Upgrading Common Wheat Pasta by Fiber-Rich Fraction of Potato Peel Byproduct at Different Particle Sizes: Effects on Physicochemical, Thermal, and Sensory Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Alcohol Insoluble Residue from Potato Peel Byproduct (AIR-PPB)
2.3. Experimental Design and Statistical Analysis
2.4. Preparation of FEP and Control Pasta (CP)
2.5. Proximate composition
2.6. Functional Properties
2.7. Physical Characteristics
2.7.1. Cooking Properties
2.7.2. Texture Profile Analysis
2.7.3. Differential Scanning Calorimeter (DSC)
2.8. Color Measurement and Sensory Assessment
3. Results and Discussion
3.1. Chemical Composition and AIR-PPB Characteristics
3.2. Physical Properties
3.2.1. Cooking Properties
3.2.2. Texture
3.2.3. Thermal Properties of FEP
3.3. Color Parameters and Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- El-Saadony, M.T.; Elsadek, M.F.; Mohamed, A.S.; Taha, A.E.; Ahmed, B.M.; Saad, A.M. Effects of chemical and natural additives on cucumber juice’s quality, shelf life, and safety. Foods 2020, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; Mohamed, A.S.; El-Saadony, M.T.; Sitohy, M.Z. Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. LWT Food Sci. Technol. 2021, 148, 111668. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H.J.F.c. Dietary fibre and fibre-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists; American Association of cereal Chemists, Inc.: St. Paul, MN, USA, 2007. [Google Scholar]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shehata, A.M.; Arif, M.; Paswan, V.K.; Batiha, G.E.-S.; Khafaga, A.F.; Elbestawy, A.R. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: A review. Environ. Sci. Pollut. Res. 2021, 28, 4989–5004. [Google Scholar] [CrossRef]
- Brownlee, I.A. The physiological roles of dietary fibre. Food Hydrocoll. 2011, 25, 238–250. [Google Scholar] [CrossRef]
- Swelum, A.A.; Shafi, M.E.; Albaqami, N.M.; El-Saadony, M.T.; Elsify, A.; Abdo, M.; El-Sayed Taha, A.; Abdel-Moneim, A.-M.E.; Al-Gabri, N.A.; Mohamed, E.; et al. COVID-19 in human, animal, and environment: A review. Front. Vet. Sci. 2020, 7, 578. [Google Scholar] [CrossRef]
- Institute of Medicine. Available online: http://www.iom.edu/Reports/2002/Dietary-Reference-Intakes-for-Energy-Carbohydrate-Fiber-Fat-Fatty-Acids-Cholesterol-Protein-and-Amino-Acids.aspx (accessed on 18 January 2011).
- Pathania, S.; Kaur, N.J.B.C.; Fibre, D. Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioact. Carbohydr. Diet. Fibre. 2021, 27, 100295. [Google Scholar] [CrossRef]
- Saad, A.M.; El-Saadony, M.T.; El-Tahan, A.M.; Sayed, S.; Moustafa, M.A.; Taha, A.E.; Taha, T.F.; Ramadan, M.M. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi J. Biol. Sci. 2021, 28, 5674–5683. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.-M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Aldhumri, S.A.; Ouda, S.M.; Mesalam, N.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J. Biol. Sci. 2022, 29, 1197–1209. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Taha, T.F.; Najjar, A.A.; Zabermawi, N.M.; Nader, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Salama, A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J. Biol. Sci. 2021, 28, 6782–6794. [Google Scholar] [CrossRef]
