XDH and XO Research and Drug Discovery—Personal History
Abstract
:1. Introduction
2. Origin of My Enzyme Research
3. Establishment of a Fully Active Enzyme: Purification Method from Bovine Milk
4. The Method of Extraction and Purification of XDH from Rat Liver
5. CDNA Cloning and Determination of Primary Structure from Various Sources
6. Determination of the Crystal Structures and Site-Directed Mutagenesis Studies
7. Development of Enzyme Inhibitors and Their Analysis as Drugs
8. Bacterial XDH
9. Other Medical Aspects
10. Collaboration with Researchers at Home and Abroad
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schardinger, F. Über das Verhalten der Kuhmilch gegen Methylenblau und seine Verwendung zur Unterscheidung von ungekochter und gekochter Milch. Z. Unters. Nahr.-Genußmittel Sowie Gebrauchsgegenstände 1902, 5, 1113–1121. [Google Scholar] [CrossRef]
- Ball, E.G. Xanthine oxidase: Purification and properties. J. Biol. Chem. 1939, 128, 51–67. [Google Scholar] [CrossRef]
- Bray, R.C. Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In The Enzymes XII; Boyer, P.D., Ed.; Academic Press: New York, NY, USA, 1975; pp. 300–419. [Google Scholar]
- Olson, J.S.; Ballou, D.P.; Palmer, G.; Massey, V. The reaction of xanthine oxidase with molecular oxygen. J. Biol. Chem. 1974, 249, 4350–4362. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.S.; Ballou, D.P.; Palmer, G.; Massey, V. The mechanism of action of xanthine oxidase. J. Biol. Chem. 1974, 249, 4363–4382. [Google Scholar] [CrossRef]
- Massey, V.; Edmondson, D. On the mechanism of inactivation of xanthine oxidase by cyanide. J. Biol. Chem. 1970, 245, 6595–6598. [Google Scholar] [CrossRef]
- Stirpe, F.; Corte, E.D. The regulation of rat liver xanthine oxidase: Conversion of type D (dehydrogenase) into type O (oxidase) by a thermolabile factor, and reversibility by dithioerythritol. Biochim. Biophys. Acta 1970, 212, 195–197. [Google Scholar] [CrossRef]
- Nishino, T. Purification of hepatic xanthine dehydrogenase from chicken fed a high-protein diet. Biochim. Biophys. Acta 1974, 341, 93–98. [Google Scholar] [CrossRef]
- Nishino, T.; Itoh, R.; Tsushima, K. Studies on chicken liver xanthine dehydrogenase with reference to the problem of non-equivalence of FAD moieties. Biochim. Biophys. Acta 1975, 403, 17–22. [Google Scholar] [CrossRef]
- Itoh, R.; Nishino, T.; Usami, C.; Tsushima, K. An Immunochemical study of the change in chicken liver xanthine dehydrogenase activity during dietary adaptation. J. Biochem. 1978, 84, 19–26. [Google Scholar] [CrossRef]
- Nagahara, N.; Nishino, T.; Kanisawa, M.; Tsushima, K. Effect of dietary protein on purine nucleoside phosphorylase and xanthine dehydrogenase activities of liver and kidney in chicken and pigeon. Comp. Biochem. Physiol. 1987, 88, 589–593. [Google Scholar] [CrossRef]
- Nishino, T.; Nishino, T.; Tsushima, K. Purification of highly active milk xanthine oxidase by affinity chromatography on Sepharose 4B/folate gel. FEBS Lett. 1981, 131, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Usami, C.; Tsushima, K. Reversible interconversion between sulfo and desulfo xanthine oxidase in a system containing rhodanese, thiosulfate and sulfhydryl reagent. Proc. Natl. Acad. Sci. USA 1983, 80, 1826–1829. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Tsushima, K. Interaction of milk xanthine oxidase with folic acid: Inhibition of milk xanthine oxidase by folic acid and separation of the enzyme into two fractions on Sepharose 4B/folate gel. J. Biol. Chem. 1986, 261, 11242–11246. [Google Scholar] [CrossRef]
- Nishino, T.; Amaya, Y.; Kawamoto, S.; Kashima, Y.; Okamoto, K.; Nishino, T. Purification and Characterization of Multiple-Forms of Rat Liver Xanthine Oxidoreductase Expressed in Baculoviras-Insect Cell System. J. Biochem. 2002, 132, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Hille, R.; Nishino, T. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 1995, 9, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, M.; Nishino, T.; Nishino, T.; Ichikawa, A. Subcellular localization of xanthine oxidase in rat hepatocytes: High-resolution immunoelectron microscopic study combined with biochemical analysis. J. Histochem. Cytochem. 1992, 40, 1097–1103. [Google Scholar] [CrossRef]
- Ikegami, T.; Nishino, T. The presence of desulfo xanthine dehydrogenase in rat liver purified and crude enzyme preparations. Arch. Biochem. Biophys. 1986, 247, 254–260. [Google Scholar] [CrossRef]
- Saito, T.; Nishino, T. Differences in redox and kinetic properties between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase. J. Biol. Chem. 1989, 264, 10015–10022. [Google Scholar] [CrossRef]
