Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO2
Abstract
:1. Introduction
2. Photocatalytic CO2 Reduction Foundation
2.1. Basic Principles of Photocatalysis
2.2. Mechanism of Photocatalytic CO2 Reduction
2.3. Bi-Based Catalysts
3. Optimization Strategy of Bi-Based Photocatalyst
3.1. Introduction of Vacancies
3.2. Morphological Control
3.3. Heterojunction Construction
3.4. Co-Catalyst Loading
4. Multiple Bi-Based Photocatalysts for CO2 Reduction
4.1. Binary Bi-Based Semiconductor
4.2. Ternary Bi-Based Semiconductors
4.3. Quaternary Bi-Based Semiconductors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
- Shinde, G.Y.; Mote, A.S.; Gawande, M.B. Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts 2022, 12, 94. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, L. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fang, Y.; Wang, J.; Fang, H.; Xi, S.; Zhao, X.; Xu, D.; Xu, H.; Yu, W.; Hai, X.; et al. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 2021, 12, 2351. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Y.; Sun, W.; Miao, W.K. Living Atomically Dispersed Cu Ultrathin TiO2 Nanosheet CO2 Reduction Photocatalyst. Adv. Sci. 2019, 6, 1900289. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, G.; Naushad, M.; Ahamad, T.; Veses, R.C.; Stadler, F.J. Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO. Chem. Eng. J. 2019, 370, 148–165. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, J.; Li, S.C.; Huang, C.P.; Yao, W.F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q.J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863–11874. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal B 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Yu, J.G.; Low, J.X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2 reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef]
- Wang, Z.; Teramura, K.; Huang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catal. Sci. Technol. 2016, 6, 1025–1032. [Google Scholar] [CrossRef]
- Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M.A. noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2014, 2, 3407. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, R.-T.; Hong, L.-F.; Ji, X.-Y.; Li, Z.-S.; Lin, Z.-D.; Pan, W.-G. Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: A review. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125836. [Google Scholar] [CrossRef]
- An, X.; Li, K.; Tang, J. Inside Cover Picture: Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem 2014, 7, 1086. [Google Scholar] [CrossRef] [PubMed]
- Shown, I.; Hsu, H.C.; Chang, Y.C.; Lin, C.H.; Roy, P.K.; Ganguly, A.; Wang, C.H.; Chang, J.K.; Wu, C.I.; Chen, L.C.; et al. Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Lett. 2014, 14, 6097–6103. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, Z.; Zhao, Z.; Liu, Q.; Kou, J.; Chen, X.; Gao, J.; Yan, S.C.; Zou, Z.G. High-yield snthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 2011, 3, 3594–3601. [Google Scholar] [CrossRef]
- Gondal, M.A.; Dastageer, M.A.; Oloore, L.E.; Baig, U. Laser induced selective photo-catalytic reduction of CO2 into methanol using In2O3-WO3 nano-composite. J. Photochem. Photobiol. A 2017, 343, 40–50. [Google Scholar] [CrossRef]
- Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481–2498. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Wang, Q.N.; Wu, C. Rapid and scalable synthesis of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO2 to formate. J. CO2 Util. 2022, 36, 96–104. [Google Scholar] [CrossRef]
