Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review
Abstract
:1. Introduction
2. Natural Sources of SCFAa and MCFAa
3. Production Parameters
4. Meat Quality Parameters
5. Molecular and Biochemical Parameters
6. Microbial Attributes of SCFAs and MCFAs
6.1. Salmonellosis
6.2. Campylobacteriosis
6.3. Clostridiosis
6.4. E. coli
6.5. Coccidiosis
7. Implications for Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R. Importance of medium chain fatty acids in animal nutrition. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012048. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Miles, R.D.; Butcher, G.D.; Henry, P.R.; Littell, R.C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult. Sci. 2006, 85, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.; Bessegatto, J.A.; Alfieri, A.A.; Weese, J.S.; Filho, J.A.B.; Oba, A. Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE 2017, 12, 171642. [Google Scholar] [CrossRef] [Green Version]
- Butaye, P.; Devriese, L.A.; Haesebrouck, F. Antimicrobial growth promoters used in animal feed: Effects of less well-known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 2003, 16, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Yeung, R.M.W.; Morris, J. Consumer perception of food risk in chicken meat. Nutr. Food Sci. 2001, 31, 270–279. [Google Scholar] [CrossRef]
- Guo, X.; Stedtfeld, R.D.; Hedman, H.; Eisenberg, J.N.; Trueba, G.; Yin, D.; Zhang, L. Antibiotic resistome associated with small-scale poultry production in rural Ecuador. Environ. Sci. Technol. 2018, 52, 8165–8172. [Google Scholar] [CrossRef]
- Montoro-Dasi, L.; Villagra, A.; Sevilla-Navarro, S.; Pérez-Gracia, M.T.; Vega, S.; Marin, C. The dynamic of antibiotic resistance in commensal Escherichia coli throughout the growing period in broiler chickens: Fast-growing vs. slow-growing breeds. Poult. Sci. 2020, 99, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and European Council. Regulation (EC) No. 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/83/EC; Off. Journal of European Union L:4–43; European Parliament and European Council: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006 (accessed on 29 April 2023).
- Oviedo-Rondón, E.O. Holistic view of intestinal health in poultry. Anim. Feed Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Amer, S.A.; A-Nasser, A.; Al-Khalaifah, H.S.; AlSadek, D.M.M.; Abdel fattah, D.M.; Roushdy, E.M.; Sherief, W.R.I.A.; Farag, M.F.M.; Altohamy, D.E.; Abdel-Wareth, A.A.A.; et al. Effect of dietary medium-chain -monoglycerides on the growth performance, intestinal histomorphology, amino acid digestibility, and broiler chickens’ blood biochemical parameters. Animals 2021, 11, 57. [Google Scholar] [CrossRef]
- Pratik, J.; Manwar, S.; Khose, K.; Wade, M.; Gole, M.; Langote, G. Effect of Medium Chain Fatty Acids as Replacement to Antibiotics in Diets on Growth Performance and Gut Health in Broiler Chicken. Ind. J. Anim. Res. 2021, 55, 894–899. [Google Scholar]
- Nguyen, D.H.; Lee, K.Y.; Mohammadigheisar, M.; Kim, I.H. Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poult. Sci. 2018, 97, 4351–4358. [Google Scholar] [CrossRef]
- Gomez-Osorio, L.-M.; Yepes-Medina, V.; Ballou, A.; Parini, M.; Angel, R. Short and Medium Chain Fatty Acids and Their Derivatives as a Natural Strategy in the Control of Necrotic Enteritis and Microbial Homeostasis in Broiler Chickens. Front. Vet. Sci. 2021, 8, 3372. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.J.; McLaggan, D.; Davidson, I.; O’Byrne, C.; Booth, I.R. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J. Bacteriol. 1998, 180, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Lambert, R.J.; Stratford, M. Weak-acid preservatives: Modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Kundukad, B.; Schussman, M.; Yang, K.; Seviour, T.; Yang, L.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S. Mechanistic action of weak acid drugs on biofilms. Sci. Rep. 2017, 7, 4783. [Google Scholar] [CrossRef] [Green Version]
