Design, Synthesis, and Evaluation of Novel 2H-Benzo[b][1,4]thiazin-3(4H)-one Derivatives as New Acetylcholinesterase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cholinesterase Enzymes Inhibition Assay
2.3. DPPH Free Radical Scavenging Antioxidant Activity
2.4. In Vitro BBB Permeability Assay
2.5. Cytotoxicity Assay
2.6. Molecular Docking Studies
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. Synthesis of Hydrazine Carbosulfanylamide Derivatives (1a–1j)
3.1.3. Synthesis of 5-(R-amino)-1,3,4-thiadiazole-2-sulfanyl Derivatives (2a–2j)
- 5-(Ethylamino)-1,3,4-thiadiazole-2-thiol (2a)
- 5-(Propylamino)-1,3,4-thiadiazole-2-thiol (2b)
- 5-(Isopropylamino)-1,3,4-thiadiazole-2-thiol (2c)
- 5-(Butyllamino)-1,3,4-thiadiazole-2-thiol (2d)
- 5-(Isobutylamino)-1,3,4-thiadiazole-2-thiol (2e)
- 5-(Cyclohexylamino)-1,3,4-thiadiazole-2-thiol (2f)
- 5-(Phenylamino)-1,3,4-thiadiazole-2-thiol (2g)
- 5-(p-Tolylamino)-1,3,4-thiadiazole-2-thiol (2h)
- 5-(4-Methoxyphenylamino)-1,3,4-thiadiazole-2-thiol (2i)
- 5-((4-Chlorophenyl)amino)-1,3,4-thiadiazole-2-thiol (2j)
3.1.4. Synthesis of Target Compounds (3a–3j)
- 6-(2-((5-(Ethylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3a)
- 6-(2-((5-(Propylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3b)
- 6-(2-((5-(Isopropylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3c)
- 6-(2-((5-(Butylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3d)
- 6-(2-((5-(Isobutylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3e)
- 6-(2-((5-(Cyclohexylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3f)
- 6-(2-((5-(Phenylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3g)
- 6-(2-((5-(p-Tolylamino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3h)
- 6-(2-((5-((4-Methoxyphenyl)amino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (3i)
- 6-(2-((5-((4-chlorophenyl)amino)-1,3,4-thiadiazol-2-yl)sulfanyl)acetyl)-2H benzo[b][1,4]thiazin-3(4H)-one (3j)
3.2. Cholinesterase Enzymes Inhibition Assay
3.3. DPPH Free Radical Scavenging Antioxidant Activity
3.4. In Vitro BBB Permeability Assay
3.5. Cytotoxicity Assay
3.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gauthier, S.; Rosa-Neto, P.; Morais, J.A.; Webster, C. World Alzheimer Report 2021: Journey through the Diagnosis of Dementia; Alzheimer’s Disease International: London, UK, 2021. [Google Scholar]
- Tarawneh, R.; Holtzman, D.M. The Clinical Problem of Symptomatic Alzheimer Disease and Mild Cognitive Impairment. Cold Spring Harb. Perspect. Med. 2012, 2, a006148. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.; Stuchbury, G.; Burkle, A.; Burnell, J.; Munch, G. Neuroprotective Therapies for Alzheimers Disease. Curr. Pharm. Des. 2006, 12, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic Strategies for Alzheimer’s Disease in Clinical Trials. Pharmacol. Rep. PR 2016, 68, 127–138. [Google Scholar] [CrossRef]
- Henstridge, C.M.; Pickett, E.; Spires-Jones, T.L. Synaptic Pathology: A Shared Mechanism in Neurological Disease. Ageing Res. Rev. 2016, 28, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeo, J. The Role of Oxidative Stress in Alzheimer’ s Disease. J. Alzheimer’s Dis. Park. 2013, 3, 116–121. [Google Scholar] [CrossRef]
- Mesulam, M. The Cholinergic Lesion of Alzheimer’s Disease: Pivotal Factor or Side Show? Learn. Mem. 2004, 11, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartus, R.T. On Neurodegenerative Diseases, Models, and Treatment Strategies: Lessons Learned and Lessons Forgotten a Generation Following the Cholinergic Hypothesis. Exp. Neurol. 2000, 163, 495–529. [Google Scholar] [CrossRef]
- Atri, A.; Frölich, L.; Ballard, C.; Tariot, P.N.; Molinuevo, J.L.; Boneva, N.; Windfeld, K.; Raket, L.L.; Cummings, J.L. Effect of Idalopirdine as Adjunct to Cholinesterase Inhibitors on Change in Cognition in Patients With Alzheimer Disease: Three Randomized Clinical Trials. JAMA 2018, 319, 130–142. [Google Scholar] [CrossRef]