- Wu, D.; Chen, W.Y.; Wang, X.W.; Fu, X.Z.; Luo, J.L. Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles. J. CO2 Util. 2020, 37, 353–359. [Google Scholar] [CrossRef]
- Choi, K.M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.A.; Barmanbek, J.T.; Alshammari, A.S.; Yang, P.; Yaghi, O.M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Dong, F.; Chen, Q.; Jiang, H.; Xu, M.; Shi, J. Non-additional carbon source one-step synthesis of Bi2O2CO3-based ternary composite for efficient Z-scheme photocatalysis. J. Colloid. Interf. Sci. 2019, 536, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Y.; Dai, W.W. Electronic structure and optical properties of BiOI ultrathin films for photocatalytic water splitting. Inorg. Chem. 2015, 54, 10732–10737. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.F.; Guo, R.T.; Yuan, Y.; Ji, X.Y.; Lin, Z.D.; Li, Z.S.; Pan, W.G. Recent progress of transition metal phosphides for photocatalytic hydrogen evolution. ChemSusChem 2021, 14, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Marcì, G.; García-López, E.I.; Palmisano, L. Photocatalytic CO2 reduction in gassolid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar ligh. Catal. Commun. 2014, 53, 38–41. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, H.; Wu, Z.; Wang, L. G-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 2018, 300, 160–172. [Google Scholar] [CrossRef]
- Que, M.; Cai, W.; Chen, J.; Zhu, L.; Yang, Y. Recent advances in g-C3N4 composites within four types of heterojunctions for photocatalytic CO2 reduction. Nanoscale 2021, 13, 6692–6712. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80. [Google Scholar] [CrossRef]
- Cao, S.; Yu, J. G-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101–2107. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Y.; Ling, Y.; Si, J.C.; Li, X.; Wang, J.L.; Ye, H.; Zhao, J.S.; Li, S.Q.; Zhao, Q.D. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 125944. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Dai, W.W. Structural, electronic, and optical properties of Eu-doped BiOX (X = F, Cl, Br, I): A DFT+U study. Inorg. Chem. 2014, 53, 13001–13011. [Google Scholar] [CrossRef]
- Xie, S.; Ma, W.; Wu, X.; Zhang, H.; Zhang, Q.; Wang, Y.; Wang, Y. Photocatalytic and Electrocatalytic Transformations of C1Molecules Involving C-C Coupling. Energy Environ. Sci. 2021, 14, 37–89. [Google Scholar] [CrossRef]
- Ajmal, S.; Yang, Y.; Tahir, M.A.; Li, K.; Bacha, A.U.R.; Nabi, I.; Liu, Y.; Wang, T.; Zhang, L. Boosting C2 Products in Electrochemical CO2 Reduction over Highly Dense Copper Nanoplates. Catal. Sci. Technol. 2020, 10, 4562–4570. [Google Scholar] [CrossRef]
- Hu, X.; Guo, R.T.; Chen, X.; Bi, Z.X.; Wang, J.; Pan, W.G. Bismuth-based Z-scheme structure for photocatalytic CO2 reduction: A review. J. Environ. Chem. Eng. 2022, 10, 108582. [Google Scholar] [CrossRef]
- Hirano, K.; Inoue, K.; Yatsu, T. Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. J. Photochem. Photobiol. A 1992, 64, 255. [Google Scholar] [CrossRef]
- Adachi, K.; Ohta, K.; Mizuno, T. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol. Energy 1994, 53, 187. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Chou, H.-C.; Wu, J.C.; Tsai, D.P.; Mul, G. CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl. Catal. A Gen. 2010, 380, 172–177. [Google Scholar] [CrossRef]