- Bergsson, G.; Arnfinnsson, J.; Karlsson, S.M.; Steingrímsson, Ó.; Thormar, H. In vitro inactivation of chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1998, 42, 2290–2294. [Google Scholar] [CrossRef] [Green Version]
- Bergsson, G.; Steingrímsson, Ó.; Thormar, H. In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents Chemother. 1999, 43, 2790–2792. [Google Scholar] [CrossRef] [Green Version]
- Kollanoor-Johny, A.; Darre, M.J.; Donoghue, A.M.; Npnghue, D.J.; Venkitanarayanan, K. Caprylic acid reduces Salmonella Enreritidis invasion of avian abdominal epithelial cells in vitro and down-regulate virulence gene expression. Poult. Sci. 2011, 90, 71. [Google Scholar]
- Babayan, V.K. Medium chain triglycerides and structured lipids. Lipids 1987, 22, 417–420. [Google Scholar] [CrossRef]
- Bhatnagar, A.S.; Prasanth Kumar, P.K.; Hemavathy, J.; Gopala Krishna, A.G. Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J. Am. Oil Chem. Soc. 2009, 86, 991–999. [Google Scholar] [CrossRef]
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, J.; Chen, Y.; Yang, W.; Zhang, L. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers. AJAS 2015, 28, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Zimborán, Á.; Erdélyi, M.; Szabó, R.T.; Weber, M. Effects of medium chain fatty acid supplementation in broiler diet on microbiological quality of litter. Braz. J. Poult. Sci. 2022, 24, 001–004. [Google Scholar] [CrossRef]
- Bach, A.C.; Babayan, V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr. 1982, 36, 950–962. [Google Scholar] [CrossRef]
- Ricke, S.C.; Dittoe, D.K.; Richardson, K.E. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front. Vet. Sci. 2020, 3, 563. [Google Scholar] [CrossRef]
- Khatibjoo, A.; Mahmoodi, M.; Fattahnia, F.; Akbari-Gharaei, M.; Shokri, N.-G.; Soltani, S. Effects of dietary short- and medium-chain fatty acids on performance, carcass traits, jejunum morphology, and serum parameters of broiler chickens. J. Appl. Anim. Res. 2018, 46, 492–498. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, N.T.; Curi, R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef] [Green Version]
- Van Der Wielen, P.W.; Biesterveéd, S.; Notermans, S.; Hofstra, H.; Urlings, B.A.; Can Knapen, F. Role of volatile fatty acids in development of the cecal micorlora in broiler chickens during growth. Appl. Environ. Microbiol. 2000, 71, 2206–2207. [Google Scholar]
- Ferreira, L.; Lisenko, K.; Barros, B.; Zangeronimo, M.; Pereira, L.; Sousa, R. Influence of medium-chain triglycerides on consumption and weight gain in rats: A systematic review. J. Anim. Physiol. Anim. Nutr. 2012, 98, 1–8. [Google Scholar] [CrossRef]
- Rubin, M.; Moser, A.; Vaserberg, N.; Greig, F.; Levy, Y.; Spivak, H.; Ziv, Y.; Lelcuk, S. Long-chain fatty acids, in long-term home parenteral nutrition: A double-blind randomized cross-over study. Nutrition 2000, 16, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Mezni, F.; Maaroufi, A.; Msallem, M.; Boussaid, M.; Khouja, M.L.; Khaldi, A. Fatty acid composition, antioxidant and antibacterial activities of Pistacia lentiscus L. fruit oils. J. Med. Plants Res. 2012, 39, 5266–5271. [Google Scholar]
- Hovorková, P.; Laloucková, K.; Skrivanová, E. Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against gram-positive pathogenic and gut commensal bacteria. Czech J. Anim. Sci. 2018, 63, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Roopashree, P.G.; Shetty, S.S.; Kumari, N.S. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Qi, N.; Liu, S.; Yan, F.; Chen, B.; Wu, S.; Lin, X.; Yan, Z.; Zhou, Q.; Liao, S.; Li, J.; et al. Study of microencapsulated fatty acid antimicrobial activity in vitro and its prevention ability of Clostridium perfringens induced necrotic enteritis in broiler chicken. Gut Pathog. 2023, 15, 1. [Google Scholar] [CrossRef]
