Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Crystal Structures, Particle Sizes, and Morphologies of Au Nanoparticles
2.2. The Effects of PVP–SDS Soft Templates on the Growth of Au Nanoparticles
2.3. Electrocatalytic Oxidation of Nitrites Detected by Au/GCEs
2.3.1. The Electrochemical Behavior of NO2−
2.3.2. The Surface Area of Electrodes
2.3.3. The Influence of the Scan Rate on Electrochemical Behavior
2.3.4. The Limit of Detection of NO2− Detected by the Au/GCEs
3. Discussion
3.1. The Selection of the Optimal Electrode
3.2. The Linear Range and Reproducibility of the AuNF/GCE and Interference for Electrocatalytic Nitrite Oxidation
3.3. The Possible Mechanism of Nitrite Detection with the AuNF/GCE
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Au Nanoparticles
4.3. Characterization of Au Nanoparticles
4.4. The Electrochemical Behavior of Nitrites Detected by Au/GCEs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G.; Martelli, A. Genotoxic and carcinogenic risk to humans of drug-nitrite interaction products. Mutat. Res. 2007, 635, 17–52. [Google Scholar] [PubMed]
- Eichholzer, M.; Gutzwiller, F. Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: A review of the epidemiologic evidence. Nutr. Rev. 1998, 56, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Ju, A.; Wang, L. Ultraviolet spectroscopic detection of nitrate and nitrite in seawater simultaneously based on partial least squares. Molecules 2021, 26, 3685. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Lee, S.J.; Choi, E.; Lee, S.B.; Nam, H.S.; Lee, J.K. Development and validation of an ionic chromatography method for nitrite determination in processed foods and estimation of daily nitrite intake in Korea. Food Chem. 2022, 382, 132280. [Google Scholar] [CrossRef]
- Tsikas, D. GC-MS analysis of biological nitrate and nitrite using pentafluorobenzyl bromide in aqueous acetone: A dual role of carbonate/bicarbonate as an enhancer and inhibitor of derivatization. Molecules 2021, 26, 7003. [Google Scholar] [CrossRef]
- Li, X.; Wen, Q.; Chen, J.; Sun, W.; Zheng, Y.; Long, C.; Wang, Q. Lanthanide molecular species generated Fe3O4@SiO2-TbDPA nanosphere for the efficient determination of nitrite. Molecules 2022, 27, 4431. [Google Scholar] [CrossRef]
- Le, H.T.; Tran, D.T.; Kim, N.H.; Lee, J.H. Worm-like gold nanowires assembled carbon nanofibers-CVD graphene hybrid as sensitive and selective sensor for nitrite detection. J. Colloid Interface Sci. 2021, 583, 425–434. [Google Scholar] [CrossRef]
- Huang, S.; Lu, M.; Wang, L. Cytochrome c-multiwalled carbon nanotube and cobalt metal organic framework/gold nanoparticle immobilized electrochemical biosensor for nitrite detection. RSC Adv. 2020, 11, 501–509. [Google Scholar] [CrossRef]
- Wongniramaikul, W.; Kleangklao, B.; Boonkanon, C.; Taweekarn, T.; Phatthanawiwat, K.; Sriprom, W.; Limsakul, W.; Towanlong, W.; Tipmanee, D.; Choodum, A. Portable colorimetric hydrogel test kits and on-mobile digital image colorimetry for on-site determination of nutrients in water. Molecules 2022, 27, 7287. [Google Scholar] [CrossRef]
- Saha, P.; Akter, R.; Shaheen Shah, S.; Mahfoz, W.; Aziz, M.A.; Saleh Ahammad, A.J. Gold nanomaterials and their composites as electrochemical sensingplatforms for nitrite detection. Chem. Asian J. 2022, 17, e202200823. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Xu, F.; Zhang, Q. Electrochemical probe of the reduced graphene oxide modified by bare gold nanoparticles functionalized Zr(IV)-based metal-organic framework for detecting nitrite. Electroanalysis 2021, 34, 701–708. [Google Scholar] [CrossRef]
- Lei, P.; Zhou, Y.; Zhu, R.; Wu, S.; Jiang, C.; Dong, C.; Liu, Y.; Shuang, S. Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Mikrochim. Acta 2020, 187, 572. [Google Scholar] [CrossRef]
- Dou, B.; Yan, J.; Chen, Q.; Han, X.; Feng, Q.; Miao, X.; Wang, P. Development of an innovative nitrite sensing platform based on the construction of carbon-layer-coated In2O3 porous tubes. Sens. Actuators Chem. 2021, 328, 129082. [Google Scholar] [CrossRef]
