Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Biochar
2.2. Adsorption Kinetics
2.3. Adsorption Isotherms
2.4. Effect of pH and Ionic Strength
2.5. Regeneration and Reusability
2.6. Possible Mechanism Analysis
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation and Characterization of Biochar
3.3. Adsorption Experiments
3.4. Mode of Data Analysis
3.5. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ying, G.G.; Kookana, R.S.; Kumar, A. Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. Environ. Toxicol. Chem. 2008, 27, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goeppert, N.; Dror, I.; Berkowitz, B. Fate and transport of free and conjugated estrogens during soil passage. Environ. Pollut. 2015, 206, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kudłak, B.; Szczepanska, N.; Owczarek, K.; Mazerska, Z.; Namiesnik, J. Revision of biological methods for determination of EDC presence and their endocrine potential. Crit. Rev. Anal. Chem. 2015, 45, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, D.J.; Mastrocco, F.; Anderson, P.D.; Lange, R.; Sumpter, J.P. Predicted-no-effect concentrations for the steroid estrogens estrone, 17 beta-estradiol, estriol, and 17 alpha-ethinylestradiol. Environ. Toxicol. Chem. 2012, 31, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.A.; Tyner, J.S.; Buchanan, J.R.; Hawkins, S.A.; Lee, J. Fate and transport of 17β-estradiol beneath animal waste holding ponds. J. Environ. Qual. 2015, 44, 982–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2017, 99, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xie, Y.; Li, X.; Wang, D.; Yang, L.; Nie, Z. Accumulation of steroid hormones in soil and its adjacent environment from a typical intensive vegetable cultivation of North China. Sci. Total Environ. 2015, 538, 423–430. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Luo, M.Y.; Yu, X.Y.; Elskens, M.; Baeyens, W.; Gao, Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. Water Res. 2022, 214, 118189. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union. 2015, 78, 40–42. [Google Scholar]
- Duan, Q.Y.; Li, X.D.; Wu, Z.; Alsaedi, A.; Hayat, T.; Chen, C.L.; Li, J. Adsorption of 17β-estradiol from aqueous solutions by a novel hierarchically nitrogen-doped porous carbon. J. Collid Interface Sci. 2019, 533, 700–708. [Google Scholar] [CrossRef]
- Luo, Z.F.; Tu, Y.; Li, H.P.; Qiu, B.; Liu, Y.; Yang, Z.G. Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal distribution, source apportionment, and risk assessment. Ecotoxicol. Environ. Saf. 2019, 167, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Ribeiro, C.; Tiritan, M.E.; Pereira, M.F.R.; Silva, A.M.T. Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Sci. Total Environ. 2019, 649, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, Z.H.; Wang, H.; Dang, Z.; Liu, Y. A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. J. Environ. Manag. 2021, 292, 112804. [Google Scholar] [CrossRef] [PubMed]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett. 2020, 18, 1113–1143. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Zeng, G.; Xiao, F.; Hu, X.; Hu, X.; Wang, H.; Li, T.; Zhou, L.; Tan, X. Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 2016, 284, 93–102. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wang, Q.; Wang, C.; Wang, P.; Mao, K. Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO2 nanotubes for the removal of estrogenic chemicals from secondary effluents. Environ. Sci. Pollut. Res. 2013, 20, 1431–1440. [Google Scholar] [CrossRef]
- Hom-Diaz, A.; Llorca, M.; Rodriguez-Mozaz, S.; Vicent, T.; Barcelo, D.; Blanquez, P. Microalgae cultivation on wastewater digestate: Beta-estradiol and 17 alpha-ethynylestradiol degradation and transformation products identification. J. Environ. Manag. 2015, 155, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhao, Y.B.; Fent, K. Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17α-hydroxypregnanolone and pregnanediol in Swiss wastewater and surface water. Environ. Sci. Technol. 2017, 51, 6498–6506. [Google Scholar] [CrossRef]