- Józefiak, D.; Kierończyk, B.; Rawski, M.; Hejdysz, M.; Rutkowski, A.; Engberg, R.M.; Højberg, O. Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract. Animal 2014, 8, 912–922. [Google Scholar] [CrossRef]
- MacFarlane, S.; MacFarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immun. 2014, 121, 91–119. [Google Scholar]
- Cheng, Y.; Liu, J.; Ling, Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit. Rev. Food Sci. Nutr. 2021, 62, 1–31. [Google Scholar] [CrossRef]
- Ali, Q.; Ma, S.; La, S.; Guo, Z.; Liu, B.; Gao, Z.; Farooq, U.; Wang, Z.; Zhu, X.; Cui, Y.; et al. Microbial short-chain fatty acids: A bridge between dietary fibers and poultry gut health—A review. Anim. Biosci. 2022, 35, 1461–1478. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef]
- Batovska, D.I.; Todorova, I.T.; Tsvetkova, I.V.; Najdenski, H.M. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: Individual effects and synergistic relationships. Polish J. Microbiol. 2009, 58, 43–47. [Google Scholar]
- Sauberan, J.B.; Bradley, J.S. Antimicrobial agents. Princ. Pract. Pediatr. Infect. Dis. 2018, 2, 1499–1531. [Google Scholar]
- Nguyen, D.H.; Kim, I.H. Protected organic acids improved growth performance, nutrient digestibility, and decreased gas emission in broilers. Animals. 2020, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.; Charles, D.R. Niche and Organic Chicken Products: Their Technologies and Scientific Principles; Nottingham University Press: Nottingham, UK, 2002; ISBN 10: 1897676964/13: 9781897676967. [Google Scholar]
- Cobb. Cobb 500 Broiler Performance & Nutrition Supplement Broiler Performance & Nutrition Supplement. 2018. Available online: Cobb-vantress.com (accessed on 3 March 2023).
- Attia, Y.A.; Al-Harthi, M.A.; Abo El-Maaty, H.M. The Effects of Different Oil Sources on Performance, Digestive Enzymes, Carcass Traits, Biochemical, Immunological, Antioxidant, and Morphometric Responses of Broiler Chicks. Front. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef]
- Khosravinia, H. Effect of dietary supplementation of medium-chain fatty acids on growth performance and prevalence of carcass defects in broiler chickens raised in different stocking densities. J. Appl. Poult. Res. 2015, 24, 1–9. [Google Scholar] [CrossRef]
- Zimborán, Á.; Weber, M.; Szabó, S.; Szabó, R.T.; Drobnyák, Á.; Erdélyi, M. Effect of different oils supplementation on broiler chicken performance. Anim. Nutr. Feed Technol. 2021, 21, 205–211. [Google Scholar] [CrossRef]
- Panigrahi, S.; Powell, C.J. Effects of high inclusion of Palm kernel meal in broiler chick diets. Anim. Feed. Sci. Technol. 1991, 34, 37–47. [Google Scholar] [CrossRef]
- Onifade, A.A.; Babatunde, G.M. Comparison of the utilization of palm kernel meal, brewers dried grains and maize offal by broiler chicks. Br. Poult. Sci. 1998, 39, 245–250. [Google Scholar] [CrossRef]
- Sundu, B.; Kumar, A.; Dingle, J. Response of birds fed increasing levels of palm kernel meal supplemented with enzymes. Aust. Poult. Sci. Symp. 2005, 17, 227–228. [Google Scholar]
- Rahman, M.; Akbar, M.; Islam, K.; Iqbal, A.; Assaduzzaman, M. Effect of dietary inclusion of palm oil on feed consumption, growth performance and profitability of broiler. Bangl. J. Anim. Sci. 2012, 39, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Khatun, J.; Loh, T.C.; Akit, H.; Foo, H.L.; Mohamad, R. Influence of different sources of oil on performance, meat quality, gut morphology, ileal digestibility and serum lipid profile in broilers. J. Appl. Anim. Res. 2017, 46, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Jansman, A.J.M.; Wagenaars, C.M.F.; Schonewille, A.; Snel, H.; Van der Klis, J.D. Bestrijding van Clostridium en Campylobacter infecties in pluimvee via natuurlijke antimicrobiële voedingscomponenten. In Proceedings of the PDV-Themadag ‘Voeding en Darmgezondheid’, Wageningen, The Netherlands, 27 June 2006; p. 50. [Google Scholar]
