Surface Coordination of Pd/ZnIn2S4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. Photocatalytic Performance
2.3. Adsorption Performance
2.4. Photocatalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of ZnIn2S4 Nanosheets (ZIS)
3.3. Synthesis of Pd/ZnIn2S4 Nanosheets (Pd/ZIS)
3.4. Dispersion Experiment
3.5. Characterization Methods
3.6. Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yao, Z.; Miras, H.N.; Song, Y.F. Efficient concurrent removal of sulfur and nitrogen contents from complex oil mixtures by using polyoxometalate-based composite materials. Inorg. Chem. Front. 2016, 3, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Padoley, K.V.; Mudliar, S.N.; Banerjee, S.K.; Deshmukh, S.C.; Pandey, R.A. Fenton oxidation: A pretreatment option for improved biological treatment of pyridine and 3-cyanopyridine plant wastewater. Chem. Eng. J. 2011, 166, 1–9. [Google Scholar] [CrossRef]
- Jiirgen, M.L.; Dieter, H.S.; Wei, M.H.; Paul, J.C. Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases. Nature 1990, 346, 552–553. [Google Scholar] [CrossRef]
- Ahmed, I.; Khan, N.A.; Jhung, S.H. Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chem. Eng. J. 2017, 321, 40–47. [Google Scholar] [CrossRef]
- Bello, S.S.; Wang, C.; Zhang, M.; Gao, H.; Han, Z.; Shi, L.; Su, F.; Xu, G. A Review on the Reaction Mechanism of Hydrodesulfurization and Hydrodenitrogenation in Heavy Oil Upgrading. Energy Fuels 2021, 35, 10998–11016. [Google Scholar] [CrossRef]
- Misra, P.; Badoga, S.; Dalai, A.K.; Adjaye, J. Enhancement of sulfur and nitrogen removal from heavy gas oil by using polymeric adsorbent followed by hydrotreatment. Fuel 2018, 226, 127–136. [Google Scholar] [CrossRef]
- Shu, C.; Wang, L.; Kong, P.; Gao, M. Adsorptive removal of nitrogen compounds from fuel oil by a poly ionic liquid PVIm-PXDC. Sep. Sci. Technol. 2018, 54, 2567–2576. [Google Scholar] [CrossRef]
- Han, D.Y.; Li, G.X.; Cao, Z.B.; Zhai, X.Y.; Yuan, M.M. A Study on the Denitrogenation of Fushun Shale Oil. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 622–628. [Google Scholar] [CrossRef]
- Li, J.; Cai, W.; Cai, J. The characteristics and mechanisms of pyridine biodegradation by Streptomyces sp. J. Hazard. Mater. 2009, 165, 950–954. [Google Scholar] [CrossRef]
- Sun, J.Q.; Xu, L.; Tang, Y.Q.; Chen, F.M.; Liu, W.Q.; Wu, X.L. Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol. J. Hazard. Mater. 2011, 191, 62–68. [Google Scholar] [CrossRef]
- Li, Y.; Yi, R.; Yi, C.; Zhou, B.; Wang, H. Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge. J. Environ. Sci. 2017, 53, 238–247. [Google Scholar] [CrossRef]
- Liu, T.; Ding, Y.; Liu, C.; Han, J.; Wang, A. UV activation of the pi bond in pyridine for efficient pyridine degradation and mineralization by UV/H2O2 treatment. Chemosphere 2020, 258, 127208. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Liu, G.; Luo, H.; Zhang, R. Pyridine degradation in the microbial fuel cells. J. Hazard. Mater. 2009, 172, 465–471. [Google Scholar] [CrossRef]
- Yao, H.; Ren, Y.; Deng, X.; Wei, C. Dual substrates biodegradation kinetics of m-cresol and pyridine by Lysinibacillus cresolivorans. J. Hazard. Mater. 2011, 186, 1136–1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, L.; Yan, N.; Tang, Y.; Liu, R.; Rittmann, B.E. UV photolysis for accelerating pyridine biodegradation. Environ. Sci. Technol. 2014, 48, 649–655. [Google Scholar] [CrossRef]
- Luana, V.; Wallace, C.; Ricardo, J.; de Claudia, O.; Sandra, S.; Marco, A.G. Removal of sulfur and nitrogen compounds from diesel oil by adsorption using clays as adsorbents. Energy Fuels 2017, 31, 11731–11742. [Google Scholar] [CrossRef]