- Li, Y.Y.; Fan, J.S.; Tan, R.Q.; Yao, H.C.; Peng, Y.; Liu, Q.C.; Li, Z.J. Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomaterials 2020, 10, 337. [Google Scholar]
- Song, Y.; Chen, W.; Wei, W.; Sun, Y. Advances in Clean Fuel Ethanol Production from Electro-, Photo- and Photoelectro-Catalytic CO2 Reduction. Catalysts 2020, 10, 1287. [Google Scholar] [CrossRef]
- Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P.K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153. [Google Scholar] [CrossRef]
- Liu, L.; Dai, K.; Zhang, J.; Li, L. Plasmonic Bi-enhanced ammoniated alpha-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interface Sci. 2021, 604, 844–855. [Google Scholar] [CrossRef]
- Wang, Q.T.; Fang, Z.X.; Zhang, W.; Zhang, D. High-Efciency g-C3N4 Based Photocatalysts for CO2 Reduction: Modifcation Methods. Adv. Fiber Mater. 2020, 4, 342–360. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Zhuang, Z.; Zhong, Y.; Li, Q.; Wang, L. Photocatalytic Reduction of Carbon Dioxide to Methane over SiO2-Pillared HNb3O8. J. Phys. Chem. C 2012, 116, 16047. [Google Scholar] [CrossRef]
- Li, K.; Peng, B.; Peng, T. Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light. ACS Catal. 2016, 6, 7485. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Dong, X.A.; Chen, P.; Geng, Q.; Wang, H.; Li, J.Y.; Zhou, Y.; Dong, F. Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO2 for Efficient CO2 Photoreduction. ACS Nano 2021, 15, 14453–14464. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Moriwaki, H.; Maeda, K.; Yoneyama, H. Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. J. Photochem. Photobiol. A 1995, 86, 191. [Google Scholar] [CrossRef]
- Kim, C.; Cho, K.M.; Al-Saggaf, A.; Gereige, I.; Jung, H.-T. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/Carbon-coated Cu2O nanowire arrays under visible light. ACS Catal. 2018, 8, 4170–4177. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kumar, S.; Eslava, S.; Tonda, S. Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Appl. Catal. B 2018, 239, 586–598. [Google Scholar] [CrossRef]
- Hu, X.; Hu, J.; Peng, Q.; Ma, X.; Dong, S.; Wang, H. Construction of 2D all-solid-state Z-scheme g-C3N4/BiOI/RGO hybrid structure immobilized on Ni foam for CO2 reduction and pollutant degradation. Mater. Res. Bull. 2020, 122, 110682. [Google Scholar] [CrossRef]
- Li, X.; Wei, D.; Ye, L.; Li, Z. Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorg. Chem. Commun. 2019, 104, 171–177. [Google Scholar] [CrossRef]
- Dong, F.; Li, Q.; Sun, Y.; Ho, W.-K. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 2014, 4, 4341–4350. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; Smith, L.J.; O’Hare, D.; Zhang, T. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, L.; Song, J.J.; Mi, W.; Zou, J.J.; Wang, L.; Zhang, X. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Shi, X.; Li, D.; Song, Q.; Zhou, Y.; Jiang, D.; Shi, W. Oxygen vacancy engineering of BiOBr/HNb3O8 Z-scheme hybrid photocatalyst for boosting photocatalytic conversion of CO2. J. Colloid Interface Sci. 2021, 599, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Wang, S.Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H.; et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B Environ. 2019, 259, 118088. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, Q.; Li, Q.; Jing, X.; Wang, S.; Wang, W. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity. RSC Adv. 2017, 7, 40727–40733. [Google Scholar] [CrossRef]