- van Gerwe, T.; Bouma, A.; Klinkenberg, D.; Wagenaar, J.A.; Jacobs-Reitsma, W.F.; Stegeman, A. Medium chain fatty acid feed supplementation reduces the probability of Campylobacter jejuni colonization in broilers. Vet. Microbiol. 2010, 143, 314–318. [Google Scholar] [CrossRef]
- Rebolé, A.; Rodríguez, M.L.; Ortiz, L.T.; Alzueta, C.; Centeno, C.; Viveros, A.; Brenes, A.; Arija, I. Effect of dietary high-oleic acid sunflower seed, palm oil and vitamin E supplementation on broiler performance, fatty acid composition and oxidation susceptibility of meat. Br. Poult. Sci. 2006, 47, 581–591. [Google Scholar] [CrossRef]
- Saleh, A.A.; El-Gharabawy, B.; Hassan, A.; Badawi, N.; Eid, Y.; Selim, S.; Shukry, M.; Dawood, M. Effect of Dietary Inclusion of Alpha-Monolaurin on the Growth Performance, Lipid Peroxidation, and Immunity Response in Broilers. Sustainability 2021, 13, 5231. [Google Scholar] [CrossRef]
- Baltić, B.; Marković, R.; Šefer, D.; Glišić, M.; Hermans, D.; De Laet, M. The effect of adding a mixture of medium chain fatty acid-“aromabiotic” in the diet on broiler performance. Krmiva 2016, 57, 57–62. [Google Scholar]
- Lipiński, K.; Mazur, M.; Makowski, Z.; Makowska, A.; Antoszkiewicz, Z.; Kaliniewicz, J. The effectiveness of the preparation medium-chain fatty acids (MCFA) and a herbal product on the growth performance of turkeys. Pol. J. Natur. Sci. 2016, 31, 47–57. [Google Scholar]
- Zeitz, J.O.; Fennhoff, J.; Kluge, H.; Stangl, G.I.; Eder, K. Effects of dietary fats rich in lauric and myristic acid on performance, intestinal morphology, gut microbes, and meat quality in broilers. Poult. Sci. 2015, 94, 2404–2413. [Google Scholar] [CrossRef]
- Groom, G.M. Factors Affecting Poultry Meat Quality. In L’aviculture en Méditerranée; Sauveur, B., Ed.; Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 7; CIHEAM: Montpellier, France, 1990; pp. 205–210. [Google Scholar]
- Tomasevic, I.; Djekic, I.; Furnols, M.F.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Op. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Baézaa, E.; Guillierb, L.; Petraccic, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, J.; Sztandarski, P.; Solka, M.; Louton, H.; Rath, K.; Vogt, L.; Rauch, E.; Ruijter, D.; de Jong, I.C.; Horbanczuk, J.O. Linking key husbandry factors to the intrinsic quality of broiler meat. Poult. Sci. 2023, 102, 102384. [Google Scholar] [CrossRef]
- Souza, P.A.; Kodawara, L.M.; Pelicano, E.R.L.; Souza, H.B.A.; Oba, A.; Leonel, F.R.; Lima, T.M.A. Effect of deboning time on the quality of broiler breast meat (Pectoralis major). Braz. J. Poult. Sci. 2005, 7, 123–128. [Google Scholar] [CrossRef]
- Van Laack, R.L.J.M.; Liu, C.H.; Smith, M.O.; Loveday, H.D. Characteristics of pale, soft, exudative broiler breast meat. Poult. Sci. 2000, 79, 1057–1061. [Google Scholar] [CrossRef]
- Jiang, H.; Yoon, S.-C.; Zhuang, H.; Wang, W.; Li, Y.; Lu, C.; Li, N. Non-destructive assessment of final color and pH attributes of broiler breast fillets using visible and near-infrared hyperspectral imaging: A preliminary study. Infrared Phys. Technol. 2018, 92, 309–317. [Google Scholar] [CrossRef]
- Bowkerben, B.; Zhuang, H. Water-holding capacity of broiler breast muscle during the first 24 h postmortem. (Abstr.). Proc. AMSA Annual Reciprocal Conf. 2013, 74, 34–35. [Google Scholar]
