The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats
Abstract
:1. Introduction
2. Results
2.1. Identification of Structure of TNBG-5602′s Metabolites
2.1.1. Metabolites of m/z 376.21
2.1.2. Metabolites of m/z 346.20
2.1.3. Metabolites of m/z 374.19
2.1.4. Metabolites of m/z 390.19
2.1.5. Metabolites of m/z 392.20
2.2. In Vivo Metabolites
2.3. In Vitro Metabolites
2.4. IC50 in Recombinant Human CYPs
2.5. Modeling
2.6. In Vivo Pharmacokinetics of TNBG-5602 in Rats
2.7. Validation Results of the Analytical Method for TNBG-5602 in Plasma
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Animals
4.3. Instruments and Analytical Methods
4.3.1. Qualitative LC-MS/MS Analysis of the Main Metabolites
4.3.2. Quantitative LC-MS/MS Determination of Probe Substrates
4.3.3. Quantitative LC-MS/MS Determination of TNBG-5602
4.4. Data Analysis
4.5. In Vivo Studies in Rats
4.5.1. Drug Administration
4.5.2. Treatment of Excretion Samples
4.5.3. Treatment of Blood Samples
4.6. In Vitro Studies Using Recombinant CYPs
4.6.1. Incubation with Recombinant CYPs
4.6.2. IC50 Assessment Using Recombinant Human CYPs
4.7. Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. WHO. 2020. Available online: https://who.int/data/gho/data/themes/mortality-and-global-health-estimates/gheleadingcauses-of-death (accessed on 11 December 2020).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Heigener, D.F.; Reck, M. Lung cancer in 2017: Giant steps and stumbling blocks. Nat. Rev. Clin. Oncol. 2018, 15, 71–72. [Google Scholar] [CrossRef]
- Brito, A.F.; Abrantes, A.M.; Tralhão, J.; Botelho, M.F. Targeting hepatocellular carcinoma: What did we discover so far? Oncol. Rev. 2016, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Lam, Y.-M.; Leung, Y.-C.; Hu, X.; Chen, X.; Cheung, E.; Tam, K.Y. Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. J. Pharm. Pharmacol. 2019, 71, 306–315. [Google Scholar] [CrossRef]
- Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci. 2015, 16, 924–949. [Google Scholar] [CrossRef] [Green Version]
- Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: New players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 358–365. [Google Scholar] [CrossRef]
- Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J. 2012, 279, 2610–2623. [Google Scholar] [CrossRef]
- Chen, X.; Gan, Y.J.; Yu, Y.; Zhang, Y. Synthesis and evaluation of new sterol derivatives as potential antitumor agents. RSC Adv. 2018, 8, 26528–26537. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wan, C.; Gan, Z.; Liu, R.; Chen, Y.; Wang, J.; Gan, L.; Chen, Y.; Li, Y.; He, B.; et al. TNBG-5602, a novel derivative of quinoxaline, inhibits liver cancer growth via upregulating peroxisome proliferator-activated receptor γ in vitro and in vivo. J. Pharm. Pharmacol. 2019, 71, 1684–1694. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wan, C.M.; Gan, Z.J.; Gan, L.L.; He, B.C.; Yu, Y.; Hu, X.L. PTEN inhibition leads to the development of resistance to novel isoquinoline derivative TNBG-5602 in human liver cancer cells. Am. J. Cancer Res. 2021, 11, 4515–4527. [Google Scholar]
- Ruwali, M.; Dhawan, A.; Khurana, S.P.; Pant, M.C.; Rahman, Q.; Parmar, D. Clinical Management of Head and Neck Cancer Cases: Role of Pharmacogenetics of CYP2 and GSTs. Oncol. Res. Treat. 2016, 39, 221–226. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Liu, Y.; Li, W.; Hao, D.-C.; Yang, L. Inhibitory effect of medroxyprogesterone acetate on human liver cytochrome P450 enzymes. Eur. J. Clin. Pharmacol. 2006, 62, 497–502. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. In Vitro Drug Interaction Studies-Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 20 March 2022).