- Gordon, T.R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R.T.; Fornasiero, P.; Murray, C.B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751–6761. [Google Scholar] [CrossRef]
- Gao, X.; Shang, Y.; Liu, L.; Fu, F. Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p–n heterojunction AgCl/δ-Bi2O3 nanosheets. J. Catal. 2019, 371, 71–80. [Google Scholar] [CrossRef]
- Zuo, C.; Tai, X.; Jiang, Z.; Liu, M.; Jiang, J.; Su, Q.; Yan, X. S-Scheme 2D/2D Heterojunction of ZnTiO3 Nanosheets/Bi2WO6 Nanosheets with Enhanced Photoelectrocatalytic Activity for Phenol Wastewater under Visible Light. Molecules 2023, 28, 3495. [Google Scholar] [CrossRef]
- Wu, J.J.; Xiong, L.J.; Hu, Y.J. Organic half-metal derived erythroid-like BiVO4/hm-C4N3 Z-Scheme photocatalyst: Reduction sites upgrading and rate-determining step modulation for overall CO2 and H2O conversion. Appl.Catal. B Environ. 2021, 295, 120277. [Google Scholar] [CrossRef]
- Lu, M.; Li, Q.; Zhang, C.; Fan, X.; Li, L.; Dong, Y.; Chen, G.; Shi, H. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/ BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342–352. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, R.T.; Hong, L.F.; Lin, Z.D.; Ji, X.Y.; Pan, W.G. Fabrication of a dual Sscheme Bi7O9I3/g-C3N4/Bi3O4Cl heterojunction with enhanced visible-lightdriven performance for phenol degradation. Chemosphere 2022, 287, 132241. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Guo, R.T.; Qin, H.; Wang, Z.Y.; Shi, X.; Pan, W.G.; Tang, J.Y.; Jia, P.Y.; Miao, Y.F.; Gu, J.W. Fabrication of Bi2O2(OH)NO3/g-C3N4 nanocomposites for efficient CO2 photocatalytic reduction. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123782. [Google Scholar] [CrossRef]
- Bai, Y.; Ye, L.Q.; Wang, L.; Shi, X.; Wang, P.Q.; Wei, B. g-C3N4/Bi4O5I2 heterojunction with I3−/I− redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B Environ. 2016, 194, 98–104. [Google Scholar] [CrossRef]
- Wu, J.; Li, K.; Yang, S.; Song, C.; Guo, X. In-situ construction of BiOBr/Bi2WO6 S-scheme heterojunction nanoflowers for highly efficient CO2 photoreduction: Regulation of morphology and surface oxygen vacancy. Chem. Eng. J. 2023, 452, 139493. [Google Scholar] [CrossRef]
- Miao, Z.; Zhang, Y.; Wang, N.; Xu, P.; Wang, X. BiOBr/Bi2S3 heterojunction with Sscheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O. J. Colloid Interface Sci. 2022, 620, 407–418. [Google Scholar] [CrossRef]
- Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15(A=Ca, Sr, and Ba) Using Water as a Reducing Reagent. J. Am. Chem. Soc. 2011, 133, 20863. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Hu, C.; Xie, M.; Jiang, J.; Xiong, Y. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094. [Google Scholar] [CrossRef]
- Yang, G.; Miao, W.; Yuan, Z.; Jiang, Z.; Huang, B.; Wang, P.; Chen, J. Bi quantum dots obtained via in situ photodeposition method as a new photocatalytic CO2 reduction cocatalyst instead of noble metals: Borrowing redox conversion between Bi2O3 and Bi. Appl. Catal. B 2018, 237, 302–308. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, H.Y.; Li, J.Y.; Liao, J.F.; Zhang, H.H.; Wang, X.D.; Kuang, D.B. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293. [Google Scholar] [CrossRef]
- Yoshino, S.; Sato, K.; Yamaguchi, Y.; Iwase, A.; Kudo, A. Z-schematic CO2 reduction to CO through interparticle electron transfer between SrTiO3: Rh of a reducing photocatalyst and BiVO4 of a water oxidation photocatalyst under visible light. ACS Appl. Energy Mater. 2020, 3, 10001–10007. [Google Scholar] [CrossRef]