- Prayitno, A.H.; Suryanto, E. Zuprizal Kualitas fisik dan sensoris daging ayam broiler yang diberi pakan dengan penambahan ampas virgin coconut oil (VCO) (physical and sensory quality of meat of broiler chicken fed with the addition of virgin coconut oil waste). Buletin Peternakan 2010, 34, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.H.; Gao, F.; Zhu, Q.F.; Li, C.; Jiang, Y.; Dai, S.F.; Zhou, G.H. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult. Sci. 2011, 90, 2592–2599. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.; Liu, K.; Fan, R.; Li, Q.; Zhou, Z. Dietary sodium butyrate and/or vitamin D3 supplementation alters growth performance, meat quality, chemical composition, and oxidative stability in broilers. Food Chem. 2022, 390, 133138. [Google Scholar] [CrossRef] [PubMed]
- Ogunwole, O.A.; Abokede, T.V.; Olawale, B.O. Quality attributes of meat from broiler chickens fed diets containing three oil types and varying levels of calcium. J. Agricult. Prod. Techn. 2016, 5, 18–29. [Google Scholar]
- Abdullah, A.Y.; Muwalla, M.M.; Maharmeh, H.O.; Matarneh, S.K.; Ishmais MA, A. Effects of strain on performance, and age at slaughter and duration of post-chilling aging on meat quality traits of broiler. AJAS 2010, 23, 1645–1656. [Google Scholar] [CrossRef]
- Mannelli, F.; Minieri, S.; Tosi, G.; Secci, G.; Daghio, M.; Massi, P.; Fiorentini, L.; Galigani, I.; Lancini, S.; Rapaccini, S.; et al. Effect of Chestnut Tannins and Short Chain Fatty Acids as Anti-Microbials and as Feeding Supplements in Broilers Rearing and Meat Quality. Animals 2019, 9, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, J.; Zdunczyk, P.; Mikulski, D.; Juskiewicz, J.; Naczmanski, J.; Pomianowski, J.F.; Zdunczyk, P. Fatty acid profile, oxidative stability, and sensory properties of breast meat from turkeys fed diets with a different n-6/n-3 PUFA ratio. Eur. J. Lipid Sci. Technol. 2012, 114, 1025–1035. [Google Scholar] [CrossRef]
- Soeparno, M. Daging dada (Otot Pectoralis Superficialis) sebagai standar penilaian kualitas daging. Laporan Penelitian No: UGM/5887/M/09/01 Tanggal 1 Oktober 1991. Available online: https://eprints.umm.ac.id/46656/1/PENDAHULUAN.pdf (accessed on 29 April 2023).
- Lyon, B.G.; Smith, D.P.; Lyon, C.E.; Savage, E.M. Effects of diet and feed withdrawal on the sensory descriptive and instrumental profiles of broiler breast fillets. Poult. Sci. 2004, 83, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Long, G.L.; Hao, W.X.; Bao, L.F.; Li, J.H.; Zhang, Y.; Li, G.H. Effects of dietary inclusion levels of palm oil on growth performance, antioxidative status and serum cytokines of broiler chickens. J. Anim. Phys. Anim. Nutr. 2019, 103, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Jiang, Y.; Zhu, Q.F.; Gao, F.; Dai, S.F.; Chen, J.; Zhou, G.H. Sodium butyrate maintains growth performance through regulating immune response in broiler chickens. Br. Poult. Sci. 2011, 52, 292–301. [Google Scholar] [CrossRef]
- Projan, S.J.; Brown-Skrobot, S.; Schlievert, P.M.; Vandenesch, F.; Novick, R.P. Glycerol monolaurate inhibits the production of β-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol. 1994, 176, 4204–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzin, A.; Novick, R.P. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J. Bacteriol. 2000, 182, 2668–2671. [Google Scholar] [CrossRef] [Green Version]
- Heerklotz, H. Interactions of surfactants with lipid membranes. Q. Rev. Biophys. 2008, 41, 205–264. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Appl. Environ. Microbiol. 2013, 79, 6552–6560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial activity of organic acids against Campylobacter spp. and development of combinations—A synergistic effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef]
- Mathis, G.F.; Van Dam, J.T.P.; Corujo, F.; Hofacre, C.L. Effect of an organic acids and medium-chain fatty acids containing product in feed on the course of artificial Necrotic Enteritis infection in broiler chickens. In Proceedings of the 15th European Symposium on Poultry Nutrition, Balatonfüred, Hungary, 25–29 September 2005; pp. 372–374. [Google Scholar]