- Açıkalın, K.J.B.C. Evaluation of orange and potato peels as an energy source: A comprehensive study on their pyrolysis characteristics and kinetics. Biomass Convers. Biorefin. 2021, 12, 501–514. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Petropoulos, S.A.; Alexopoulos, A.; Heleno, S.A.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C. Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. Technol. 2020, 103, 118–129. [Google Scholar] [CrossRef]
- Quisperima, A.; Pérez, S.; Flórez, E.; Acelas, N.J.B.T. Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater. Bioresour. Technol. 2022, 343, 126106. [Google Scholar] [CrossRef] [PubMed]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Func. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Friedman, M.; Huang, V.; Quiambao, Q.; Noritake, S.; Liu, J.; Kwon, O.; Chintalapati, S.; Young, J.; Levin, C.E.; Tam, C. Potato peels and their bioactive glycoalkaloids and phenolic compounds inhibit the growth of pathogenic trichomonads. J. Agric. Food Chem. 2018, 66, 7942–7947. [Google Scholar] [CrossRef]
- Khawla, B.J.; Sameh, M.; Imen, G.; Donyes, F.; Dhouha, G.; Raoudha, E.G.; Oumèma, N.-E. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Ind. Crops Prod. 2014, 52, 144–149. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Diantom, A.; Vittadini, E.J.F.c. The use of potato fibre to improve bread physico-chemical properties during storage. Food Chem. 2016, 195, 64–70. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Bouaziz, F.; Zouari-Ellouzi, S.; Chaari, F.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R.; Nouri-Ellouz, O.J.F.C. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 2017, 217, 668–677. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Del Nobile, M.A.J.F. Overview on the general approaches to improve gluten-free pasta and bread. Foods. 2016, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Laleg, K.; Cassan, D.; Barron, C.; Prabhasankar, P.; Micard, V.J.P.O. Structural, culinary, nutritional and anti-nutritional properties of high protein, gluten free, 100% legume pasta. PLoS ONE 2016, 11, e0160721. [Google Scholar] [CrossRef]
- Vignola, M.B.; Bustos, M.C.; Pérez, G.T.J.F.c. In vitro dialyzability of essential minerals from white and whole grain pasta. Food Chem. 2018, 265, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Wójtowicz, A.; Mościcki, L.J.L.-F.S. Influence of legume type and addition level on quality characteristics, texture and microstructure of enriched precooked pasta. LWT Food Sci. Technol. 2014, 59, 1175–1185. [Google Scholar] [CrossRef]
- Oliviero, T.; Fogliano, V.J.T.i.F.S. Food design strategies to increase vegetable intake: The case of vegetable enriched pasta. Trends Food Sci. Technol. 2016, 51, 58–64. [Google Scholar] [CrossRef]
- Saad, A.M.; El-Saadony, M.T.; Mohamed, A.S.; Ahmed, A.I.; Sitohy, M.Z. Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. Inter J. Food Sci. Technol. 2021, 56, 3255–3268. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Taddei, F.; Nicoletti, I.; Gazza, L.; Corradini, D.; D’Egidio, M.G.; Martini, D.J.F.C. Use of bran fractions and debranned kernels for the development of pasta with high nutritional and healthy potential. Food Chem. 2017, 225, 77–86. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.J.F.C. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 2016, 194, 637–642. [Google Scholar] [CrossRef]