- Gobelli, D.; Correa, M.N.; Barroso, F.M.; Moyano, F.; Molina, P.G. “Green Electrodes” modified with Au nanoparticles synthesized in glycerol, as electrochemical nitrite sensor. Electroanalysis 2015, 27, 1883–1891. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lei, Q.; Li, J.; Hong, C.; Zhao, Z.; Xu, H.; Hu, J. Synthesis and enhanced electrochemical properties of AuNPs@MoS2/rGO hybrid structures for highly sensitive nitrite detection. Microchem. J. 2022, 172, 106904. [Google Scholar] [CrossRef]
- Seo, Y.; Manivannan, S.; Kang, I.; Lee, S.W.; Kim, K. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions. Biosens. Bioelectron. 2017, 94, 87–93. [Google Scholar] [CrossRef]
- Lim, J.; Chen, Y.; Cullen, D.A.; Lee, S.W.; Senftle, T.P.; Hatzell, M.C. PdCu electrocatalysts for selective nitrate and nitrite reduction to nitrogen. ACS Catal. 2022, 13, 87–98. [Google Scholar] [CrossRef]
- Ansari, S.A.; Lopa, N.S.; Parveen, N.; Shaikh, A.A.; Rahman, M.M. A highly sensitive poly(chrysoidine G)-gold nanoparticle composite based nitrite sensor for food safety applications. Anal. Methods 2020, 12, 5562–5571. [Google Scholar] [CrossRef]
- Yang, Y.J.; Li, W. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 2014, 56, 300–306. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Bressi, V.; Espro, C.; Iannazzo, D.; Piperopoulos, E.; Neri, G. Electrochemical determination of nitrites and sulfites by using waste-derived nanobiochar. J. Electroanal. Chem. 2023, 928, 117071. [Google Scholar] [CrossRef]
- Saraiva, D.P.M.; Braga, D.V.; Bossard, B.; Bertotti, M. Multiple pulse amperometry-an antifouling approach for nitrite determination using carbon fiber microelectrodes. Molecules 2023, 28, 387. [Google Scholar] [CrossRef]
- Sundarapandi, M.; Shanmugam, S.; Ramaraj, R. Tuning Cu2O shell on gold nanocube core employing amine-functionalized silane for electrocatalytic nitrite detection. ACS Appl. Nano Mater. 2022, 5, 1674–1682. [Google Scholar] [CrossRef]
- Faisal, M.; Alam, M.M.; Ahmed, J.; Asiri, A.M.; Algethami, J.S.; Alkorbi, A.S.; Madkhali, O.; Aljabri, M.D.; Rahman, M.M.; Harraz, F.A. Electrochemical detection of nitrite (NO2) with PEDOT:PSS modified gold/PPy-C/carbon nitride nanocomposites by electrochemical approach. J. Ind. Eng. Chem. 2023, 121, 519–528. [Google Scholar] [CrossRef]
- Feng, R.; Fang, Y.; Fan, Y.; Xia, Y. Facile synthesis of gold nanoflowers and the catalytic reduction of p-Nitrophenol. Chem. J. Chin. Univ. 2023, 44, 20230027. [Google Scholar] [CrossRef]
- Ramos, R.M.C.R.; Jiang, W.; Heng, J.Z.X.; Ko, H.Y.Y.; Ye, E.; Regulacio, M.D. Hyperbranched Au nanocorals for SERS detection of dye pollutants. ACS Appl. Nano Mater. 2023, 6, 3963–3973. [Google Scholar] [CrossRef]
- Patel, A.S.; Juneja, S.; Kanaujia, P.K.; Maurya, V.; Prakash, G.V.; Chakraborti, A.; Bhattacharya, J. Gold nanoflowers as efficient hosts for SERS based sensing and bio-imaging. Nano Struct. Nano Objects 2018, 16, 329–336. [Google Scholar] [CrossRef]
- Feng, R.; Fan, Y.; Fang, Y.; Xia, Y. Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Phys.-Chim. Sin. 2023, 40, 2304020. [Google Scholar] [CrossRef]
- Monti, E.; Ventimiglia, A.; Forster, L.; Rodríguez-Aguado, E.; Cecilia, J.A.; Ospitali, F.; Tabanelli, T.; Albonetti, S.; Cavani, F.; Rivalta, I.; et al. Influence of stabilisers on the catalytic activity of supported Au colloidal nanoparticles for the liquid phase oxidation of glucose to glucaric acid: Understanding the catalyst performance from NMR relaxation and computational studies. Green Chem. 2023, 25, 2640–2652. [Google Scholar] [CrossRef]
- Fang, Y.; Ren, Y.; Jiang, M. Co-effect of soft template and microwave irradiation on morphological control of gold nanobranches. Colloid Polym. Sci. 2011, 289, 1769–1776. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Bloor, D.M.; Penfold, J.; Holzwarth, J.F.; Jones, E.W. Moderation of the interactions between sodium dodecyl sulfate and poly(vinylpyrrolidone) using the nonionic surfactant hexaethyleneglycol mono-n-dodecyl ether C12EO6: An electromotive force, microcalorimetry, and small-angle neutron scattering study. Langmuir 2000, 16, 8677–8684. [Google Scholar] [CrossRef]