- Kipper, D.; Mascitti, A.K.; De Carli, S.; Carneiro, A.M.; Streck, A.F.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet. Sci. 2022, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Deschepper, K.; Lippens, M.; Huyghebaert, G.; Molly, K. The effect of aromabiotic and/or orgallid on technical performances and intestinal morphology of broilers. In Proceedings of the 14th European Symposium on Poultry Nutrition, Lillehammer, Norway, 10–14 August 2003; pp. 191–192. [Google Scholar]
- Van Immerseel, F.; De Buck, J.; Boyen, F.; Bohez, L.; Pasmans, F.; Volf, J.; Sevcik, M.; Rychlik, I.; Haesebrouck, F.; Ducatelle, R. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 2004, 70, 3582–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, N.P.; Collins, D.A.; Pierson, F.W.; Mahsoub, H.M.; Sriranganathan, N.; Persia, M.E.; Karnezos, T.P.; Sims, M.D.; Dalloul, R.A. Investigation of Medium Chain Fatty Acid Feed Supplementation for Reducing Salmonella Typhimurium Colonization in Turkey Poults. Foodborne Pathog. Dis. 2017, 14, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Friedman, C.R.; Neimann, J.; Wegener, H.C.; Tauxe, R.V. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Campylobacter, 2nd ed.; Nachamkin, I., Blaser, M.J., Eds.; ASM Press: Washington, DC, USA, 2000; pp. 121–138. [Google Scholar]
- Allos, B.M. Campylobacter jejuni infections: Update on emerging issues and trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar]
- Solis de los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Dirain, M.L.; Reyes-Herrera, I.; Blore, P.J.; Donoghue, D.J. Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day old broiler chickens. Poult. Sci. 2008, 87, 800–804. [Google Scholar] [CrossRef]
- Molatová, Z.; Skřivanová, E.; Baré, J.; Houf, K.; Bruggeman, G.; Marounek, M. Effect of coated and non-coated fatty acid supplementation on broiler chickens experimentally infected with Campylobacter jejuni. J. Anim. Physiol. Anim. Nutr. 2011, 95, 701–706. [Google Scholar] [CrossRef]
- Van Deun, K.; Haesebrouck, F.; Van Immerseel, F.; Ducatelle, R.; Pasmans, F. Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol. 2008, 37, 379–383. [Google Scholar] [CrossRef]
- Metcalf, J.H.; Donoghue, A.M.; Venkitanarayanan, K.; Reyes-Herrera, I.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. Water administration of the medium-chain fatty acid caprylic acid produced variable efficacy against enteric Campylobacter colonization in broilers. Poult. Sci. 2011, 90, 494–497. [Google Scholar] [CrossRef]
- Hermans, D.; Martel, A.; Garmyn, A.; Verlinden, M.; Heyndrickx, M.; Gantois, I.; Haesebrouck, F.; Pasmans, F. Application of medium-chain fatty acids in drinking water increases Campylobacter jejuni colonization threshold in broiler chicks. Poult. Sci. 2012, 91, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Shilling, M.; Matt, L.; Rubin, E.; Visitacion, M.P.; Haller, N.A.; Grey, S.F.; Woolverton, C.J. Antimicrobial Effects of Virgin Coconut Oil and Its Medium-Chain Fatty Acids on Clostridium difficile. J. Med. Food 2013, 16, 1079–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.-Y.; Lee, Y.; Lu, H.; Chou, C.-H.; Wang, C. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS ONE 2019, 14, e0205784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelli, N.; Solá-Oriol, D.; Pérez, J.F. Phitogenic feed additives in poultry: Achievements, Prospective and Callanges. Animals. 2021, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Skřivan, M.; Dlouhá, G.; Englmaierová, M.; Èervinková, K. Effects of different levels of dietary supplemental caprylic acid and vitamin E on performance, breast muscle vitamin E and A and oxidative stability in broilers. Czech J. Anim. Sci. 2010, 55, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, M.F.; Arefin, M.S.; Rahman, M.M.; Ripon, M.M.R.; Rashid, M.H.; Sultana, M.R.; Hossain, M.T.; Ahammad, M.U.; Rafiq, K. Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J. Adv. Vet. Anim. Res. 2019, 6, 409–415. [Google Scholar] [CrossRef]