- Kannan, B.; Nagella, A.B.; Prabhu, A.S.; Sasidharan, G.M.; Ramesh, A.S.; Madhugiri, V. Incidence of Potential Drug-Drug Interactions in a Limited and Stereotyped Prescription Setting—Comparison of Two Free Online Pharmacopoeias. Cureus 2016, 8, e886. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B 2019, 9, 1113–1144. [Google Scholar] [CrossRef]
- Li, G.; Huang, K.; Nikolic, D.; Van Breemen, R.B. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions. Drug Metab. Dispos. 2015, 43, 1670–1678. [Google Scholar] [CrossRef] [Green Version]
- Palacharla, V.R.C.; Chunduru, P.; Ajjala, D.R.; Bhyrapuneni, G.; Nirogi, R.; Li, A.P. Development and Validation of a Higher-Throughput Cytochrome P450 Inhibition Assay with the Novel Cofactor-Supplemented Permeabilized Cryopreserved Human Hepatocytes (MetMax Human Hepatocytes). Drug Metab. Dispos. 2019, 47, 1032–1039. [Google Scholar] [CrossRef]
- Davies, B.; Morris, T. Physiological Parameters in Laboratory Animals and Humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef]
- FDA. Bioanalytical Method Validation Guidance for Industry; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Sudsakorn, S.; Bahadduri, P.; Fretland, J.; Lu, C. 2020 FDA Drug-drug Interaction Guidance: A Comparison Analysis and Action Plan by Pharmaceutical Industrial Scientists. Curr. Drug Metab. 2020, 21, 403–426. [Google Scholar] [CrossRef]
- Feng, W.; Zhou, L.-Y.; Mu, R.-F.; Gao, L.; Xu, B.-Y.; Liu, M.-L.; Niu, L.-Y.; Wang, X.-G. Screening and Identification of the Main Metabolites of Schisantherin a In Vivo and In Vitro by Using UHPLC-Q-TOF-MS/MS. Molecules 2020, 25, 258. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Meng, D.; Wang, S.; Geng, P.; Xu, T.; Zhou, Q.; Zhou, Y.; Li, W.; Chen, X. Effects of Avitinib on CYP450 Enzyme Activity in vitro and in vivo in Rats. Drug Des. Dev. Ther. 2021, 15, 3661–3673. [Google Scholar] [CrossRef]
- Zuo, H.-L.; Huang, H.-Y.; Lin, Y.-C.; Cai, X.-X.; Kong, X.-J.; Luo, D.-L.; Zhou, Y.-H.; Huang, H.-D. Enzyme Activity of Natural Products on Cytochrome P450. Molecules 2022, 27, 515. [Google Scholar] [CrossRef]
- Wu, Y.; Qiao, A.; Lin, S.; Chen, L. In vitro evaluation of the inhibition potential of echinacoside on human cytochrome P450 isozymes. BMC Complement. Med. Ther. 2022, 22, 46. [Google Scholar] [CrossRef]
Compound | Retention Time (min) | Relative Retention Time | m/z [M + H]+ Found | m/z [M + H]+ Calculated | Error (ppm) | Formula |
---|---|---|---|---|---|---|
Prototype | 5.860 | 1.00 | 360.2180 | 360.2183 | −0.8 | C22H25N5 |
M1 | 4.900 | 0.84 | 376.2129 | 376.2132 | −0.8 | C22H25N5O |
M2 | 5.099 | 0.87 | 376.2128 | 376.2132 | −1.1 | C22H25N5O |
M3 | 5.262 | 0.90 | 376.2131 | 376.2132 | −0.3 | C22H25N5O |
M4 | 5.499 | 0.94 | 376.2131 | 376.2132 | −0.3 | C22H25N5O |
M5 | 5.739 | 0.98 | 346.2025 | 346.2026 | −0.3 | C21H23N5 |
M6 | 6.544 | 1.12 | 346.2026 | 346.2026 | 0.0 | C21H23N5 |
M7 | 6.684 | 1.14 | 374.1972 | 374.1975 | −0.8 | C22H23N5O |
M8 | 7.266 | 1.24 | 374.1976 | 374.1975 | 0.3 | C22H23N5O |
M9 | 5.233 | 0.89 | 390.1914 | 390.1925 | −2.8 | C22H23N5O2 |
M10 | 5.527 | 0.94 | 390.1921 | 390.1925 | −1.0 | C22H23N5O2 |
M11 | 5.604 | 0.96 | 390.1918 | 390.1925 | −1.8 | C22H23N5O2 |