- Qu, D.; Feng, X.; Li, N.; Ma, X.; Shang, C.; Chen, X.D. Adsorption of heterocyclic sulfur and nitrogen compounds in liquid hydrocarbons on activated carbons modified by oxidation: Capacity, selectivity and mechanism. RSC Adv. 2016, 6, 41982–41990. [Google Scholar] [CrossRef]
- Laredo, G.C.; Vega-Merino, P.M.; Trejo-Zárraga, F.; Castillo, J. Denitrogenation of middle distillates using adsorbent materials towards ULSD production: A review. Fuel Process. Technol. 2013, 106, 21–32. [Google Scholar] [CrossRef]
- Roman, F.F.; Diaz de Tuesta, J.L.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review. Catalysts 2021, 11, 1239. [Google Scholar] [CrossRef]
- Li, Y.; Lv, K.; Ho, W.; Zhao, Z.; Huang, Y. Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. Chin. J. Catal. 2017, 38, 321–329. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Dong, X.a.; Dong, F.; Zhang, Y. Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: In situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chin. J. Catal. 2017, 38, 2030–2038. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Y.; Zhang, C.; Tian, L.; Li, X.; Deng, K.; Chen, L.; Duan, Y.; Lv, K. Enhanced visible photocatalytic activity of TiO2 hollow boxes modified by methionine for RhB degradation and NO oxidation. Chin. J. Catal. 2018, 39, 736–746. [Google Scholar] [CrossRef]
- Low, G.K.C.; McEvoy, S.R.; Mathews, R.W. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogenatoms. Environ. Sci. Technol. 1991, 25, 460–467. [Google Scholar] [CrossRef]
- Liang, R.; Wang, S.; Lu, Y.; Yan, G.; He, Z.; Xia, Y.; Liang, Z.; Wu, L. Assembling Ultrafine SnO2 Nanoparticles on MIL-101(Cr) Octahedrons for Efficient Fuel Photocatalytic Denitrification. Molecules 2021, 26, 7566. [Google Scholar] [CrossRef]
- Xu, B.; He, P.; Liu, H.; Wang, P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem. Int. Ed. Engl. 2014, 53, 2339–2343. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, L.; Xie, J.; Zhang, X.; Liu, Q.; Yao, T.; Wei, S.; Zhang, Q.; Xie, Y. Enhanced Photoexcited Carrier Separation in Oxygen-Doped ZnIn2S4 Nanosheets for Hydrogen Evolution. Angew. Chem. Int. Ed. Engl. 2016, 55, 6716–6720. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, G.; Ren, Z.; Pan, K.; Shi, Y.; Wang, J.; Fu, H. Hierarchical core-shell carbon nanofiber@ ZnIn2S4 composites for enhanced hydrogen evolution performance. ACS Appl. Mater. Interfaces 2014, 6, 13841–13849. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 248, 193–201. [Google Scholar] [CrossRef]
- Yang, C.; Li, Q.; Xia, Y.; Lv, K.; Li, M. Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst. Appl. Surf. Sci. 2019, 464, 388–395. [Google Scholar] [CrossRef]
- Gao, B.; Liu, L.; Liu, J.; Yang, F. Photocatalytic degradation of 2,4,6-tribromophenol on Fe2O3 or FeOOH doped ZnIn2S4 heterostructure: Insight into degradation mechanism. Appl. Catal. B Environ. 2014, 147, 929–939. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.; Jiang, Y.; Zhang, W.; Zhang, J.; Wu, X.; Liu, Z.; Deng, W. Hierarchical Sb2S3/ZnIn2S4 core-shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation. J. Colloid. Interface Sci. 2022, 623, 109–123. [Google Scholar] [CrossRef]
- Tang, M.; Ao, Y.; Wang, P.; Wang, C. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation. J. Hazard. Mater. 2020, 387, 121713. [Google Scholar] [CrossRef]
- Bo, L.; He, K.; Tan, N.; Gao, B.; Feng, Q.; Liu, J.; Wang, L. Photocatalytic oxidation of trace carbamazepine in aqueous solution by visible-light-driven ZnIn2S4: Performance and mechanism. J. Environ. Manag. 2017, 190, 259–265. [Google Scholar] [CrossRef]
- Zuo, G.; Wang, Y.; Teo, W.L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2 TX MXene for Photocatalytic H2 Evolution. Angew. Chem. Int. Ed. Engl. 2020, 59, 11287–11292. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Dong, X.; Li, H. A Review and Recent Developments in Full-Spectrum Photocatalysis using ZnIn2S4-Based Photocatalysts. Energy Technol. 2021, 9, 2100033. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution. J. Mater. Sci. Technol. 2022, 114, 81–89. [Google Scholar] [CrossRef]