- Xie, Z.K.; Xu, Y.Y.; Li, D.; Meng, S.C.; Chen, M.; Jiang, D.L. Covalently Bonded Bi2O3 Nanosheet/Bi2WO6 Network Heterostructures for Efficient Photocatalytic CO2 Reduction. ACS Appl. Energ. Mater. 2021, 3, 12194–12203. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.G.; Wang, Y.; Hao, Y.J.; Liu, R.H.; Li, F.T. One-step Synthesis of Defected Bi2Al4O7/β-Bi2O3 Heterojunctions for Photocatalytic Reduction of CO2 to CO. Green. Energy. Environ. 2021, 6, 244–252. [Google Scholar] [CrossRef]
- Jin, J.R.; He, T. Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl. Surf. Sci. 2017, 394, 364–370. [Google Scholar] [CrossRef]
- Kong, X.Y.; Lee, W.P.C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A.R. Oxygen-Deficient BiOBr as a Highly Stable Photocatalyst for Efficient CO2 Reduction into Renewable Carbon-Neutral Fuels. ChemCatChem 2016, 8, 3074–3081. [Google Scholar] [CrossRef]
- Dai, W.L.; Yu, J.J.; Deng, Y.Q.; Hu, X.; Wang, T.Y.; Luo, X.B. Facile synthesis of MoS2/Bi2WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation. Appl. Surf. Sci. 2017, 403, 230–239. [Google Scholar] [CrossRef]
- Liang, L.; Lei, F.C.; Gao, S.; Sun, Y.F.; Jiao, X.C.; Wu, J.; Qamar, S.; Xie, Y. Single Unit Cell Bismuth Tungstate Layers Realizing Robust Solar CO2 Reduction to Methanol. Angew. Chem. Int. Ed. 2015, 54, 13971–13974. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Wei, Y.; Yang, B.J.; Wang, B.; Chen, J.Z.; Jing, H.W. In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction. J. Catal. 2019, 377, 209–217. [Google Scholar] [CrossRef]
- Wei, Z.H.; Wang, Y.F.; Li, Y.Y.; Zhang, L.; Yao, H.C.; Li, Z.J. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets. J. CO2 Util. 2018, 28, 15–25. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Zhou, B.; Zhou, Y.; Zou, Z.G. Dimensional matched ultrathin BiVO4/Ti3C2Tx heterosystem for efficient photocatalytic conversion of CO2 to methanol. Mater. Lett. 2022, 306, 130937. [Google Scholar] [CrossRef]
- Mane, P.; Bagal, I.V.; Bae, H.; Kadam, A.N.; Burungale, V.; Heo, J.; Byu, S.W.; Ha, J.S. Recent trends and outlooks on engineering of BiVO4 photoanodes toward efficient photoelectrochemical water splitting and CO2 reduction: A comprehensive review. Int. J. Hydrogen Energy 2022, 47, 39796–39828. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.Q.; Zhou, Y.; Ye, L.Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482. [Google Scholar] [CrossRef]
- Duan, Z.Y.; Zhao, X.J.; Wei, C.W.; Chen, L.M. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion. Appl. Catal. A Gen. 2020, 594, 117459. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Xia, Y.G.; Li, H.P.; Wang, X.; Wei, J.; Jiao, X.L.; Chen, D.R. Oxygen vacancy dependent photocatalytic CO2 reduction activity in liquid-exfoliated atomically thin BiOCl nanosheets. Appl. Catal. B Environ. 2021, 297, 120426. [Google Scholar] [CrossRef]
- Guan, X.S.; Zhang, X.C.; Zhang, C.M.; Li, R.; Wang, Y.F.; Fan, C.M. One-step synthesis of novel Bi/Bi2SiO5 flower-like composites with highly-efficient CO2 photoreduction performance. Compos. Commun. 2020, 20, 100366. [Google Scholar] [CrossRef]
- Huang, L.; Duan, Z.Y.; Song, Y.Y.; Li, Q.S.; Chen, L.M. BiVO4 Microplates with Oxygen Vacancies Decorated with Metallic Cu and Bi Nanoparticles for CO2 Photoreduction. Appl. Nano Mater. 2021, 4, 3576–3585. [Google Scholar] [CrossRef]