- Liu, L.J.; Wang, Q.P.; Lin, J.J.; Owens, G.; Chen, Z.L. Enhanced 17α-estradiol removal by biosynthesized rGO@Fe NPs using a response surface methodology. Process. Saf. Environ. 2022, 159, 53–60. [Google Scholar] [CrossRef]
- Das, P.; Nisa, S.; Debnath, A.; Saha, B. Enhanced adsorptive removal of toxic anionic dye by novel magnetic polymeric nanocomposite: Optimization of process parameters. J. Disper. Sci. Technol. 2020, 1–16. [Google Scholar] [CrossRef]
- Deb, A.; Debnath, A.; Bhowmik, K.; Paul, S.R.; Saha, B. Application of polyaniline impregnated mixed phase Fe2O3, MnFe2O4 and ZrO2 nanocomposite for rapid abatement of binary dyes from aqua matrix: Response surface optimisation. Int. J. Environ. Anal. Chem. 2021, 1–19. [Google Scholar] [CrossRef]
- Das, P.; Debnath. Reactive orange 12 dye adsorption onto magnetically separable CaFe2O4 nanoparticles synthesized by simple chemical route: Kinetic, isotherm and neural network modeling. Water Pract. Technol. 2021, 16, 1141–1158. [Google Scholar] [CrossRef]
- Mandal, A.; Majumder, A.; Banik, I.; Ghosh, K.; Bar, N.; Das, S.K. Fixed-bed column study for removal of phenol by neem leaves—Experiment, MLR and ANN analysis. Sustain. Chem. Pharm. 2021, 23, 100514. [Google Scholar] [CrossRef]
- Iqbal, M.; Datta, D. Rhodamine-B dye removal using aliquat-336 modified amberlite XAD-4 resin in fixed-bed columns in series. Water Sci. Technol. 2022, 85, 1–15. [Google Scholar] [CrossRef]
- Peiris, C.; Nawalage, S.; Wewalwela, J.J.; Gunatilake, S.R.; Vithanage, M. Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. Environ. Pollut. 2020, 191, 110183. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, L.S.; Li, Y.X.; Chen, X.C.; Zhao, Y.; Hu, B.Y.; Zhang, F.S. Function of agricultural waste montmorillonite-biochars for sorptive removal of 17β-estradiol. Bioresour. Technol. 2020, 296, 122368. [Google Scholar] [CrossRef]
- Li, Y.X.; Hi, B.Y.; Gao, S.Y.; Tong, X.; Jiang, L.S.; Chen, X.C.; An, S.Y.; Zhang, F.S. Comparison of 17β-estradiol adsorption on soil organic components and soil remediation agent-biochar. Environ. Pollut. 2020, 263, 114572. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Qiu, M.Y.; Sun, K.; Jin, J.; Han, L.F.; Sun, H.R.; Zhao, Y.; Xia, X.H.; Wu, F.C.; Xing, B.S. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: The effect of feedstock, temperature, minerals, and properties. Environ. Pollut. 2015, 206, 298–305. [Google Scholar] [CrossRef]
- Jayawardhana, Y.; Gunatilake, S.R.; Mahatanila, K.; Ginige, M.P.; Vithanage, M. Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds. J. Environ. Manag. 2019, 238, 323–330. [Google Scholar] [CrossRef]
- Wang, S.; Guo, W.; Gao, F.; Yang, R. Characterization and Pb(II) removal potential of corn straw- and municipal sludge-derived biochars. R. Soc. Open Sci. 2017, 4, 170402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wu, J.; Liu, F.; Han, X. Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China. Appl. Energy 2012, 93, 305–318. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, S.B.; Tan, X.F.; Liu, Y.G.; Zeng, G.M.; Yin, Z.H.; Ye, S.J.; Zeng, Z.W. Microwave-assisted chemical modification method for surfaceregulation of biochar and its application for estrogen removal. Process. Saf. Environ. 2019, 128, 329–341. [Google Scholar] [CrossRef]
- Guo, W.; Lu, S.Y.; Shi, J.H.; Zhao, X. Effect of corn straw biochar application to sediments on the adsorption of 17α-ethinyl estradiol and perfluorooctane sulfonate at sediment-water interface. Ecotoxicol. Environ. Saf. 2019, 174, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Li, J. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. Taiwan Inst. Chem. Eng. 2016, 61, 367–375. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Sun, K.; Liu, X.; Zheng, W.; Zhao, Y. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environ. Pollut. 2011, 159, 2594–2601. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.L.; Zhou, C.H.; Yang, H.M.; Ji, S.F.; Tong, D.S.; Zhong, Z.K.; Yu, W.H.; Chu, M.Q. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. J. Clean. Prod. 2017, 156, 648–659. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Reis, A.S.P.J.; Araujo, A.S.; Blum, L.E.B.; Shah, K.; Paz-Ferreiro, J. Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: Influunce of extractant solutions and pyrolysis temperatures. Waste Manag. 2021, 124, 144–153. [Google Scholar] [CrossRef]