- Schopfer, L.M.; Massey, V.; Nishino, T. Rapid reaction studies on the reduction and oxidation of chicken liver xanthine dehydrogenase by the xanthine/urate and NADH/NAD couples. J. Biol. Chem. 1988, 263, 13528–13538. [Google Scholar] [CrossRef]
- Nishino, T.; Nishino, T.; Schopfer, L.M.; Massey, V. The reactivity of xanthine dehydrogenase with molecular oxygen. J. Biol. Chem. 1989, 264, 2518–2527. [Google Scholar] [CrossRef]
- Nishino, T.; Nishino, T. The nicotinamide adenine dinucleotide-binding site of chicken liver xanthine dehydrogenase: Evidence for alteration of the redox potential of the flavin by NAD binding or modification of the NAD binding site and isolation of a modified peptide. J. Biol. Chem. 1989, 264, 5468–5473. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Nishino, T.; Schopfer, L.M.; Massey, V. Reactivity of chicken liver xanthine dehydrogenase containing modified flavins. J. Biol. Chem. 1989, 264, 6075–6085. [Google Scholar] [CrossRef] [PubMed]
- Massey, V.; Schopfer, L.M.; Nishino, T.; Nishino, T. Differences in the protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. J. Biol. Chem. 1989, 264, 10567–10573. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Nishino, T.; Massey, V. Differences in environment of FAD between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase shown by active site probe study. J. Biol. Chem. 1989, 264, 15930–15935. [Google Scholar] [CrossRef]
- Saito, T.; Massey, V.; Nishino, T. Light product of photoreactive 6-azido-FAD bound to deflavo- milk xanthine oxidase. Biochemistry 1992, 31, 6305–6311. [Google Scholar] [CrossRef] [PubMed]
- Amaya, Y.; Yamazaki, K.; Sato, M.; Noda, K.; Nishino, T.; Nishino, T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type: Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J. Biol. Chem. 1990, 265, 14170–14175. [Google Scholar]
- Sato, A.; Nishino, T.; Noda, K.; Amaya, Y.; Nishino, T. The structure of chicken liver xanthine dehydrogenase: cDNA cloning and the domain structure. J. Biol. Chem. 1995, 270, 2818–2826. [Google Scholar]
- Ichida, K.; Amaya, Y.; Noda, K.; Minoshima, S.; Hosoya, T.; Sakai, O.; Shimizu, N.; Nishino, T. Cloning of the cDNA encoding human xanthine dehydrogenase(oxidase): Structural analysis of the protein and chromosome location of the gene. Gene 1993, 133, 279–284. [Google Scholar]
- Eger, B.T.; Okamoto, K.; Enroth, C.; Sato, M.; Nishino, T.; Pai, E.F.; Nishino, T. Purification, crystallization and preliminary X-ray diffraction studies of xanthine Dehydrogenase and xanthine Oxidase isolated from bovine milk. Acta Cryst. 2000, 56, 1656–1658. [Google Scholar] [CrossRef]
- Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal Structures of Bovine Milk Xanthine Dehydrogenase and Xanthine Oxidase: Structure-Based Mechanism of Conversion. Proc. Natl. Acad. Sci. USA 2000, 97, 10723–10728. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Matsumura, T.; Ichida, K.; Okamoto, K.; Nishino, T. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: Roles of active site residues in binding and activation of purine substrate. J. Biochem. 2007, 141, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Kawaguchi, Y.; Eger, B.T.; Pai, E.F.; Nishino, T. Crystal Structures of Urate Bound Form of Xanthine Oxidoreductase: Substrate Orientation and Structure of the Key Reaction Intermediate. J. Amer. Chem. Soc. 2010, 132, 17080–17083. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Okamoto, K. The Role of the [2Fe-2S] Cluster Centers in Xanthine Oxidoreductase. J. Inorg. Biochem. 2000, 82, 43–49. [Google Scholar] [CrossRef]
- Pai, E.F.; Nishino, T. The molybdenum-containing xanthine and picolic acid dehydrogenase. In Metal Ions in Biological Systems; Siegel, A., Sige, H., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 431–454. [Google Scholar]
- Nishino, T.; Nishino, T. Conversion of the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by midification of cysteine residues with fluorodinitrobenzene. J. Biol. Chem. 1997, 272, 29859–29864. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, Y.; Nishino, T.; Okamoto, K.; Matsumura, T.; Eger, B.T.; Pai, E.F.; Nishino, T. Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase. Proc. Natl. Acad. Sci. USA 2003, 100, 8170–8175. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Okamoto, K.; Kawaguchi, Y.; Hori, H.; Matsumura, T.; Eger, B.T.; Pai, E.F.; Nishino, T. Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: Identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J. Biol. Chem. 2005, 280, 24888–24894. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Okamoto, K.; Eger, B.T.; Pai, E.F.; Nishino, T. Mammalian xanthine oxidoreductase—Mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008, 275, 3278–3289. [Google Scholar] [CrossRef]
