous |
1,3,8-p-menthatriene | 0.47 ± 0.01 b | 0.20 ± 0.02 a | 1.09 ± 0.03 c | 0.18 ± 0.03 a | Camphor, herbal, turpentine, woody |
p-cymene | 0.49 ± 0.02 ab | 0.35 ± 0.02 ab | 0.23 ± 0.02 a | n.d. | Solvent, citrus, woody, spicy |
D-limonene | 1.50 ± 0.03 b | 1.27 ± 0.04 b | 0.30 ± 0.02 a | 1.16 ± 0.05 b | Citrus, fresh, sweet |
γ-terpinene | n.d. | n.d | 0.24 ± 0.02 | n.d | Herbal, citrus, lemon, spicy |
Terpinolene | 0.05 ± 0.02 a | n.d | 0.07 ± 0.01 a | n.d | Sweet, fresh, piney, old lemon peel nuance |
ß- linalool | 0.10 ± 0.01 a | 0.26 ± 0.02 ab | n.d | n.d | Fresh, floral-woody, sweet, citrus |
α-farnesene | 1.54 ± 0.03 d | 0.40 ± 0.03 ab | 0.75 ± 0.04 c | 0.20 ± 0.01 a | Wood, sweet, floral |
Total | 4.61 ± 1.04 c | 2.76 ± 1.05 ab | 5.14 ± 1.15 d | 2.27 ± 0.14 a | |
Acids | |||||
Benzoic acid | 0.06 ± 0.02 a | 0.45 ± 0.03 b | 0.36 ± 0.02 b | 0.12 ± 0.04 ab | Fade balsamic |
2-methylbutanoic acid | n.d. | 0.11 ± 0.05 a | 0.29 ± 0.03 ab | 0.30 ± 0.02 ab | Acidic, fruity, fatty, cheesy with fermented nuance |
Total | 0.06 ± 0.02 a | 0.56 ± 0.03 ab | 0.56 ± 0.02 ab | 0.42 ± 0.02 ab | |
Others | |||||
2-pentyl furan | 0.52 ± 0.02 a | 0.31 ± 0.01 a | n.d. | n.d. | Green, earthy, beans, musty, cooked, caramel like |
Total | 0.52 ± 0.02 a | 0.31 ± 0.01 a | n.d. | n.d. |
Color Parameters | |||
---|---|---|---|
Samples | L* | a* | b* |
BCS | 68.50 ± 0.11 e | 5.70 ± 0.09 a | 30.48 ± 0.13 b |
BJS | 51.25 ± 0.55 a | 12.32 ± 0.72 d | 27.64 ± 0.55 a |
BJP | 59.31 ± 0.66 c | 10.79 ± 0.55 c | 31.89 ± 0.22 c |
BGS | 58.44 ± 0.28 b | 10.86 ± 0.19 c | 39.05 ± 0.55 e |
BGP | 64.47 ± 0.33 d | 9.00 ± 0.07 b | 36.96 ± 0.91 d |
JS | 59.93 ± 0.05 A | 12.46 ± 0.04 D | 15.22 ± 0.08 A |
JP | 71.8 ± 0.32 B | 9.22 ± 0.06 C | 19.05 ± 0.12 B |
GS | 78.52 ± 0.22 C | 0.46 ± 0.03 A | 29.50 ± 0.33 D |
GP | 80.96 ± 0.17 D | 2.82 ± 0.05 B | 27.64 ± 0.55 C |
Ingredients (g) | Biscuits Samples | ||||
---|---|---|---|---|---|
BCS | BJS | BJP | BGS | BGP | |
Wheat flour (WF) | 100 | - | - | - | - |
JS | 75 | 25 | - | - | - |
JP | 75 | - | 25 | - | - |
GS | 75 | - | - | 25 | - |
GP | 75 | - | - | - | 25 |
Vegetable fat | 40 | 40 | 40 | 40 | 40 |
Powdered milk | 20 | 20 | 20 | 20 | 20 |
Sugar | 30 | 30 | 30 | 30 | 30 |
Baking powder | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Water | 25 | 25 | 25 | 25 | 25 |
Technological Parameters | |||||
Mixing time (minutes) | 7 | 7 | 7 | 7 | 7 |
Dough temperature (°C) | 20 | 20.5 | 20.3 | 21.0 | 20.5 |
Resting time (minutes) | 45 | 45 | 45 | 45 | 45 |
Temperature (°C) | 4–6 | 4–6 | 4–6 | 4–6 | 4–6 |
Baking time (minutes) | 15 | 15 | 15 | 15 | 15 |
Temperature (°C) | 180 | 180 | 180 | 180 | 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fărcaș, A.C.; Socaci, S.A.; Chiș, M.S.; Dulf, F.V.; Podea, P.; Tofană, M. Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry. Molecules 2022, 27, 1987. https://doi.org/10.3390/molecules27061987
Fărcaș AC, Socaci SA, Chiș MS, Dulf FV, Podea P, Tofană M. Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry. Molecules. 2022; 27(6):1987. https://doi.org/10.3390/molecules27061987
Chicago/Turabian StyleFărcaș, Anca Corina, Sonia Ancuța Socaci, Maria Simona Chiș, Francisc Vasile Dulf, Paula Podea, and Maria Tofană. 2022. "Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry" Molecules 27, no. 6: 1987. https://doi.org/10.3390/molecules27061987
APA StyleFărcaș, A. C., Socaci, S. A., Chiș, M. S., Dulf, F. V., Podea, P., & Tofană, M. (2022). Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry. Molecules, 27(6), 1987. https://doi.org/10.3390/molecules27061987