- Pigni, N.B.; Aranibar, C.; Mas, A.L.; Aguirre, A.; Borneo, R.; Wunderlin, D.; Baroni, M.V.J.L. Chemical profile and bioaccessibility of polyphenols from wheat pasta supplemented with partially-deoiled chia flour. LWT Food Sci. Technol. 2020, 124, 109134. [Google Scholar] [CrossRef]
- Tiga, B.H.; Kumcuoglu, S.; Vatansever, M.; Tavman, S. Thermal and pasting properties of Quinoa—wheat flour blends and their effects on production of extruded instant noodles. J. Cereal Sci. 2021, 97, 103120. [Google Scholar] [CrossRef]
- Sahin, A.W.; Hardiman, K.; Atzler, J.J.; Vogelsang-O’Dwyer, M.; Valdeperez, D.; Münch, S.; Cattaneo, G.; O’Riordan, P.; Arendt, E.K. Rejuvenated Brewer’s Spent Grain: The impact of two BSG-derived ingredients on techno-functional and nutritional characteristics of fibre-enriched pasta. Innov. Food Sci. Emerg. Technol. 2021, 68, 102633. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Nagi, H.; Dar, B.N. Functional properties of pasta enriched with variable cereal brans. J. Food Sci. Technol. 2012, 49, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C.J.F.C. Effect of insoluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 2012, 130, 299–309. [Google Scholar] [CrossRef]
- Boroski, M.; de Aguiar, A.C.; Boeing, J.S.; Rotta, E.M.; Wibby, C.L.; Bonafé, E.G.; de Souza, N.E.; Visentainer, J.V. Enhancement of pasta antioxidant activity with oregano and carrot leaf. Food Chem. 2011, 125, 696–700. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Zabermawi, N.M.; Zabermawi, N.M.; Burollus, M.A.; Shafi, M.E.; Alagawany, M.; Yehia, N.; Askar, A.M.; Alsafy, S.A.; Noreldin, A.E.; et al. Nutritional aspects and health benefits of bioactive plant compounds against infectious diseases: A review. Food Rev. Int. 2021, 1–23. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Brennan, M.; Darwish, A.M.; Brennan, C. Physicochemical, texture and sensorial evaluation of pasta enriched with chickpea flour and protein isolate. Ann. Agric. Sci. 2020, 65, 28–34. [Google Scholar] [CrossRef]
- Saad, A.M.; Elmassry, R.A.; Wahdan, K.M.; Ramadan, F.M. Chickpea (Cicer arietinum) steep liquor as a leavening agent: Effect on dough rheology and sensory properties of bread. Acta Period. Technol. 2015, 46, 91–102. [Google Scholar] [CrossRef]
- Saad, A.M.; Sitohy, M.Z.; Ahmed, A.I.; Rabie, N.A.; Amin, S.A.; Aboelenin, S.M.; Soliman, M.M.; El-Saadony, M.T. Biochemical and functional characterization of kidney bean protein alcalase-hydrolysates and their preservative action on stored chicken meat. Molecules 2021, 26, 4690. [Google Scholar] [CrossRef] [PubMed]
- Oyeyinka, S.A.; Adepegba, A.A.; Oyetunde, T.T.; Oyeyinka, A.T.; Olaniran, A.F.; Iranloye, Y.M.; Olagunju, O.F.; Manley, M.; Kayitesi, E.; Njobeh, P.B.J.L. Chemical, antioxidant and sensory properties of pasta from fractionated whole wheat and Bambara groundnut flour. LWT Food Sci. Technol. 2021, 138, 110618. [Google Scholar] [CrossRef]
