A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Absorption Spectroscopy
2.2. Fluorescence Emission Spectroscopy of the HSA-QTP Complex
2.2.1. Fluorescence Quenching Mechanism (FQM) of the Interactions of the HSA-QTP System
2.2.2. Evaluation of the Binding Constants and the Number of Binding Sites in the HSA-QTP System
2.2.3. Determination of the Binding Forces between HSA and QTP-Thermodynamic Analysis
2.2.4. Synchronous Fluorescence Spectroscopy (SFS) Experiment
2.2.5. Binding and Prediction of Site Markers in the HSA-QTP System
2.2.6. Circular Dichroism Spectra Changes in HSA upon QTP Binding
2.2.7. QTP-Induced Thermal Stabilization of HSA
2.2.8. Effect of QTP Binding on the Esterase-Like Activity of HSA
2.2.9. Computational Modeling of the HSA-QTP Complex
3. Materials and Methods
3.1. Chemical Reagents
3.2. Sample Preparation
3.3. Instrumentations
3.4. Methods
3.4.1. UV-Visible Absorption Spectroscopy
3.4.2. Steady-State Fluorescence Measurements
3.4.3. Synchronous Fluorescence Spectroscopy (SFS) Experiments
3.4.4. Competitive Site Probe Displacement (CSPD) Experiments
3.4.5. Circular Dichroism (CD) Spectroscopy Measurements
3.4.6. Thermal Stability Studies of HSA and the HSA-QTP System
3.4.7. HSA Esterase Activity (E.A.) Assay
3.4.8. Molecular Docking between HSA and QTP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinaldi, R.; Bersani, G.; Marinelli, E.; Zaami, S. The rise of new psychoactive substances and psychiatric implications: A wide-ranging, multifaceted challenge that needs far-reaching common legislative strategies. Hum. Psychopharmacol. Clin. Exp. 2020, 35, e2727. [Google Scholar] [CrossRef] [PubMed]
- Harbell, M.W.; Dumitrascu, C.; Bettini, L.; Yu, S.; Thiele, C.M.; Koyyalamudi, V. Anesthetic Considerations for Patients on Psychotropic Drug Therapies. Neurol. Int. 2021, 13, 640–658. [Google Scholar] [CrossRef] [PubMed]
- Pringsheim, T.; Barnes, T.R. Antipsychotic drug-induced movement disorders: A forgotten problem? Can. J. Psychiatry 2018, 63, 717–718. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kumar, Y.; Zaheer, M.R.; Roohi; Iqbal, S.; Iqbal, J. Electron Transfer-Mediated Photodegradation of Phototoxic Antipsychotic Drug Quetiapine. ACS Omega 2021, 6, 30834–30840. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Gervase, M.A.; Evans, J.; Deville, R.; Dong, X. The stability of quetiapine oral suspension compounded from commercially available tablets. PLoS ONE 2021, 16, e0255963. [Google Scholar] [CrossRef]
- Evoy, K.E.; Teng, C.; Encarnacion, V.G.; Frescas, B.; Hakim, J.; Saklad, S.; Frei, C.R. Comparison of quetiapine abuse and misuse reports to the FDA Adverse Event Reporting System with other second-generation antipsychotics. Subst. Abus. Res. Treat. 2019, 13. [Google Scholar] [CrossRef]
- Akamine, Y.; Yasui-Furukori, N.; Uno, T. Drug-drug interactions of P-gp substrates unrelated to CYP metabolism. Curr. Drug Metab. 2019, 20, 124–129. [Google Scholar] [CrossRef]
- Ignacio, Z.M.; Calixto, A.V.; da Silva, R.H.; Quevedo, J.; Reus, G.Z. The use of quetiapine in the treatment of major depressive disorder: Evidence from clinical and experimental studies. Neurosci. Biobehav. Rev. 2018, 86, 36–50. [Google Scholar] [CrossRef]
- de Miranda, A.S.; Ferreira, R.N.; Teixeira, A.L.; de Miranda, A.S. Mood Stabilizers: Quetiapine. NeuroPsychopharmacotherapy 2020, 1–23. [Google Scholar]
- Wani, T.A.; Alsaif, N.; Alanazi, M.M.; Bakheit, A.H.; Zargar, S.; Bhat, M.A. A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. Eur. J. Pharm. Sci. 2021, 158, 105686. [Google Scholar] [CrossRef]
- Wani, T.A.; Alsaif, N.A.; Alanazi, M.M.; Bakheit, A.H.; Khan, A.A.; Zargar, S. Binding of colchicine and ascorbic acid (vitamin C) to bovine serum albumin: An in-vitro interaction study using multispectroscopic, molecular docking and molecular dynamics simulation study. J. Mol. Liq. 2021, 342, 117542. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Al-Majed, A.A.; Altwaijry, N.; Baquaysh, A.; Aljuraisy, A.; Zargar, S. Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. J. Mol. Liq. 2021, 333, 115934. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Alamery, S. Mechanistic competitive binding interaction study between olmutinib and colchicine with model transport protein using spectroscopic and computer simulation approaches. J. Photochem. Photobiol. A Chem. 2022, 426, 113794. [Google Scholar] [CrossRef]