- Cui, X.; Fang, S.; Yao, Y.; Li, T.; Ni, Q.; Yang, X.; He, Z. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 2016, 562, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.Y.; Ge, H.; Shi, J.H.; Liu, X.W.; Guo, W.; Zhang, M.T.; Meng, Y.B.; Li, X.Y. The characteristics of oestrone mobility in water and soil by the addition of Ca-biochar and Fe–Mn-biochar derived from Litchi chinensis Sonn. Environ. Geochem. Health 2020, 42, 1601–1615. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Han, J.; Gao, W. Sorption of 17 beta-estradiol from aqueous solutions on to bone char derived from waste cattle bones: Kinetics and isotherms. J. Environ. Chem. Eng. 2015, 3, 1562–1569. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Liu, S.B.; Liu, Y.G.; Tan, X.F.; Liu, N.; Wen, J. Efficient removal 17- estradiol by graphene-like magnetic sawdust biochar: Preparation condition and adsorption mechanism. Int. J. Environ. Res. Public Health 2020, 17, 8377. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Li, Y.X.; Zhang, F.S.; Chen, X.C.; Zhao, Y.; Hu, B.Y.; Zhang, X.L. Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process. Environ. Pollut. 2019, 254, 112924. [Google Scholar] [CrossRef] [PubMed]
- Vilvanathan, S.; Shanthakumar, S. Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: Kinetics, equilibrium and thermodynamics. Process Saf. Environ. 2015, 96, 98–110. [Google Scholar] [CrossRef]
- Ning, Q.; Liu, Y.; Liu, S.; Jiang, L.; Zeng, G.; Zeng, Z.; Wang, X.; Li, J.; Kare, Z. Fabrication of hydrochar functionalized Fe–Mn binary oxide nanocomposites: Characterization and 17 beta-estradiol removal. RSC Adv. 2017, 7, 37122–37129. [Google Scholar] [CrossRef] [Green Version]
- Kupryianchyk, D.; Hale, S.E.; Breedveld, G.D.; Cornelissen, G. Treatment of sites contaminated with perfluorinated compounds using biochar amendment. Chemosphere 2016, 142, 35–40. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.; Kim, J.; Ji, M.K.; Han, Y.S.; Park, Y.T.; Yun, H.S.; Choi, J. As(III) and As(V) removal from the aqueous phase via adsorption onto acid minedrainage sludge (AMDS) alginate beads and goethite alginate beads. J. Hazard. Mater. 2015, 292, 146–154. [Google Scholar] [CrossRef]
- Fukuhara, T.; Iwasaki, S.; Kawashima, M.; Shinohara, O.; Abe, I. Adsorbability of estrone and 17 beta-estradiol in water onto activated carbon. Water Res. 2006, 40, 241–248. [Google Scholar] [CrossRef]
- Bai, X.; Qin, C.; Feng, R.; Ye, Z. Binary adsorption of 17 beta-estradiol and bisphenol A on superpararnagnetic amino-functionalized graphene oxide nanocomposites. Mater. Chem. Phys. 2017, 189, 96–104. [Google Scholar] [CrossRef]
- Singha, B.; Das, S.K. Biosorption of Cr (VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf. B 2011, 84, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Özcan, A.; Özcan, A.S.; Tunali, S.; Akar, T.; Kiran, I. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper (II) ions onto seeds of Capsicum annuum. J. Hazard. Mater. 2005, 124, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, H. Adsorption of micronutrient metal ion onto struvite to prepare slow release multielement fertilizer: Copper(II) doped-struvite. Chemosphere 2019, 217, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.K.; Mohan, S.V. Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: Kinetic and mechanistic evaluation. Sep. Purif. Technol. 2012, 87, 22–30. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, K. Adsorption of 17β-estradiol by multi-walled carbon nano-tubes in natural waters with or without aquatic colloids. Chem. Eng. J. 2014, 258, 185–193. [Google Scholar] [CrossRef]
- Tian, S.; Liu, Y.; Liu, S.; Zeng, G.; Jiang, L.; Tan, X.; Huang, X.; Yin, Z.; Liu, N.; Li, J. Hydrothermal synthesis of montmorillonite/hydrochar nanocomposites and application for 17β-estradiol and 17α-ethynylestradiol removal. RSC Adv. 2018, 8, 4273–4283. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, N.; Liu, Y.G.; Jiang, L.H.; Zeng, G.M.; Tan, X.F.; Liu, S.B.; Yin, Z.H.; Tian, S.R.; Li, J. Adsorption removal of 17β-estradiol from water by rice strawderived biochar with special attention to pyrolysis temperature and background chemistry. Int. J. Environ. Res. Public Health 2017, 14, 1213. [Google Scholar] [CrossRef] [Green Version]