- Nishino, T.; Okamoto, K.; Kawaguchi, Y.; Matsumura, T.; Eger, B.T.; Pai, E.F.; Nishino, T. The C-terminal peptide plays a role in the formation of an intermediate form during the transition between xanthine dehydrogenase and xanthine oxidase. FEBS J. 2015, 282, 3075–3090. [Google Scholar] [CrossRef]
- Okamoto, K.; Nishino, T. Mechanism of inhibition of xanthine oxidase with a new tight binding inhibitor. J. Biol. Chem. 1995, 270, 7816–7821. [Google Scholar] [CrossRef]
- Okamoto, K.; Eger, B.T.; Nishino, T.; Kondo, S.; Pai, E.F.; Nishino, T. An Extremely Potent Inhibitor of Xanthine Oxidoreductase: Crystal Structure of the Enzyme-Inhibitor Complex and Mechanism of Inhibition. J. Biol. Chem. 2003, 278, 1848–1855. [Google Scholar] [CrossRef]
- Fukunari, A.; Okamoto, K.; Nishino, T.; Eger, B.T.; Pai, E.F.; Kamezawa, M.; Yamada, I.; Kato, N. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: A potent xanthine oxidoreductase inhibitor with hepatic excretion. J. Pharmacol. Exp. Ther. 2004, 311, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Matsumoto, K.; Hille, R.; Eger, B.T.; Pai, E.F.; Nishino, T. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition. Proc. Natl. Acad. Sci. USA 2004, 101, 7931–7936. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Okamoto, K.; Ashizawa, N.; Nishino, T. FYX-051: A novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J. Pharmacol. Exp. Ther. 2011, 336, 95–103. [Google Scholar] [CrossRef]
- Kato, S.; Kato, M.; Kusano, T.; Nishino, T. New Strategy That Delays Progression of Amyotrophic Lateral Sclerosis in G1H-G93A Transgenic Mice: OralAdministration of Xanthine Oxidoreductase Inhibitors That Are Not Substrates for the Purine Salvage Pathway. J. Neuropathol. Exp. Neurol. 2016, 75, 1124–1144. [Google Scholar] [CrossRef]
- Leimkühler, S.; Stokert, A.L.; Igarashi, K.; Nishino, T.; Hille, R. The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase. J. Biol. Chem. 2004, 279, 40437–40444. [Google Scholar] [CrossRef]
- Kikuchi, H.; Fujisaki, H.; Furuta, T.; Okamoto, K.; Leimkühler, S.; Nishino, T. Different inhibitory potency of febuxostat towards mammalian and bacterial xanthine oxidoreductases: Insight from molecular dynamics. Sci. Rep. 2012, 2, 331. [Google Scholar] [CrossRef]
- Ichida, K.; Matsumura, T.; Sakuma, R.; Hosoya, T.; Nishino, T. Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem. Biophys. Res. Commun. 2001, 282, 1194–1200. [Google Scholar] [CrossRef]
- Ichida, K.; Amaya, K.Y.; Okamoto, Y.K.; Nishino, T. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int. J. Mol. Sci. 2012, 13, 15475–15495. [Google Scholar] [CrossRef]
- Ichida, K.; Amaya, Y.; Kamatani, N.; Nishino, T.; Hosoya, T.; Sakai, O. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J. Clin. Investig. 1997, 99, 2391–2397. [Google Scholar] [CrossRef]
- Kusano, T.; Nishino, T.; Okamoto, K.; Hille, R.; Nishino, T. The mechanism and significance of the conversion of xanthine dehydrogenase to xanthine oxidase in mammalian secretory gland cells. Redox Biol. 2023, 59, 102573. [Google Scholar] [CrossRef]
- McCord, J.M. Oxygen-derived radicals: A link between reperfusion injury and inflammation. Fed. Proc. 1987, 46, 2402–2406. [Google Scholar] [PubMed]
- Simmonds, H.A.; Reiter, S.; Nishino, T. Hereditary Xanthinuria. In The Metabolic and Molecular Basis of Inherited Disease, 7th eds.; Scriver, C.R., Ed.; McGraw Hill: New York, NY, USA, 1995; Chapter 54; pp. 1781–1797. [Google Scholar]
- Kusano, T.; Ehirchiou, D.; Matsumura, T.; Chobaz, V.; Nasi, S.; Castelblanco, M.; So, A.; Lavanchy, C.; Acha-Orbea, H.; Nishino, T.; et al. Targeted knock-in mice expressing the oxidase-fixed form of xanthine oxidoreductase favor tumor growth. Nat. Commun. 2019, 10, 4904. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishino, T. XDH and XO Research and Drug Discovery—Personal History. Molecules 2023, 28, 4440. https://doi.org/10.3390/molecules28114440
Nishino T. XDH and XO Research and Drug Discovery—Personal History. Molecules. 2023; 28(11):4440. https://doi.org/10.3390/molecules28114440
Chicago/Turabian StyleNishino, Takeshi. 2023. "XDH and XO Research and Drug Discovery—Personal History" Molecules 28, no. 11: 4440. https://doi.org/10.3390/molecules28114440
APA StyleNishino, T. (2023). XDH and XO Research and Drug Discovery—Personal History. Molecules, 28(11), 4440. https://doi.org/10.3390/molecules28114440