- Wani, T.A.; Alanazi, M.M.; Alsaif, N.A.; Bakheit, A.H.; Zargar, S.; Alsalami, O.M.; Khan, A.A. Interaction Characterization of a Tyrosine Kinase Inhibitor Erlotinib with a Model Transport Protein in the Presence of Quercetin: A Drug–Protein and Drug–Drug Interaction Investigation Using Multi-Spectroscopic and Computational Approaches. Molecules 2022, 27, 1265. [Google Scholar] [CrossRef]
- Zargar, S.; Wani, T.A. Protective Role of Quercetin in Carbon Tetrachloride Induced Toxicity in Rat Brain: Biochemical, Spectrophotometric Assays and Computational Approach. Molecules 2021, 26, 7526. [Google Scholar] [CrossRef]
- Tebeta, R.; Ahmed, N.; Fattahi, A. Experimental study on the effect of compression load on the elastic properties of HDPE/SWCNTs nanocomposites. Microsyst. Technol. 2021, 27, 3513–3522. [Google Scholar] [CrossRef]
- Alemi Parvin, S.; Ahmed, N.; Fattahi, A. Numerical prediction of elastic properties for carbon nanotubes reinforced composites using a multi-scale method. Eng. Comput. 2021, 37, 1961–1972. [Google Scholar] [CrossRef]
- Chamani, J.; Heshmati, M. Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: Spectroscopic and calorimetric approaches. J. Colloid Interface Sci. 2008, 322, 119–127. [Google Scholar] [CrossRef]
- Marouzi, S.; Rad, A.S.; Beigoli, S.; Baghaee, P.T.; Darban, R.A.; Chamani, J. Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches. Int. J. Biol. Macromol. 2017, 97, 688–699. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Bhat, M.A.; Al-Majed, A.A. Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin. Bioorg. Chem. 2019, 89, 103010. [Google Scholar] [CrossRef]
- He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballal, S.; Radi, R.; Kirk, M.C.; Barnes, S.; Freeman, B.A.; Alvarez, B. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 2003, 42, 9906–9914. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, Y.; Gou, Y.; Zhang, Z.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. Developing an anticancer copper (II) pro-drug based on the His242 residue of the human serum albumin carrier IIA subdomain. Mol. Pharm. 2016, 13, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Alsaif, N.A.; Al-Mehizia, A.A.; Bakheit, A.H.; Zargar, S.; Wani, T.A. A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA. S. Afr. J. Chem. 2020, 73, 44–50. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Alanazi, Z.S.; Al-Majed, A.A. Influence of antioxidant flavonoids quercetin and rutin on the in-vitro binding of neratinib to human serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 118977. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.-B.; Lin, Z.-Y.; Wang, B.-L.; Shi, J.-H.; Liu, Y.-X. Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. J. Mol. Struct. 2021, 1224, 129024. [Google Scholar] [CrossRef]
- Rabbani, G.; Lee, E.J.; Ahmad, K.; Baig, M.H.; Choi, I. Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Mol. Pharm. 2018, 15, 1445–1456. [Google Scholar] [CrossRef]
- Alam, M.M.; Abul Qais, F.; Ahmad, I.; Alam, P.; Hasan Khan, R.; Naseem, I. Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. J. Biomol. Struct. Dyn. 2018, 36, 795–809. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: Comprehensive spectroscopic studies. J. Phys. Chem. B 2010, 114, 5625–5631. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Kandagal, P.; Ashoka, S.; Seetharamappa, J.; Shaikh, S.; Jadegoud, Y.; Ijare, O. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J. Pharm. Biomed. Anal. 2006, 41, 393–399. [Google Scholar] [CrossRef]
- Peng, X.; Wang, X.; Qi, W.; Huang, R.; Su, R.; He, Z. Deciphering the binding patterns and conformation changes upon the bovine serum albumin-rosmarinic acid complex. Food Funct. 2015, 6, 2712–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameníková, M.; Furtmüller, P.G.; Klacsová, M.; Lopez-Guzman, A.; Toca-Herrera, J.L.; Vitkovská, A.; Devínsky, F.; Mučaji, P.; Nagy, M. Influence of quercetin on the interaction of gliclazide with human serum albumin-spectroscopic and docking approaches. Luminescence 2017, 32, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Tayyab, S.; Min, L.H.; Kabir, M.Z.; Kandandapani, S.; Ridzwan, N.F.W.; Mohamad, S.B. Exploring the interaction mechanism of a dicarboxamide fungicide, iprodione with bovine serum albumin. Chem. Pap. 2020, 74, 1633–1646. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Weber, G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 1973, 12, 4171–4179. [Google Scholar] [CrossRef]