- Courtney, C.; Farrell, D.; Gray, R.; Hills, R.; Lynch, L.; Sellwood, E.; Edwards, S.; Hardyman, W.; Raftery, J.; Crome, P.; et al. Long-Term Donepezil Treatment in 565 Patients with Alzheimer’s Disease (AD2000): Randomised Double-Blind Trial. Lancet Lond. Engl. 2004, 363, 2105–2115. [Google Scholar] [CrossRef]
- Doody, R.S.; Dunn, J.K.; Clark, C.M.; Farlow, M.; Foster, N.L.; Liao, T.; Gonzales, N.; Lai, E.; Massman, P. Chronic Donepezil Treatment Is Associated with Slowed Cognitive Decline in Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2001, 12, 295–300. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Farlow, M.R.; Greig, N.H.; Sambamurti, K. Current Drug Targets for Alzheimer’s Disease Treatment. Drug Dev. Res. 2002, 56, 267–281. [Google Scholar] [CrossRef]
- Connelly, P.J.; Prentice, N.P.; Fowler, K.G. Predicting the Outcome of Cholinesterase Inhibitor Treatment in Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2005, 76, 320–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemstra, A.W.; Richard, E.; van Gool, W.A. Cholinesterase Inhibitors in Dementia: Yes, No, or Maybe? Age Ageing 2007, 36, 625–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizzarro, A.; Marra, C.; Acciarri, A.; Valenza, A.; Tiziano, F.D.; Brahe, C.; Masullo, C. Apolipoprotein E Epsilon4 Allele Differentiates the Clinical Response to Donepezil in Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2005, 20, 254–261. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.Y.; Na, H.R.; Kim, B.-K.; Yang, D.W.; Kwon, J.C.; Park, M.Y. Effect of ApoE Genotype on Response to Donepezil in Patients with Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2008, 25, 445–450. [Google Scholar] [CrossRef]
- Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the Cholinergic Hypothesis in the Development of Alzheimer’s Disease. Neurosci. Biobehav. Rev. 2011, 35, 1397–1409. [Google Scholar] [CrossRef] [Green Version]
- Gella, A.; Durany, N. Oxidative Stress in Alzheimer Disease. Cell Adhes. Migr. 2009, 3, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Lan, J.-S.; Zhang, T.; Liu, Y.; Yang, J.; Xie, S.-S.; Liu, J.; Miao, Z.-Y.; Ding, Y. Design, Synthesis and Biological Activity of Novel Donepezil Derivatives Bearing N-Benzyl Pyridinium Moiety as Potent and Dual Binding Site Acetylcholinesterase Inhibitors. Eur. J. Med. Chem. 2017, 133, 184–196. [Google Scholar] [CrossRef]
- Sağlık, B.N.; Osmaniye, D.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancıklı, Z.A. Design, Synthesis, and Structure–Activity Relationships of Thiazole Analogs as Anticholinesterase Agents for Alzheimer’s Disease. Molecules 2020, 25, 4312. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed]
- Kulshreshtha, A.; Piplani, P. Ameliorative Effects of Amide Derivatives of 1,3,4-Thiadiazoles on Scopolamine Induced Cognitive Dysfunction. Eur. J. Med. Chem. 2016, 122, 557–573. [Google Scholar] [CrossRef] [PubMed]
- Karcz, D.; Matwijczuk, A.; Kamiński, D.; Creaven, B.; Ciszkowicz, E.; Lecka-Szlachta, K.; Starzak, K. Structural Features of 1,3,4-Thiadiazole-Derived Ligands and Their Zn(II) and Cu(II) Complexes Which Demonstrate Synergistic Antibacterial Effects with Kanamycin. Int. J. Mol. Sci. 2020, 21, 5735. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Zhou, X.; Liao, G.; Qi, P.; Jin, L. Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety. Mol. J. Synth. Chem. Nat. Prod. Chem. 2016, 22, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaburun, A.Ç.; Acar Çevik, U.; Osmaniye, D.; Sağlık, B.N.; Kaya Çavuşoğlu, B.; Levent, S.; Özkay, Y.; Koparal, A.S.; Behçet, M.; Kaplancıklı, Z.A. Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Potent Antifungal Agents. Molecules 2018, 23, 3129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, S.; Singh, V.; Kumar, R.; Gogoi, R. Design and Development of 1,3,4-Thiadiazole Based Potent New Nano-Fungicides. J. Mol. Struct. 2020, 1219, 128507. [Google Scholar] [CrossRef]