- Mouni, L.; Merabet, D.; Bouzaza, A.; Belkhiri, L. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination 2011, 276, 148–153. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sornalingam, K. Sorptive removal of phnolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chem. Eng. J. 2018, 335, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Huo, S.L.; Feng, J.L.; Lu, X.F. Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures. J. Taiwan Inst. Chem. Eng. 2017, 78, 265–271. [Google Scholar] [CrossRef]
- Dropkin, D.; Carmi, A. Natural convection heat transfer from a horizontal cylinder rotating in air. Trans. Am. Soc. Mech. Eng. 1957, 79, 741–749. [Google Scholar] [CrossRef]
- Raman, D.R.; Williams, E.L.; Layton, A.C.; Burns, R.T.; Easter, J.P.; Dautherty, A.S.; Mullen, M.D.; Sayler, G.S. Estrogen content of dairy and swine wastes. Environ. Sci. Technol. 2004, 38, 3567–3573. [Google Scholar] [CrossRef]
- Tao, H.Y.; Zhang, J.W.; Shi, J.H.; Guo, W.; Liu, X.W.; Zhang, M.T.; Ge, H.; Li, X.Y. Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicol. Environ. Saf. 2021, 207, 111521. [Google Scholar] [CrossRef]
- Hu, X.J.; Wang, J.S.; Liu, Y.G.; Li, X.; Zeng, G.M.; Bao, Z.L.; Zeng, X.X.; Chen, A.W.; Long, F. Adsorption of chromium (VI) by ethylenediamine-modified cross-linkedmagnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 2011, 185, 306–314. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Tan, X.; Jiang, L.; Zeng, G.; Liu, S.; Tian, S.; Liu, S.; Liu, N.; Li, M. Adsorption of 17β-estradiol by a novel attapulgite/biochar nanocomposite: Characteristics and influencing factors. Process Saf. Environ. Protect. 2019, 121, 155–164. [Google Scholar] [CrossRef]
- Kim, W.K.; Shim, T.; Kim, Y.S.; Hyun, S.; Ryu, C.; Park, Y.K.; Jung, J. Characterization of cadmium removal from aqueous solution by biochar produced froma giant Miscanthus at different pyrolytic temperatures. Bioresour. Technol. 2013, 138, 266–270. [Google Scholar] [CrossRef]
- Nunthaprechachan, T.; Pengpanich, S.; Hunsom, M. Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon. Chem. Eng. J. 2013, 228, 263–271. [Google Scholar] [CrossRef]
Absorbent | C | H | N | O | H/C | O/C | Ash Content | Yield | SBET 1 | Pore Volume | Pore Size | pHpzc | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | m2/g | cm3/g | nm | |||
CSB | 64.6 | 2.6 | 2.4 | 14.1 | 0.5 | 0.2 | 9.2 | 40.1 | 185.3 | 0.2 | 26.8 | 4.5 | 8.2 |
DSB | 30.9 | 1.6 | 4.3 | 12.4 | 0.6 | 0.3 | 47.1 | 25.9 | 46.3 | 0.06 | 52.1 | 2.7 | 7.8 |
Kinetic Models | Parameter | CSB | DSB |
---|---|---|---|
Pseudo-first order | qe (mg/g) | 13.4 | 11.9 |
k1 (1/min) | 0.03 | 0.02 | |
R2 | 0.927 | 0.912 | |
Pseudo-second order | qe (mg/g) | 14.4 | 12.7 |
k2 (g/mg min) | 0.002 | 0.003 | |
R2 | 0.937 | 0.933 |
Absorbent | Langmuir Model | Freundlich Model | D–R Model | |||||
---|---|---|---|---|---|---|---|---|
qm | kL | R2 | kF | n | R2 | E | R2 | |
mg/g | L/mg | ((mg/g)/(mg/L)1/n) | kJ/mol | |||||
CSB | 99.8 | 0.11 | 0.998 | 9.07 | 0.95 | 0.965 | 8.11 | 0.978 |
DSB | 27.0 | 0.45 | 0.974 | 7.58 | 0.81 | 0.953 | 8.57 | 0.949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Yue, J.; Zhao, Q.; Zhang, L.; Lu, S. Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions. Molecules 2022, 27, 2567. https://doi.org/10.3390/molecules27082567
Guo W, Yue J, Zhao Q, Zhang L, Lu S. Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions. Molecules. 2022; 27(8):2567. https://doi.org/10.3390/molecules27082567
Chicago/Turabian StyleGuo, Wei, Junhui Yue, Qian Zhao, Li Zhang, and Shaoyong Lu. 2022. "Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions" Molecules 27, no. 8: 2567. https://doi.org/10.3390/molecules27082567
APA StyleGuo, W., Yue, J., Zhao, Q., Zhang, L., & Lu, S. (2022). Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions. Molecules, 27(8), 2567. https://doi.org/10.3390/molecules27082567