- Feng, R.; Wu, Y.; Wang, W.; Fang, Y.; Chen, M.; Xia, Y. Investigation of polymer–surfactant complexes by both micellar solubilization and pre-column derivatization capillary electrophoresis. J. Mol. Liq. 2022, 354, 118898. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Fang, Y.; Zhu, M. Polyvinylpyrrolidone–sodium dodecylsulfate complex is a family of pseudo-polyanions with different charge densities: Evidence from capillary electrophoresis, capillary viscosimetry and conductometry. J. Colloid Interface Sci. 2016, 479, 34–42. [Google Scholar] [CrossRef]
- Feng, R.; Chen, M.; Fang, Y.; Fan, Y.; Xia, Y. Supramolecular interactions in the pseudo-polyanions of polyvinylpyrrolidone complexed with various anionic surfactants. Colloids Surf. A 2023, 671, 131585. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, C.; Wu, M.; Niu, M.; Fang, Y. Controlled synthesis of gold nanoflowers assisted by poly(vinyl pyrrolidone)–sodium dodecyl sulfate aggregations. Colloids Surf. A 2011, 380, 222–228. [Google Scholar] [CrossRef]
- Guidelli, R.; Pergola, F.; Raspi, G. Voltammetric behavior of nitrite Ion on platinum in neutral and weakly acidic media. Anal. Chem. 1972, 44, 745–755. [Google Scholar] [CrossRef]
- He, X.; Li, X.; Fan, X.; Li, J.; Zhao, D.; Zhang, L.; Sun, S.; Luo, Y.; Zheng, D.; Xie, L.; et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250. [Google Scholar] [CrossRef]
- Laviron, E. General expression of the linear potential sweep voltammogam in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Zou, C.; Yang, B.; Bin, D.; Wang, J.; Li, S.; Yang, P.; Wang, C.; Shiraishi, Y.; Du, Y. Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 2017, 488, 135–141. [Google Scholar] [CrossRef]
- Rahman, M.M.; Li, X.-B.; Lopa, N.S.; Lee, J.-J. Electrodeposition of gold on fluorine-doped tin oxide: Characterization and application for catalytic oxidation of nitrite. Bull. Korean Chem. Soc. 2014, 35, 2072–2076. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.N.; Luo, H.Q.; Li, N.B. Determination of nitrite with a nano-gold modified glassy carbon electrode by cyclic voltammetry. Int. J. Environ. Anal. Chem. 2007, 87, 295–306. [Google Scholar] [CrossRef]
- Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Curcumin graphite pencil electrode modified with molybdenum disulfide nanosheets decorated gold foams for simultaneous quantification of nitrite and hydrazine in water samples. Anal. Chim. Acta 2020, 1137, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Li, R.; Zhang, N.; Zhao, L.; He, M.; Tan, L. Simultaneous detection of sulfite and nitrite on graphene oxide nanoribbons-gold nanoparticles composite modified electrode. Electroanalysis 2021, 34, 103–110. [Google Scholar] [CrossRef]
- Etesami, M. Electrooxidation of nitrite ions on gold/polyaniline/carbon paste electrode. Int. J. Electrochem. Sci. 2016, 11, 8332–8345. [Google Scholar] [CrossRef] [Green Version]
Au-Modified Electrode | Technique | Linear Range (μmol·L−1) | Limit of Detection (μmol·L−1) | Sensitivity (μA·L·μmol−1) |
---|---|---|---|---|
Au WNWs/CNFs-Gr [8] | Amperometric | 1.98–3771 | 1.24 | – |
GNPs/UiO-66-NH2/Rgo [12] | DPV | 5.0–768 | 3.7 | – |
Au/CNHN/GCE [13] | Chronoamperometry | 0.05–1150 | 0.017 | 0.00469 |
AuNP/PCG/FTO [19] | DPV | 0.095–200 | 0.095 | 0.063 |
AuNC@Cu2O [23] | Amperometric | 0.4–806.6 | 0.015 | 18.19 |
Au-PPy-C/g-C3N4 NCs/GCE [24] | DPV | 1.5–22.5 | 1.11 | 2.8816 |
Au/GCE [41] | CV | 5–500 | 0.5 | – |
MoS2/Au/CM/PGE [42] | DPV | 20–350 | 0.022 | 0.0216 |
GONRs-AuNPs/GCE [43] | CV | 10–10,000 | 1.3 | 0.00775 |
Au4.5NPs@MoS2/rGO/GCE [16] | Amperometric | 0.2–2600 | 0.038 | 0.158 |
Au/polyaniline/carbon paste electrode [44] | CV | 38–1000 | 25 | – |
AuNF/GCE (this work) | CV | 0.01–5.00 | 0.01 | 1.966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, R.; Fan, Y.; Fang, Y.; Xia, Y. Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection. Molecules 2023, 28, 4934. https://doi.org/10.3390/molecules28134934
Feng R, Fan Y, Fang Y, Xia Y. Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection. Molecules. 2023; 28(13):4934. https://doi.org/10.3390/molecules28134934
Chicago/Turabian StyleFeng, Ruiqin, Ye Fan, Yun Fang, and Yongmei Xia. 2023. "Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection" Molecules 28, no. 13: 4934. https://doi.org/10.3390/molecules28134934
APA StyleFeng, R., Fan, Y., Fang, Y., & Xia, Y. (2023). Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection. Molecules, 28(13), 4934. https://doi.org/10.3390/molecules28134934