- Gür, M.; Yerlikaya, S.; Şener, N.; Özkınalı, S.; Baloglu, M.C.; Gökçe, H.; Altunoglu, Y.C.; Demir, S.; Şener, İ. Antiproliferative-Antimicrobial Properties and Structural Analysis of Newly Synthesized Schiff Bases Derived from Some 1,3,4-Thiadiazole Compounds. J. Mol. Struct. 2020, 1219, 128570. [Google Scholar] [CrossRef]
- Szeliga, M.; Karpińska, M.; Rola, R.; Niewiadomy, A. Design, Synthesis and Biological Evaluation of Novel 1,3,4-Thiadiazole Derivatives as Anti-Glioblastoma Agents Targeting the AKT Pathway. Bioorg. Chem. 2020, 105, 104362. [Google Scholar] [CrossRef]
- Zabiulla; Nagesh Khadri, M.J.; Bushra Begum, A.; Sunil, M.K.; Khanum, S.A. Synthesis, Docking and Biological Evaluation of Thiadiazole and Oxadiazole Derivatives as Antimicrobial and Antioxidant Agents. Results Chem. 2020, 2, 100045. [Google Scholar] [CrossRef]
- El-Hazek, R.M.M.; El-Sabbagh, W.A.; El-Hazek, R.M.; El-Gazzar, M.G. Anti-Inflammatory and Analgesic Effect of LD-RT and Some Novel Thiadiazole Derivatives through COX-2 Inhibition. Arch. Pharm. 2020, 353, e2000094. [Google Scholar] [CrossRef]
- Sağlık, B.N.; Ilgın, S.; Özkay, Y. Synthesis of New Donepezil Analogues and Investigation of Their Effects on Cholinesterase Enzymes. Eur. J. Med. Chem. 2016, 124, 1026–1040. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Demir Özkay, Ü.; Can, Ö.D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Özkay, Y.; Ilgın, S.; Atlı, Ö. Design, Synthesis, and AChE Inhibitory Activity of New Benzothiazole-Piperazines. Bioorg. Med. Chem. Lett. 2016, 26, 5387–5394. [Google Scholar] [CrossRef] [PubMed]
- Cevik, U.A.; Levent, S.; Saglık, B.N.; Ozkay, Y.; Kaplancıklı, Z.A. Synthesis of Novel 4-(Dimethylaminoalkyl)Piperazine-1-Carbodithioa t e Derivatives as Cholinesterase Inhibitors. Lett. Drug Des. Discov. 2017, 14, 528–539. [Google Scholar] [CrossRef]
- Levent, S.; Acar Çevik, U.; Sağlık, B.N.; Özkay, Y.; Can, Ö.D.; Özkay, Ü.D.; Uçucu, Ü. Anticholinesterase Activity Screening of Some Novel Dithiocarbamate Derivatives Including Piperidine and Piperazine Moieties. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 469–474. [Google Scholar] [CrossRef]
- Hussein, W.; Sağlık, B.N.; Levent, S.; Korkut, B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer’s Disease. Molecules 2018, 23, 2033. [Google Scholar] [CrossRef] [Green Version]
- Acar Cevik, U.; Saglik, B.N.; Levent, S.; Osmaniye, D.; Kaya Cavuşoglu, B.; Ozkay, Y.; Kaplancikli, Z.A. Synthesis and AChE-Inhibitory Activity of New Benzimidazole Derivatives. Molecules 2019, 24, 861. [Google Scholar] [CrossRef] [Green Version]
- Osmaniye, D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancıklı, Z.A.; Turan, G. Synthesis and AChE Inhibitory Activity of Novel Thiazolylhydrazone Derivatives. Molecules 2019, 24, 2392. [Google Scholar] [CrossRef] [Green Version]
- Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and Biological Evaluation of New Pyrazolone Schiff Bases as Monoamine Oxidase and Cholinesterase Inhibitors. Bioorg. Chem. 2019, 84, 41–50. [Google Scholar] [CrossRef]
- Kosar, M.; Dorman, H.J.D.; Bachmayer, O.; Baser, K.H.C.; Hiltunen, R. An Improved On-Line HPLC-DPPH Method for the Screening of Free Radical Scavenging Compounds in Water Extracts of Lamiaceae Plants. Chem. Nat. Compd. 2003, 39, 161–166. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, D.L.; Sarker, S.D. Screening Seeds of Some Scottish Plants for Free-Radical Scavenging Activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Könczöl, Á.; Müller, J.; Földes, E.; Béni, Z.; Végh, K.; Kéry, Á.; Balogh, G.T. Applicability of a Blood–Brain Barrier Specific Artificial Membrane Permeability Assay at the Early Stage of Natural Product-Based CNS Drug Discovery. J. Nat. Prod. 2013, 76, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Esső, K.; Dargó, G.; Könczöl, Á.; Balogh, G.T. Tuning the Predictive Capacity of the PAMPA-BBB Model. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015, 79, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Parallel Artificial Membrane Permeability Assay-BBB Kit|BioAssay Systems. Available online: https://www.bioassaysys.com/PAMPA-BBB-Kit.html (accessed on 17 March 2022).