- Latorre, M.E.; Narvaiz, P.; Rojas, A.M.; Gerschenson, L.N. Effects of gamma irradiation on bio-chemical and physico-chemical parameters of fresh-cut red beet (Beta vulgaris L. var. conditiva) root. J. Food Eng. 2010, 98, 178–191. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis: Association of Analytical Chemists, 19th ed.; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- McCleary, B.V.; DeVries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Champ, M.; Okuma, K. Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J. AOAC Inter. 2012, 95, 824–844. [Google Scholar] [CrossRef]
- Namir, M.; Siliha, H.; Ramadan, M.F. Fiber pectin from tomato pomace: Characteristics, functional properties and application in low-fat beef burger. J. Food Meas. Charact. 2015, 9, 305–312. [Google Scholar] [CrossRef]
- Sobota, A.; Zarzycki, P.; Rzedzicki, Z.; Sykut-Domańska, E.; Wirkijowska, A. Effect of cooking time on the texture and cooking quality of spaghetti. Acta Geophys. 2013, 20, 693–703. [Google Scholar]
- Bonomi, F.; D’Egidio, M.G.; Iametti, S.; Marengo, M.; Marti, A.; Pagani, M.A.; Ragg, E.M. Structure–quality relationship in commercial pasta: A molecular glimpse. Food Chem. 2012, 135, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Namir, M.; Suleiman, A.R.; Hassanien, M.F.R. Characterization and functionality of alcohol insoluble solids from tomato pomace as fat substitute in low fat cake. J. Food Meas. Charact. 2015, 9, 557–563. [Google Scholar] [CrossRef]
- Ajila, C.; Leelavathi, K.; Rao, U.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Ismail, T.; Akhtar, S.; Riaz, M.; Ismail, A. Effect of pomegranate peel supplementation on nutritional, organoleptic and stability properties of cookies. Int. J. Food Sci. Nutri. 2014, 65, 661–666. [Google Scholar] [CrossRef]
- Chau, C.-F.; Huang, Y.-L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615–2618. [Google Scholar] [CrossRef]
- Bender, A.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape pomace skins and the effects of its inclusion in the technological properties of muffins. J. Food Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef]
- Ocen, D.; Xu, X. Effect of citrus orange (Citrus sinensis) by-product dietary fiber preparations on the quality characteristics of frozen dough bread. Am. J. Food Technol. 2013, 8, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.Y.; Shiau, S.Y. Effect of the amount and particle size of pineapple peel fiber on dough rheology and steamed bread quality. J. Food Process. Preserv. 2015, 39, 549–558. [Google Scholar] [CrossRef]
- Wang, S.; Gu, B.-J.; Ganjyal, G.M. Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. LWT Food Sci. Technol. 2019, 110, 223–230. [Google Scholar] [CrossRef]
- Namir, M.; Rabie, M.A.; Rabie, N.A. Characterization. Physicochemical, pasting, and sensory characteristics of antioxidant dietary fiber gluten-free donut made from cantaloupe by-products. J. Food Meas. Charact. 2021, 15, 5445–5459. [Google Scholar] [CrossRef]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C.J. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioproc. Tech. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Dey, D.; Richter, J.K.; Ek, P.; Gu, B.-J.; Ganjyal, G.M. Utilization of food processing by-products in extrusion processing: A review. Front. Sustain. Food Syst. 2021, 4, 1–18. [Google Scholar] [CrossRef]