- Shahabadi, N.; Hadidi, S.; Feizi, F. Study on the interaction of antiviral drug ‘Tenofovir’with human serum albumin by spectral and molecular modeling methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 169–175. [Google Scholar] [CrossRef]
- Jafari, F.; Samadi, S.; Nowroozi, A.; Sadrjavadi, K.; Moradi, S.; Ashrafi-Kooshk, M.R.; Shahlaei, M. Experimental and computational studies on the binding of diazinon to human serum albumin. J. Biomol. Struct. Dyn. 2018, 36, 1490–1510. [Google Scholar] [CrossRef]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Lloyd, J. The nature and evidential value of the luminescence of automobile engine oils and related materials: Part I. Synchronous excitation of fluorescence emission. J. Forensic Sci. Soc. 1971, 11, 83–94. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, M. Understanding the fate of human serum albumin upon interaction with edifenphos: Biophysical and biochemical approaches. Pestic. Biochem. Physiol. 2018, 145, 46–55. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Khayyat, A.I.A.; Al-Majed, A.A. Influence of Rutin, Sinapic Acid, and Naringenin on Binding of Tyrosine Kinase Inhibitor Erlotinib to Bovine Serum Albumin Using Analytical Techniques Along with Computational Approach. Appl. Sci. 2022, 12, 3575. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Sancataldo, G.; Vetri, V.; Fodera, V.; Di Cara, G.; Militello, V.; Leone, M. Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation. PLoS ONE 2014, 9, e84552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farruggia, B.; Nerli, B.; Di Nuci, H.; Rigatusso, R.; Picó, G. Thermal features of the bovine serum albumin unfolding by polyethylene glycols. Int. J. Biol. Macromol. 1999, 26, 23–33. [Google Scholar] [CrossRef]
- Rahman, S.; Rehman, M.T.; Rabbani, G.; Khan, P.; AlAjmi, M.F.; Hassan, M.; Muteeb, G.; Kim, J. Insight of the interaction between 2, 4-thiazolidinedione and human serum albumin: A spectroscopic, thermodynamic and molecular docking study. Int. J. Mol. Sci. 2019, 20, 2727. [Google Scholar] [CrossRef] [Green Version]
- Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. 2003, 12, 1496–1506. [Google Scholar] [CrossRef] [Green Version]
- Moradi, N.; Ashrafi-Kooshk, M.R.; Ghobadi, S.; Shahlaei, M.; Khodarahmi, R. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein? J. Lumin. 2015, 160, 351–361. [Google Scholar] [CrossRef]
- Zargar, S.; Wani, T.A. Exploring the binding mechanism and adverse toxic effects of persistent organic pollutant (dicofol) to human serum albumin: A biophysical, biochemical and computational approach. Chem.-Biol. Interact. 2021, 350, 109707. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.K.A.; Haq, S.K.; Khan, R.H. Intermediate formation at lower urea concentration in ‘B’isomer of human serum albumin: A case study using domain specific ligands. Biochem. Biophys. Res. Commun. 2004, 314, 166–173. [Google Scholar] [CrossRef]
- Zhao, L.; Song, W.; Wang, J.; Yan, Y.; Chen, J.; Liu, R. Mechanism of dimercaptosuccinic acid coated superparamagnetic iron oxide nanoparticles with human serum albumin. J. Biochem. Mol. Toxicol. 2015, 29, 579–586. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
pH | Temp (K) | Ksv (× 104 M−1) | Kq (× 1012 M−1 s−1) | R² |
---|---|---|---|---|
7.4 | 295 | 0.7 | 0.7 | 0.987 |
305 | 0.5 | 0.5 | 0.992 | |
310 | 0.3 | 0.3 | 0.993 |
pH | Temp (K) | Kb (× 104 M−1) | N | R² |
---|---|---|---|---|
7.4 | 295 | 1.326 | 1.28 | 0.996 |
305 | 1.236 | 1.31 | 0.994 | |
310 | 1.200 | 1.35 | 0.994 |
Temp (K) | ΔH0 (KJ mol−1) | ΔS0 (JK−1 mol−1) | TΔS0 (KJ mol−1) | ΔG0 (KJ mol−1) |
---|---|---|---|---|
295 | 5.087 | 81 | 23.89 | −18.8 |
305 | 24.705 | −19.61 | ||
310 | 25.11 | −20.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zargar, S.; Wani, T.A.; Alsaif, N.A.; Khayyat, A.I.A. A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches. Molecules 2022, 27, 2589. https://doi.org/10.3390/molecules27082589
Zargar S, Wani TA, Alsaif NA, Khayyat AIA. A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches. Molecules. 2022; 27(8):2589. https://doi.org/10.3390/molecules27082589
Chicago/Turabian StyleZargar, Seema, Tanveer A. Wani, Nawaf A. Alsaif, and Arwa Ishaq A. Khayyat. 2022. "A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches" Molecules 27, no. 8: 2589. https://doi.org/10.3390/molecules27082589
APA StyleZargar, S., Wani, T. A., Alsaif, N. A., & Khayyat, A. I. A. (2022). A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches. Molecules, 27(8), 2589. https://doi.org/10.3390/molecules27082589