- Schrödinger. Maestro 10.6; Schrödinger LLC: New York, NY, USA, 2020. [Google Scholar]
- Schrödinger Suite 2020 Update 2; Schrödinger LLC: New York, NY, USA, 2020.
- Schrödinger. LigPrep, Version 3.8; Schrödinger LLC: New York, NY, USA, 2020. [Google Scholar]
- Schrödinger. Glide, Version 7.1; Schrödinger LLC: New York, NY, USA, 2020. [Google Scholar]
Compounds | R |
---|---|
3a | -CH2-CH3 |
3b | -CH2-CH2-CH3 |
3c | -CH(CH3)2 |
3d | -CH2(CH2)2-CH3 |
3e | -CH2-CH(CH3)2 |
3f | -Cyclohexyl |
3g | -Phenyl |
3h | -p-Tolyl |
3i | -4-Methoxyphenyl |
3j | -4-Chlorophenyl |
Compound | AChE % Inhibition | BChE % Inhibition | ||
---|---|---|---|---|
10−3 M | 10−4 M | 10−3 M | 10−4 M | |
3a | 78.2 ± 1.2 | 48.8 ± 0.8 | 31.8 ± 0.8 | 25.1 ± 0.8 |
3b | 75.4 ± 1.4 | 45.6 ± 0.9 | 34.9 ± 0.8 | 26.9 ± 0.6 |
3c | 70.6 ± 1.0 | 40.1 ± 0.9 | 29.1 ± 0.8 | 20.4 ± 0.7 |
3d | 72.7 ± 1.5 | 47.3 ± 0.9 | 36.1 ± 0.9 | 21.4 ± 0.9 |
3e | 69.9 ± 1.2 | 46.2 ± 0.8 | 37.3 ± 0.8 | 24.6 ± 0.9 |
3f | 65.4 ± 1.3 | 45.0 ± 1.0 | 30.5 ± 0.8 | 26.2 ± 0.8 |
3g | 80.1 ± 1.2 | 44.5 ± 0.8 | 39.6 ± 0.9 | 24.8 ± 0.8 |
3h | 82.2 ± 1.8 | 42.7 ± 0.8 | 35.6 ± 0.7 | 23.5 ± 0.7 |
3i | 93.2 ± 1.4 | 90.5 ± 1.1 | 40.2 ± 0.9 | 28.0 ± 0.8 |
3j | 96.5 ± 1.2 | 92.3 ± 1.3 | 42.5 ± 0.9 | 27.9 ± 0.7 |
Donepezil | 99.3 ± 2.1 | 97.4 ± 1.9 | - | - |
Tacrine | - | - | 98.3 ± 1.9 | 95.5 ± 1.3 |
Classification | Type of BBB Permeation | Compounds | Type of BBB Permeation |
---|---|---|---|
CNS+ | High BBB permeation Pe (10−6 cm s−1) > 4.0 | 3i | CNS+ High BBB permeation |
3j | CNS+ High BBB permeation | ||
CNS− | Low BBB permeation Pe (10−6 cm s−1) < 2.0 | ||
CNS± | BBB permeation uncertain 2.0 < Pe (10−6 cm s−1) < 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haji Ali, S.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Design, Synthesis, and Evaluation of Novel 2H-Benzo[b][1,4]thiazin-3(4H)-one Derivatives as New Acetylcholinesterase Inhibitors. Molecules 2022, 27, 2121. https://doi.org/10.3390/molecules27072121
Haji Ali S, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, Synthesis, and Evaluation of Novel 2H-Benzo[b][1,4]thiazin-3(4H)-one Derivatives as New Acetylcholinesterase Inhibitors. Molecules. 2022; 27(7):2121. https://doi.org/10.3390/molecules27072121
Chicago/Turabian StyleHaji Ali, Sazan, Derya Osmaniye, Begüm Nurpelin Sağlık, Serkan Levent, Yusuf Özkay, and Zafer Asım Kaplancıklı. 2022. "Design, Synthesis, and Evaluation of Novel 2H-Benzo[b][1,4]thiazin-3(4H)-one Derivatives as New Acetylcholinesterase Inhibitors" Molecules 27, no. 7: 2121. https://doi.org/10.3390/molecules27072121
APA StyleHaji Ali, S., Osmaniye, D., Sağlık, B. N., Levent, S., Özkay, Y., & Kaplancıklı, Z. A. (2022). Design, Synthesis, and Evaluation of Novel 2H-Benzo[b][1,4]thiazin-3(4H)-one Derivatives as New Acetylcholinesterase Inhibitors. Molecules, 27(7), 2121. https://doi.org/10.3390/molecules27072121