- European Commission Regulation, E. No 1924/2006 of the Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2007, 12, 3–18. [Google Scholar]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F.J. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; Nahed, A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F.; et al. Necrotic enteritis in broiler chickens: Disease characteristics and prevention using organic antibiotic alternatives–a comprehensive review. Poult. Sci. 2021, 101, 101590. [Google Scholar] [CrossRef]
- Ritthiruangdej, P.; Parnbankled, S.; Donchedee, S.; Wongsagonsup, R. Physical, chemical, textural and sensory properties of dried wheat noodles supplemented with unripe banana flour. Agric. Nat. Resour. 2011, 45, 500–509. [Google Scholar]
- Masli, M.D.P.; Gu, B.J.; Rasco, B.A.; Ganjyal, G.M. Fiber-rich food processing byproducts enhance the expansion of cornstarch extrudates. J. Food Sci. 2018, 83, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G.J.L. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT Food Sci. Technol. 2019, 114, 108368. [Google Scholar] [CrossRef]
- Lončarić, A.; Kosović, I.; Jukić, M.; Ugarčić, Ž.; Piližota, V. Effect of apple by-product as a supplement on antioxidant activity and quality parameters of pasta. Croat. J. Food Sci. Technol. 2014, 6, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Tudorica, C.; Kuri, V.; Brennan, C. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Ajila, C.; Aalami, M.; Leelavathi, K.; Rao, U.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. LWT Food Sci. Technol. 2015, 63, 470–474. [Google Scholar] [CrossRef]
- Crizel, T.d.M.; Rios, A.d.O.; Thys, R.C.S.; Flôres, S.H. Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Sci. Technol. 2015, 35, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.A.; Merts, I.; Monro, J.; Woolnough, J.; Brennan, C.S. Impact of guar and wheat bran on the physical and nutritional quality of extruded breakfast cereals. Starch-Stärke 2008, 60, 248–256. [Google Scholar] [CrossRef]
- Zarzycki, P.; Sykut-Domańska, E.; Sobota, A.; Teterycz, D.; Krawęcka, A.; Blicharz-Kania, A.; Andrejko, D.; Zdybel, B. Flaxseed enriched pasta-chemical composition and cooking quality. Foods 2020, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Bustos, M.C.; Ramos, M.I.; Pérez, G.T.; Leon, A.E. Utilization of Kañawa (Chenopodium pallidicaule Aellen) flour in pasta making. J. Chem. 2019, 2019, 4385045. [Google Scholar] [CrossRef] [Green Version]
- BeMiller, J.N. Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohy. Poly. 2011, 86, 386–423. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Liu, J.; Guan, W.; Brennan, C.S. Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem. 2018, 264, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Makhlouf, S.; Jones, S.; Ye, S.-H.; Sancho-Madriz, M.; Burns-Whitmore, B.; Li, Y.O. Effect of selected dietary fibre sources and addition levels on physical and cooking quality attributes of fibre-enhanced pasta. Food Qual. Saf. 2019, 3, 117–127. [Google Scholar] [CrossRef]
- Sobota, A.; Rzedzicki, Z.; Zarzycki, P.; Kuzawińska, E. Application of common wheat bran for the industrial production of high-fibre pasta. Int. J. Food Sci. Technol. 2015, 50, 111–119. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R.; Siastała, M. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT Food Sci. Technol. 2017, 77, 186–192. [Google Scholar] [CrossRef]