M12 | 6.265 | 1.07 | 390.1917 | 390.1925 | −2.1 | C22H23N5O2 |
M13 | 4.895 | 0.84 | 392.2096 | 392.2081 | 3.8 | C22H25N5O2 |
Compound | Formula | RRT | Proposed Biotransformation | Urine | Feces | CYP2D6 | CYP3A4 | CYP2C9 | CYP4V2 |
---|---|---|---|---|---|---|---|---|---|
M1 | C22H25N5O | 0.84 | P + O | × | × | × | |||
M2 | C22H25N5O | 0.87 | P + O | × | × | × | |||
M3 | C22H25N5O | 0.90 | P + O | × | × | × | |||
M4 | C22H25N5O | 0.94 | P + O | × | × | × | |||
M5 | C21H23N5 | 0.98 | P-CH2 | × | × | × | × | × | × |
M6 | C21H23N5 | 1.12 | P-CH2 | × | |||||
M7 | C22H23N5O | 1.14 | P + O-2H | × | |||||
M8 | C22H23N5O | 1.24 | P + O-2H | × | |||||
M9 | C22H23N5O2 | 0.89 | P + 2O-2H | × | |||||
M10 | C22H23N5O2 | 0.94 | P + 2O-2H | × | |||||
M11 | C22H23N5O2 | 0.96 | P + 2O-2H | × | |||||
M12 | C22H23N5O2 | 1.07 | P + 2O-2H | × | |||||
M13 | C22H25N5O2 | 0.84 | P + 2O | × | × |
Non-Compartment Model | Two-Compartment Model | ||||
---|---|---|---|---|---|
Parameters | Mean | SD | Parameters | Mean | SD |
AUC(0–t) (μg L−1 min) | 45513 | 21711 | A (μg L−1) | 127.2 | 74.3 |
AUC(0–∞) (μg L−1 min) | 56248 | 16507 | B (μg L−1) | 57.6 | 33.0 |
Cmax (μg L−1) | 170.7 | 105.2 | K10 (1/min) | 0.004 | 0.002 |
MRT(0–t) (min) | 427.6 | 105.0 | K12 (1/min) | 0.028 | 0.033 |
MRT(0–∞) (min) | 930.4 | 558.5 | K21 (1/min) | 0.019 | 0.026 |
t1/2 (min) | 693.5 | 397.2 | t1/2α (min) | 27.4 | 15.7 |
Tmax (min) | 5.0 | 0 | t1/2β (min) | 710.9 | 425.8 |
CLt (L/min) | 0.019 | 0.005 | CL (L/min) | 0.022 | 0.009 |
Vd (L) | 20.2 | 13.3 | Vc (L) | 6.985 | 3.545 |
Vp (L) | 13.2 | 9.4 | |||
Reported physiological liver blood flow for rats (200 g) (L/min) [19] | 0.011 | ||||
Reported physiological total body water volume (200 g) (L) [19] | 0.13 |
Concentration Level | Precision (RSD, %) | Recovery (Mean ± SD %) | ||
---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 18) | Intra-Day (n = 6) | Inter-Day (n = 18) | |
Low (9.28 ng mL−1) | 5.44 | 4.20 | 112.8 ± 6.13 | 113.6 ± 4.77 |
Medium (371 ng mL−1) | 2.09 | 3.84 | 105.9 ± 2.22 | 108.3 ± 4.16 |
High (464 ng mL−1) | 2.91 | 6.11 | 106.3 ± 3.09 | 108.4 ± 6.62 |
Concentration Level | Extraction Recovery | Matrix Effect | ||
---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | |
Low (9.28 ng mL−1) | 105.3 | 6.8 | 103.9 | 6.4 |
Medium (371 ng mL−1) | 99.3 | 3.6 | 99.0 | 3.2 |
High (464 ng mL−1) | 100.8 | 5.4 | 103.0 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhou, S.; Gan, Z.; Wang, L.; Yu, Y. The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats. Molecules 2022, 27, 2594. https://doi.org/10.3390/molecules27082594
Li R, Zhou S, Gan Z, Wang L, Yu Y. The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats. Molecules. 2022; 27(8):2594. https://doi.org/10.3390/molecules27082594
Chicago/Turabian StyleLi, Rui, Sha Zhou, Zongjie Gan, Lijuan Wang, and Yu Yu. 2022. "The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats" Molecules 27, no. 8: 2594. https://doi.org/10.3390/molecules27082594
APA StyleLi, R., Zhou, S., Gan, Z., Wang, L., & Yu, Y. (2022). The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats. Molecules, 27(8), 2594. https://doi.org/10.3390/molecules27082594