- Guan, X.S.; Zhang, X.C.; Zhang, C.M.; Li, R.; Liu, J.X.; Wang, Y.F.; Wang, Y.W.; Fan, C.M.; Li, Z. In Situ Hydrothermal Synthesis of Metallic Bi Self-Deposited Bi2SiO5 with Enhanced Photocatalytic CO2 Reduction Performance. Sol. RRL 2022, 6, 2200346. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Yue, X.Y.; Fan, J.J.; Hao, X.M.; Xiang, Q.J. In situ fabrication of plasmonic Bi/CsPbBr3 composite photocatalyst toward enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 609, 155391. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, Y.C.; Qi, B.N.; Zhang, T.F.; Wang, L.L.; Shi, J.S.; Lan, X.F. Z-scheme Bi/AgBiS2/P25 for enhanced CO2 photoreduction to CH4 and CO with photo-themal synergy. Appl. Surf. Sci. 2021, 555, 149648. [Google Scholar] [CrossRef]
- Miao, Y.F.; Guo, R.T.; Gu, J.W.; Liu, Y.Z.; Wu, G.L.; Duan, C.P.; Pan, W.G. Z-Scheme Bi/Bi2O2CO3/Layered Double-Hydroxide Nanosheet Heterojunctions for Photocatalytic CO2 Reduction under Visible Light. ACS Appl. Nano Mater. 2021, 4, 4902–4911. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Li, Y.P.; Zhao, J.; Wu, Y.S.; Li, F.T. Simultaneous Phosphorylation and Bi Modification of BiOBr for Promoting Photocatalytic CO2 Reduction. ACS Sustain. Chem. Eng. 2019, 7, 14953–14961. [Google Scholar] [CrossRef]
- Jiang, L.S.; Li, Y.; Wu, X.Y.; Zhang, G.K. Rich oxygen vacancies mediated bismuth oxysulfide crystals towards photocatalytic CO2-to-CH4 conversion. Sci China Mater. 2021, 64, 2230–2241. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhi, X.; Harmer, J.R.; Xu, H.L.; Davey, K.; Ran, J.R.; Qian, S.Z. Facet-specific Active Surface Regulation of BixMOy (M=Mo, V, W) Nanosheets for Boosted Photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2022, 61, e202212355. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.C.; Zhou, M.; Ma, X.X.; Cheng, Z.H.; Wu, J.; Qi, Y.F.; Sun, Y.J.; Zhou, F.H.; Shen, Y.X.; Lu, S.Y. Self-assembled spherical In2O3/BiOI heterojunctions for enhanced photocatalytic CO2 reduction activity. J. CO2 Util. 2022, 65, 102220. [Google Scholar] [CrossRef]
- Li, R.J.; Luan, Q.J.; Dong, C.; Dong, W.J.; Tang, W.; Wang, G.; Lu, Y.F. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4. Appl. Catal. B Environ. 2021, 286, 119832. [Google Scholar] [CrossRef]
- Jiang, L.S.; Wang, D.Y.; Hu, Y.; Guo, T.; Liu, C.Y.; Liang, C.; Du, W.; Li, X.Q.; Liu, W. Surface-iodination-induced efficient charge separation in bismuth oxysulfide crystals for enhanced photocatalytic CO2 conversion. Chem. Eng. J. 2023, 453, 139848. [Google Scholar] [CrossRef]
- Cao, S.W.; Shen, B.J.; Tong, T.; Fu, J.W.; Yu, J.G. 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Zhao, D.W.; Xuan, Y.M.; Zhang, K.; Liu, X.L. Highly Selective Production of Ethanol over Hierarchical Bi@Bi2MoO6 composite via Bicarbonate-Assisted Photocatalytic CO2 Reduction. ChemSusChem 2021, 14, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
Reaction | Reduction Potential (vs. NHE at pH = 7) |
---|---|
CO2 + 2H+ + 2e− → HCOOH | −0.61 |
CO2 + 2H+ + 2e− → CO + H2O | −0.53 |
CO2 + 4H+ + 4e− → HCHO + H2O | −0.48 |
CO2 + 4H+ + 4e− → C + 2H2O | −0.20 |
CO2 + 6H+ + 6e− → CH3OH + H2O | −0.38 |
CO2 + 8H+ + 8e− → CH4 + 2H2O | −0.24 |
2CO2 + 2H+ + 2e− → C2H4 + 4H2O | −0.34 |
CO2 + 2H+ + 2e− → CH3OH + 3H2O | −0.33 |
2CO2 + 14H+ + 14e− → C2H6 + 4H2O | −0.27 |
2H+ + 2e− → H2 | −0.42 |
Names | Abbreviations |
---|---|
Valence band | VB |
Conduction band | CB |
Lowest unoccupied molecular orbital | LUMO |
Highest occupied molecular orbital | HOMO |