Experiments | Independent Variables | |
---|---|---|
Coded/Real Values | ||
X1, AIR-PPB (g/100 g Wheat Flour) | X2, PS (µm) | |
FEP-1 | 0 (8.50) | −1.41 (40) |
FEP-2 (Central point) | 0 (8.50) | 0 (145) |
FEP-3 (Central point) | 0 (8.50) | 0 (145) |
FEP-4 | +1 (13) | +1 (219) |
FEP-5 | 0 (8.50) | +1.41 (250) |
FEP-6 | −1 (4) | +1 (219) |
FEP-7 | +1.41 (15) | 0 (145) |
FEP-8 (Central point) | 0 (8.50) | 0 (145) |
FEP-9 | −1 (4) | −1 (70) |
FEP-10 | +1 (13) | −1 (70) |
FEP-11 | −1.41 (2) | 0 (145) |
Control pasta (CP) | 0 | - |
Composition•(g/100 g) | Particles’ Size (µm) | ||||
---|---|---|---|---|---|
250 | 219 | 145 | 70 | 40 | |
Chemical | |||||
Moisture (w.b) * | 5.78 ± 0.03 a | 5.67 ± 0.06 b | 5.61 ± 0.00 bc | 5.62 ± 0.04 bc | 5.55 ± 0.01 c |
Protein | 5.46 ± 0.13 a | 5.40 ± 0.18 a | 5.38 ± 0.09 ab | 5.26 ± 0.04 c | 5.29 ± 0.21 bc |
Fat | 0.54 ± 0.01 a | 0.50 ± 0.00 ab | 0.51 ± 0.00 ab | 0.45 ± 0.01 ab | 0.42 ± 0.00 b |
Ash | 4.71 ± 0.23 a | 4.69 ± 0.09 ab | 4.61 ± 0.13 bc | 4.64 ± 0.17 ab | 4.53 ± 0.26 c |
TDF•• | 83.02 ± 0.45 a | 82.91 ± 0.31 b | 82.87 ± 0.17 c | 82.81 ± 0.25 cd | 82.73 ± 0.21 d |
IDF | 63.10 ± 0.51 a | 62.54 ± 0.35 b | 62.15 ± 0.43 c | 61.86 ± 0.41 d | 61.39 ± 0.21 e |
SDF | 19.92 ± 0.11 e | 20.37 ± 0.10 d | 20.72 ± 0.09 c | 20.95 ± 0.13 b | 21.34 ± 0.24 a |
SC••• | 6.27 ± 0.31 d | 6.50 ± 0.26 d | 6.63 ± 0.41 c | 6.84 ± 0.09 b | 7.03 ± 0.81 a |
Physical | |||||
WHC (mL/g) | 7.75 ± 0.19 a | 7.61 ± 0.88 b | 7.21 ± 0.34 c | 7.04 ± 0.56 d | 6.73 ± 0.61 e |
L* | 64.22 ± 0.83 e | 66.14 ± 0.00 d | 69.79 ± 0.63 c | 74.34 ± 0.97 b | 75.12 ± 0.53 a |
a* | 15.52 ± 0.68 a | 11.65 ± 0.56 b | 9.65 ± 0.00 c | 8.32 ± 0.66 d | 7.24 ± 0.74 e |
b* | 48.26 ± 0.28 e | 51.76 ± 0.00 d | 55.45 ± 0.21 c | 66.31 ± 0.20 b | 68.81 ± 0.37 a |
Chemical Composition | CP | FEP-1 | FEP-2,3,8 | FEP-4 | FEP-5 | FEP-6 | FEP-7 | FEP-9 | FEP-10 | FEP-11 |
---|---|---|---|---|---|---|---|---|---|---|
Moisture | 10.08 ± 0.12 a | 9.67 ± 0.00 c | 9.59 ± 0.11 f | 9.41 ± 0.32 j | 9.54 ± 0.27 g | 9.62 ± 0.78 e | 9.45 ± 0.14 i | 9.65 ± 0.00 d | 9.49 ± 0.01 h | 9.72 ± 0.02 b |
Protein | 11.04 ± 0.27 a | 10.48 ± 0.16 g | 10.56 ± 0.13 f | 10.32 ± 0.09 h | 10.59 ± 0.12 e | 10.81 ± 0.40 c | 10.23 ± 0.10 i | 10.79 ± 0.17 d | 10.25 ± 0.22 i | 10.89 ± 0.30 b |
Fat | 1.14 ± 0.10 a | 1.01 ± 0.01 d | 1.02 ± 0.04 d | 0.99 ± 0.07 e | 1.04 ± 0.03 c | 1.05 ± 0.02 c | 0.97 ± 0.00 e | 1.04 ± 0.02 c | 0.98 ± 0.00 e | 1.07 ± 0.06 b |
TDF | 0.58 ± 0.09 j | 7.80 ± 0.15 f | 8.08 ± 0.19 e | 12.07 ± 0.08 a | 9.45 ± 0.12 d | 5.64 ± 0.26 g | 11.88 ± 0.32 b | 5.55 ± 0.38 h | 10.41 ± 0.29 c | 4.12 ± 0.21 i |
IDF | 0.38 ± 0.02 j | 5.54 ± 0.07 f | 5.90 ± 0.13 e | 9.17 ± 0.21 a | 6.99 ± 0.16 d | 3.95 ± 0.10 g | 9.03 ± 0.14 b | 3.83 ± 0.25 h | 7.81 ± 0.27 c | 2.76 ± 0.17 i |
SDF | 0.20 ± 0.00 j | 2.26 ± 0.01 e | 2.18 ± 0.00 f | 2.90 ± 0.06 a | 2.46 ± 0.01 d | 1.69 ± 0.00 h | 2.85 ± 0.00 b | 1.72 ± 0.11 g | 2.60 ± 0.00 c | 1.36 ± 0.05 i |
Ash | 1.28 ± 0.13 a | 1.09 ± 0.12 e | 1.00 ± 0.17 f | 0.77 ± 0.00 j | 0.89 ± 0.00 g | 1.13 ± 0.02 d | 0.84 ± 0.00 h | 1.19 ± 0.20 c | 0.82 ± 0.00 i | 1.22 ± 0.01 b |
SC | 85.96 ± 1.54 a | 79.62 ± 0.81 e | 79.33 ± 1.91 f | 75.86 ± 1.45 j | 78.03 ± 1.51 g | 81.37 ± 1.20 d | 76.07 ± 0.92 i | 81.43 ± 0.81 c | 77.53 ± 1.53 h | 82.69 ± 0.40 b |