- Jia, T.; Liu, M.; Zheng, C.; Long, F.; Min, Z.; Fu, F.; Yu, D.; Li, J.; Lee, J.H.; Kim, N.H. One-Pot Hydrothermal Synthesis of La-Doped ZnIn2S4 Microspheres with Improved Visible-Light Photocatalytic Performance. Nanomaterials 2020, 10, 2026. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Shawky, A.; Aljahdali, M.S. Palladium/zinc indium sulfide microspheres: Enhanced photocatalysts prepare methanol under visible light conditions. J. Taiwan Inst. Chem. Eng. 2016, 65, 498–504. [Google Scholar] [CrossRef]
- Wang, B.; Deng, Z.; Fu, X.; Xu, C.; Li, Z. Photodeposition of Pd nanoparticles on ZnIn2S4 for efficient alkylation of amines and ketones’ α-H with alcohols under visible light. Appl. Catal. B Environ. 2018, 237, 970–975. [Google Scholar] [CrossRef]
- Shi, X.; Dai, C.; Wang, X.; Hu, J.; Zhang, J.; Zheng, L.; Mao, L.; Zheng, H.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef]
- Mandal, S.; Adhikari, S.; Shengyan, P.; Hui, M.; Kim, D.-H. Constructing gold-sensitized ZnIn2S4 microarchitectures for efficient visible light-driven photochemical oxidation and sensing of micropollutants. Appl. Surf. Sci. 2019, 498, 143840. [Google Scholar] [CrossRef]
- Zhu, T.; Ye, X.; Zhang, Q.; Hui, Z.; Wang, X.; Chen, S. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid. J. Hazard. Mater. 2019, 367, 277–285. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Li, M.; Liu, R.; Gao, Z.; Yin, Z. Design of AgxAu1−x alloy/ZnIn2S4 system with tunable spectral response and Schottky barrier height for visible-light-driven hydrogen evolution. Chem. Eng. J. 2020, 382, 122593. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Bowker, M.; Morton, C.; Kennedy, J.; Bahruji, H.; Greves, J.; Jones, W.; Davies, P.R.; Brookes, C.; Wells, P.P.; Dimitratos, N. Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalysts. J. Catal. 2014, 310, 10–15. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Bayoumy, W.A.; Khairy, M.; Mousa, M.A. Synthesis of micro–mesoporous TiO2 materials assembled via cationic surfactants: Morphology, thermal stability and surface acidity characteristics. Microporous Mesoporous Mater. 2007, 103, 174–183. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Cheng, H.; Gao, F.; Liu, C.; Teppen, B.J. Thermodynamic Mechanism and Interfacial Structure of Kaolinite Intercalation and Surface Modification by Alkane Surfactants with Neutral and Ionic Head Groups. J. Phys. Chem. C Nanomater. Interfaces 2017, 121, 8824–8831. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Dong, S.; Hao, J.; Cui, J.; Hoffmann, H. Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules. Langmuir 2017, 33, 3047–3055. [Google Scholar] [CrossRef]
- Yang, G.; Guo, Q.; Yang, D.; Peng, P.; Li, J. Disperse ultrafine amorphous SiO2 nanoparticles synthesized via precipitation and calcination. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 445–454. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. Bi SPR-Promoted Z-Scheme Bi2MoO6/CdS-Diethylenetriamine Composite with Effectively Enhanced Visible Light Photocatalytic Hydrogen Evolution Activity and Stability. ACS Sustain. Chem. Eng. 2017, 6, 696–706. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Q.; Lv, K.; Tang, D.; Li, M. Superiority of graphene over carbon analogs for enhanced photocatalytic H2-production activity of ZnIn2S4. Appl. Catal. B Environ. 2017, 206, 344–352. [Google Scholar] [CrossRef]