Catalysts | Preparation Method | Reaction Condition | Major Products | Production Rate /µmol gcat−1 h−1 | Ref. | |
---|---|---|---|---|---|---|
Light Source | Solution | |||||
ultrathin Bi4O5Br2 | precursor method | 300 W high-pressure xenon lamp | CO2/H2O vapor | CO | 31.57 μmol g−1 h−1 | [81] |
Ag-Bi/BiVO4 | galvanic replacement reaction | 300 W Xe-illuminator with a light cutoff filter (λ > 420 nm) | 0.5 mL H2O deionized water | CO | ~5.19 μmol g−1 h−1 | [82] |
a-BiOCl | liquid exfoliation | 300 W Xenon arc lamp with a filter (AM 1.5 G) | 50 mg of catalyst and 100 mL of Milli-Q water | CO | 8.99 µmol g−1 h−1 | [83] |
Bi/Bi2SiO5 | one-step hydrothermal strategy | 50 mL of deionized water | 300 W Xe-lamp | CO | 33.02 µmol g−1 h−1 | [84] |
Cu-Bi/BiVO4 | solvothermal method | 1 mL distill water | Xe lamp with a light intensity of 160 mW·cm2 and a wavelength range of 420~780 nm | CO | 11.15 μmol h−1 g−1 | [85] |
Bi/Bi2SiO5 | OH−-assisted hydrothermal controllable route | 50 mL of deionized water | 300 W Xe-lamp (200–2500 nm) | CO | 62.70 μmol h−1 g−1 | [86] |
Bi/CsPbBr3 | in-situ growth method | 0.5 mL of deionized water | 300 W Xenon lamp | CO | 19.1 µmol g−1 h−1 | [87] |
Bi/AgBiS2/P25 | one-step solvothermal treatment | 4 mL of deionized water | 300 W Xenon lamp | CH4 (CO) | 4.31 µmol g−1 h−1 (6.37 µmol g−1 h−1) | [88] |
Bi2O2CO3/Bi/NiAl-LDH | hydrothermal method | 100 mL deionized water | 300 W Xenon lamp with a cut−800 nm filter | CH4 | 56.64 μmol gcat−1 | [89] |
P/Bi-BiOBr | in-situ bismuth deposition and phosphorus modification | 2.5 mL H2O | 300 W xenon lamp with 400 nm filter | CH4 | 0.62 µmol g−1 h−1 | [90] |
Bi2O2S | hydrothermal method | 1.2 g of Na2CO3 and 2 mL of H2SO4 (1:1 vol.) | 300 W of Xe lamp with a 420-nm filter | CH4 | 43.87 µmol g−1 h−1 | [91] |
Bi2MoO6 | sonication-assisted chemical reduction | 20 mg of photocatalyst and 5 mL water | 300 W Xenon lamp | CH4 (CO) | 12.4 µmol g−1 h−1 (61.5 µmol g−1 h−1) | [92] |
In2O3/BiOI | solvothermal methods | TEOA as a sacrificial agen | 300 W Xe lamp with a cut-off filter (λ ≥ 420 nm) | CH4 (CO) | 5.69 µmol g−1 h−1 (11.98 µmol g−1 h−1) | [93] |
TiO2@BiOCl | chemical impregnation and calcination | 5 μL acetonitrile and 1 mL H2O | 300 W high pressure xenon lamp | CH4 | 168.5 µmol g−1 h−1 | [94] |
surface iodinated Bi2O2S | hydrothermal reaction | 1.2 g of Na2CO3 and 2 mL H2SO4 (1:1 vol) | Xe lamp (300 W) with a 420 nm cutoff filter | CH4 | 53.35 µmol g−1 h−1 | [95] |
Ti3C2/Bi2WO6 | etching and ultrasonic exfoliation | 0.084 g NaHCO3 and 0.3 mL H2SO4 (2 mol L−1) | Xe lamp (300 W) | CH4 | 1.78 µmol g−1 h−1 | [96] |
Bi@Bi2MoO6 | solvothermal approach | Xe lamp (λ ≥ 400) | 30 mL uniform solution containing 50 mg of photocatalyst and 0.42 g NaHCO3 | C2H5OH | 17.93 µmol g−1 h−1 | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, C.; Su, Q.; Jiang, Z. Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO2. Molecules 2023, 28, 3982. https://doi.org/10.3390/molecules28103982
Zuo C, Su Q, Jiang Z. Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO2. Molecules. 2023; 28(10):3982. https://doi.org/10.3390/molecules28103982
Chicago/Turabian StyleZuo, Cheng, Qian Su, and Zaiyong Jiang. 2023. "Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO2" Molecules 28, no. 10: 3982. https://doi.org/10.3390/molecules28103982
APA StyleZuo, C., Su, Q., & Jiang, Z. (2023). Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO2. Molecules, 28(10), 3982. https://doi.org/10.3390/molecules28103982