Physical Properties | CP | FEP-1 | FEP-2,3,8 | FEP-4 | FEP-5 | FEP-6 | FEP-7 | FEP-9 | FEP-10 | FEP-11 |
---|---|---|---|---|---|---|---|---|---|---|
Cooking | ||||||||||
OCT (min) | 9.63 ± 1.21 a | 8.05 ± 1.45 e | 8.04 ± 0.64 e | 7.90 ± 0.72 i | 7.99 ± 0.56 f | 8.07 ± 0.78 d | 7.93 ± 0.68 h | 8.09 ± 0.42 c | 7.96 ± 0.81 g | 8.14 ± 0.46 b |
Cl (%) | 4.27 ± 0.16 i | 5.76 ± 0.10 e | 5.83 ± 0.15 d | 5.97 ± 0.06 a | 5.88 ± 0.24 c | 5.73 ± 0.77 f | 5.92 ± 0.80 b | 5.65 ± 0.81 g | 5.91 ± 0.31 b | 5.59 ± 0.88 h |
MII (kgcp/kg up) | 3.51 ± 0.86 a | 2.79 ± 0.73 e | 2.74 ± 0.89 f | 2.55 ± 0.31 i | 2.72 ± 0.10 g | 2.82 ± 0.21 d | 2.60 ± 0.00 h | 2.98 ± 0.17 c | 2.71 ± 0.30 g | 3.08 ± 0.46 b |
Texture | ||||||||||
Firmness (N) | 2.69 ± 0.95 a | 1.98 ± 0.36 d | 1.91 ± 0.44 f | 1.68 ± 0.24 h | 1.92 ± 0.34 ef | 2.01 ± 0.10 c | 1.85 ± 0.21 g | 2.16 ± 0.21 b | 1.93 ± 0.67 e | 2.18 ± 0.58 b |
Stickiness (N) | 4.73 ± 0.31 a | 2.97 ± 0.28 e | 2.95 ± 0.26 f | 2.42 ± 0.30 j | 2.88 ± 0.00 g | 3.24 ± 0.93 d | 2.45 ± 0.87 i | 3.58 ± 0.80 c | 2.83 ± 0.16 h | 3.70 ± 0.01 b |
Thermal properties | ||||||||||
To (°C) | 59.44 ± 1.38 j | 61.16 ± 1.09 f | 61.99 ± 1.27 e | 63.14 ± 1.52 a | 62.14 ± 1.47 d | 60.88 ± 1.22 g | 62.54 ± 1.43 b | 60.72 ± 1.29 h | 62.33 ± 1.34 c | 60.58 ± 1.71 i |
Tp (°C) | 63.97 ± 1.33 j | 65.79 ± 1.61 f | 66.78 ± 1.39 e | 68.11 ± 1.23 a | 66.96 ± 1.13 d | 65.71 ± 1.82 g | 67.47 ± 1.51 b | 65.42 ± 1.57 h | 67.18 ± 1.54 c | 65.02 ± 1.69 i |
Tc (°C) | 66.54 ± 1.42 j | 69.52 ± 1.37 f | 70.58 ± 1.61 e | 71.90 ± 1.82 a | 70.72 ± 1.83 d | 69.44 ± 1.76 g | 71.26 ± 1.22 b | 69.18 ± 1.31 h | 70.96 ± 1.49 c | 68.83 ± 1.71 i |
H (J/g) | 6.17 ± 0.98 a | 5.19 ± 0.91 d | 4.89 ± 0.43 e | 3.54 ± 0.61 i | 4.87 ± 0.28 f | 5.21 ± 0.19 d | 4.13 ± 0.75 h | 5.28 ± 0.21 c | 4.64 ± 0.19 g | 5.49 ± 0.85 b |
Color Parameters | CP | FEP-1 | FEP-2,3,8 | FEP-4 | FEP-5 | FEP-6 | FEP-7 | FEP-9 | FEP-10 | FEP-11 |
---|---|---|---|---|---|---|---|---|---|---|
L* | 68.82 ± 0.00 a | 59.02 ± 0.02 e | 58.66 ± 0.00 f | 49.21 ± 0.02 j | 57.14 ± 0.00 g | 59.52 ± 0.01 d | 49.56 ± 0.01 i | 60.22 ± 0.01 c | 54.32 ± 0.06 h | 60.43 ± 0.00 b |
a* | 0.84 ± 0.04 i | 1.79 ± 0.03 a | 1.61 ± 0.07 c | 1.32 ± 0.03 f | 1.51 ± 0.06 d | 1.19 ± 0.08 h | 1.38 ± 0.02 e | 1.27 ± 0.01 g | 1.64 ± 0.09 b | 1.19 ± 0.01 h |
b* | 13.24 ± 0.01 a | 12.46 ± 0.08 e | 12.26 ± 0.03 f | 11.80 ± 0.00 j | 12.24 ± 0.00 g | 12.60 ± 0.00 d | 11.93 ± 0.05 i | 12.71 ± 0.00 c | 11.97 ± 0.01 h | 12.78 ± 0.04 b |
ΔE | ---- | 9.87 ± 0.03 f | 10.23 ± 0.01 e | 19.66 ± 0.03 a | 11.74 ± 0.01 d | 9.32 ± 0.03 g | 19.31 ± 0.02 b | 8.62 ± 0.01 h | 14.57 ± 0.04 c | 8.40 ± 0.03 i |
Sensory properties • | ||||||||||
Color | 8.76 ± 1.96 a | 8.11 ± 1.70 e | 6.71 ± 1.25 f | 5.86 ± 1.36 j | 6.54 ± 1.22 g | 8.32 ± 1.20 d | 6.19 ± 1.10 i | 8.56 ± 1.82 c | 6.46 ± 1.70 h | 8.61 ± 1.09 b |
Taste | 8.91 ± 1.84 a | 7.94 ± 1.68 e | 6.54 ± 1.19 f | 5.93 ± 1.83 j | 6.40 ± 1.37 g | 8.09 ± 1.27 d | 6.13 ± 0.98 i | 8.37 ± 1.18 c | 6.29 ± 1.67 h | 8.41 ± 1.10 b |
Flavor | 8.09 ± 1.57 a | 7.44 ± 1.64 e | 6.03 ± 1.27 f | 5.58 ± 1.56 j | 5.91 ± 1.61 g | 7.54 ± 1.02 d | 5.69 ± 1.12 i | 7.85 ± 1.77 c | 5.78 ± 1.61 h | 7.88 ± 1.45 b |
Texture | 8.93 ± 1.40 a | 7.83 ± 1.82 e | 6.43 ± 1.34 f | 6.02 ± 1.79 j | 6.33 ± 1.52 g | 7.92 ± 1.17 d | 6.13 ± 1.17 i | 8.17 ± 1.01 c | 6.22 ± 1.89 h | 8.21 ± 1.27 b |