- Manhas, F.M.; Fatima, A.; Verma, I.; Siddiqui, N.; Muthu, S.; AlSalem, H.S.; Savita, S.; Singh, M.; Javed, S. Quantum computational, spectroscopic (FT-IR, NMR and UV–Vis) profiling, Hirshfeld surface, molecular docking and dynamics simulation studies on pyridine-2,6-dicarbonyl dichloride. J. Mol. Struct. 2022, 1265, 133374. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Liu, C.; Wu, T.k.; Liu, R.; Wu, L. Surface synergetic effects of Pt clusters/monolayer Bi2MoO6 nanosheet for promoting the photocatalytic selective reduction of 4-nitrostyrene to 4-vinylaniline. Appl. Catal. B Environ. 2022, 304, 121010. [Google Scholar] [CrossRef]
- Liang, S.; Wen, L.; Lin, S.; Bi, J.; Feng, P.; Fu, X.; Wu, L. Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angew. Chem. Int. Ed. Engl. 2014, 53, 2951–2955. [Google Scholar] [CrossRef]
- Hu, T.; Dai, K.; Zhang, J.; Chen, S. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Appl. Catal. B Environ. 2020, 269, 118844. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Xiao, T.; Yuan, X.; Zeng, G.; Tu, W.; Wu, S.; Lee, H.Y.; Tan, Y.Z.; Chew, J.W. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B Environ. 2018, 233, 213–225. [Google Scholar] [CrossRef]
- Zhu, C.; He, Q.; Yao, H.; Le, S.; Chen, W.; Chen, C.; Wang, S.; Duan, X. Amino-functionalized NH2-MIL-125(Ti)-decorated hierarchical flowerlike ZnIn2S4 for boosted visible-light photocatalytic degradation. Environ. Res. 2022, 204, 112368. [Google Scholar] [CrossRef]
- He, Z.; Liang, R.; Zhou, C.; Yan, G.; Wu, L. Carbon quantum dots (CQDs)/noble metal co-decorated MIL-53(Fe) as difunctional photocatalysts for the simultaneous removal of Cr(VI) and dyes. Sep. Purif. Technol. 2021, 255, 117725. [Google Scholar] [CrossRef]
- Zhang, X.; Song, H.; Sun, C.; Chen, C.; Han, F.; Li, X. Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation. Mater. Chem. Phys. 2019, 226, 34–43. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, R.; Yan, G.; Liang, Z.; Hu, W.; Xia, Y.; Huang, R. Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification. J. Fuel Chem. Technol. 2021, 50, 1–8. Available online: https://kns.cnki.net/kcms/detail/14.1140.tq.20211025.1659.002.html (accessed on 21 February 2022). [CrossRef]
- Hu, W.; Jiang, M.; Liang, R.; Huang, R.; Xia, Y.; Liang, Z.; Yan, G. Construction of Bi2MoO6/CdS heterostructures with enhanced visible light photocatalytic activity for fuel denitrification. Dalton Trans. 2021, 50, 2596–2605. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yan, G.; Huang, Y.; Wang, X.; Long, J.; Li, L.; Xu, T. Visible-light photocatalytic denitrogenation of nitrogen-containing compound in petroleum by metastable Bi20TiO32. Int. J. Hydrogen Energy 2014, 39, 13401–13407. [Google Scholar] [CrossRef]
- Lu, Y.; Pan, H.; Lai, J.; Xia, Y.; Chen, L.; Liang, R.; Yan, G.; Huang, R. Affiliation Bimetallic CoCu-ZIF material for efficient visible light photocatalytic fuel denitrification. RSC Adv. 2022, 12, 12702–12709. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhan, E.; Wang, S.; Liu, X.; Yan, G.; Chen, L.; Wang, X. Surface Coordination of Pd/ZnIn2S4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification. Molecules 2023, 28, 282. https://doi.org/10.3390/molecules28010282
Wang D, Zhan E, Wang S, Liu X, Yan G, Chen L, Wang X. Surface Coordination of Pd/ZnIn2S4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification. Molecules. 2023; 28(1):282. https://doi.org/10.3390/molecules28010282
Chicago/Turabian StyleWang, Deling, Erda Zhan, Shihui Wang, Xiyao Liu, Guiyang Yan, Lu Chen, and Xuxu Wang. 2023. "Surface Coordination of Pd/ZnIn2S4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification" Molecules 28, no. 1: 282. https://doi.org/10.3390/molecules28010282
APA StyleWang, D., Zhan, E., Wang, S., Liu, X., Yan, G., Chen, L., & Wang, X. (2023). Surface Coordination of Pd/ZnIn2S4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification. Molecules, 28(1), 282. https://doi.org/10.3390/molecules28010282