Overall acceptability | 8.87 ± 1.21 a | 8.07 ± 1.93 e | 6.67 ± 1.31 f | 6.05 ± 1.83 j | 6.53 ± 1.41 g | 8.22 ± 1.08 d | 6.26 ± 1.09 i | 8.49 ± 1.89 c | 6.43 ± 1.32 h | 8.53 ± 1.13 b |
TDF (g/100 g) | OCT (min) | Cl (%) | MII (Kg CP/kg Up) | Firmness (N) | Stickiness (N) | ∆E | To (°C) | Tp (°C) | Tc (°C) | H (J/g) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. | F. | p. |
X1 | 1760.54 | 0.0000 | 275.23 | 0.0000 | 336.51 | 0.0000 | 88.88 | 0.0002 | 40.92 | 0.0014 | 141.97 | 0.0001 | 328.18 | 0.0000 | 106.53 | 0.0001 | 118.31 | 0.0001 | 108.85 | 0.0001 | 54.34 | 0.0007 |
X2 | 45.51 | 0.0011 | 20.04 | 0.0065 | 39.15 | 0.0015 | 11.07 | 0.0209 | 10.20 | 0.0242 | 10.77 | 0.0219 | 18.90 | 0.0074 | 13.75 | 0.0139 | 16.86 | 0.0093 | 15.85 | 0.0105 | 7.24 | 0.0433 |
X1 × 1 | 2.96 | 0.1460 | 4.78 | 0.0804 | 10.83 | 0.0217 | 3.11 | 0.1383 | 2.76 | 0.1573 | 1.15 | 0.3334 | 80.56 | 0.0003 | 1.78 | 0.2401 | 1.74 | 0.2438 | 1.68 | 0.2511 | 2.94 | 0.1473 |
X1 × 2 | 9.04 | 0.0299 | 1.82 | 0.2355 | 1.72 | 0.2461 | 0.09 | 0.7756 | 0.32 | 0.5945 | 0.00 | 0.9823 | 8.52 | 0.0330 | 2.45 | 0.1781 | 1.95 | 0.2217 | 1.98 | 0.2180 | 5.85 | 0.0602 |
X2 × 2 | 16.32 | 0.0099 | 5.11 | 0.0734 | 1.22 | 0.3189 | 0.06 | 0.8107 | 0.01 | 0.9302 | 0.13 | 0.7344 | 5.95 | 0.0587 | 1.36 | 0.2965 | 0.99 | 0.3644 | 1.61 | 0.2599 | 0.12 | 0.7424 |
R2 | 99.74 | 98.5367 | 98.8226 | 95.6893 | 92.2817 | 97.0473 | 98.9435 | 96.3575 | 96.7292 | 96.452 | 94.1099 | |||||||||||
R2 (d.f.) | 99.4955 | 97.0734 | 97.6453 | 91.3785 | 84.5634 | 94.0945 | 97.887 | 92.715 | 93.4583 | 92.904 | 88.2198 | |||||||||||
MAE | 0.0946195 | 0.0071620 | 0.0095813 | 0.0227303 | 0.0275063 | 0.0521069 | 0.283463 | 0.113512 | 0.121282 | 0.122567 | 0.0977168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namir, M.; Iskander, A.; Alyamani, A.; Sayed-Ahmed, E.T.A.; Saad, A.M.; Elsahy, K.; El-Tarabily, K.A.; Conte-Junior, C.A. Upgrading Common Wheat Pasta by Fiber-Rich Fraction of Potato Peel Byproduct at Different Particle Sizes: Effects on Physicochemical, Thermal, and Sensory Properties. Molecules 2022, 27, 2868. https://doi.org/10.3390/molecules27092868
Namir M, Iskander A, Alyamani A, Sayed-Ahmed ETA, Saad AM, Elsahy K, El-Tarabily KA, Conte-Junior CA. Upgrading Common Wheat Pasta by Fiber-Rich Fraction of Potato Peel Byproduct at Different Particle Sizes: Effects on Physicochemical, Thermal, and Sensory Properties. Molecules. 2022; 27(9):2868. https://doi.org/10.3390/molecules27092868
Chicago/Turabian StyleNamir, Mohammad, Ali Iskander, Amal Alyamani, Eman T. Abou Sayed-Ahmed, Ahmed M. Saad, Kamal Elsahy, Khaled A. El-Tarabily, and Carlos Adam Conte-Junior. 2022. "Upgrading Common Wheat Pasta by Fiber-Rich Fraction of Potato Peel Byproduct at Different Particle Sizes: Effects on Physicochemical, Thermal, and Sensory Properties" Molecules 27, no. 9: 2868. https://doi.org/10.3390/molecules27092868
APA StyleNamir, M., Iskander, A., Alyamani, A., Sayed-Ahmed, E. T. A., Saad, A. M., Elsahy, K., El-Tarabily, K. A., & Conte-Junior, C. A. (2022). Upgrading Common Wheat Pasta by Fiber-Rich Fraction of Potato Peel Byproduct at Different Particle Sizes: Effects on Physicochemical, Thermal, and Sensory Properties. Molecules, 27(9), 2868. https://doi.org/10.3390/molecules27092868