- Ripon, M.M.R.; Rashid, M.H.; Rahman, M.M.; Ferdous, M.F.; Arefin, M.S.; Sani, A.A.; Hossain, M.T.; Ahammad, M.U.; Rafiq, K. Dose-dependent response to phytobiotic supplementation in feed on growth, hematology, intestinal pH, and gut bacterial load in broiler chicken. J. Adv. Vet. Anim. Res. 2019, 6, 253–259. [Google Scholar] [CrossRef]
- Sadurni, M.; Barroeta, A.C.; Sala, R.; Sol, C.; Puyalto, M.; Castillejos, L. Impact of diatery supplementation with sodium butyrate protected by medium chain fatty acid salts on gut health of broiler chickens. Animals 2022, 12, 2496. [Google Scholar] [CrossRef]
- Place, R.F.; Noonan, E.J.; Giardina, C. HDAC inhibition prevents NF-κB activation by suppressing proteasome activity: Down-regulation of proteasome subunit expression stabilizes IκBα. Biochem. Pharmacol. 2005, 70, 396–406. [Google Scholar] [CrossRef]
- Hansen, V.L.; Kahl, S.; Proszkowiec-Weglarz, M.; Jiménez, S.C.; Vaessen, S.F.C.; Schreier, L.L.; Jenkins, M.C.; Russell, B.; Miska, K.B. The effects of tributyrin supplementation on weight gain and intestinal gene expression in broiler chickens during Eimeria maxima-induced coccidiosis. Poult. Sci. 2021, 100, 100984. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Q.; Wei, J.; Zhao, M.; Tang, J.; Feng, F. Mass spectrometry-based metabolomics to reveal chicken meat improvements by medium-chain monoglycerides supplementation: Taste, fresh meat quality, and composition. Food Chem. 2021, 365, 130303. [Google Scholar] [CrossRef] [PubMed]
- Dauksiene, A.; Ruzauskas, M.; Gruzauskas, R.; Zavistanaviciute, P.; Starkute, V.; Lele, V.; Klupsaite, D.; Klementaviciute, J.; Bartkiene, E.A. Comparison Study of the Caecum Microbial Profiles, Productivity and Production Quality of Broiler Chickens Fed Supplements Based on Medium Chain Fatty and Organic Acids. Animals 2021, 1, 610. [Google Scholar] [CrossRef]
- Nyquist, N.F.; Rødbotten, R.; Thomassen, M. Chicken meat nutritional value when feeding red palm oil, palm oil or rendered animal fat in combinations with linseed oil, rapeseed oil and two levels of selenium. Lipids Health Dis. 2013, 12, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchewa, E.N. Effect of Saturated and unsaturated oils on the growth performance and organoleptic qualities of broiler chicken. J. Biol. Agric. Healthc. 2015, 5, 35–40. [Google Scholar]
- Londok, J.J.M.R.; Rompis, J.E.G. Preference test of low cholesterol functional chicken meat. Anim. Sci. 2022, LXV 1, 164–169. [Google Scholar]
Supplementation | Feed Intake (g) 1 | Work of |
1.5% coconut oil | 2914.8 T | [24] |
1.5% coconut oil | 3064 T | [49] |
1.5 and 2 g/kg MCFA | 82.06; 83.09 D | [50] |
5% coconut oil | 2510 T | [51] |
2.5 + 2.5% coconut and palm oil | 2760 T | [51] |
5% palm oil | 2860 T | [51] |
5% palm oil | 3064 T | [55] |
6% palm oil | 2530.7 T | [56] |
Supplementation | Feed Conversion (g/g) | Work of |
1.5% coconut oil | 1.82 | [24] |
1.5% coconut oil | 1.52 | [49] |
2.5 + 2.5% coconut and palm oil | 1.79 | [51] |
6% palm oil | 2.05 | [56] |
1.5 and 2 g/kg MCFA | 1.9; 1.79 | [50] |
Supplementation | pH 24 h | Work of |
---|---|---|
5% coconut oil | 5.98 | [51] |
2.5 + 2.5% coconut and palm oil | 5.98 | [51] |
5% palm oil | 5.89 | [51] |
6% palm oil | 5.80 | [56] |
4 + 2% palm and sunflower oil | 5.79 | [56] |
2 + 4% palm and sunflower oil | 5.78 | [56] |
2% coconut oil | 6.25 | [73] |
0.4 g/kg sodium butyrate | 5.88 | [74] |
1 g/kg sodium butyrate | 5.50 | [75] |
2% coconut oil | 5.91 | [76] |
2% palm oil | 5.35 | [76] |
Supplementation | L* | a* | b* | Work of |
---|---|---|---|---|
5% coconut oil | 63.04 | 11.18 | 9.38 | [51] |
2.5 + 2.5% coconut and palm oil | 62.87 | 10.98 | 9.39 | [51] |
5% palm oil | 63.58 | 11.58 | 8.80 | [51] |
6% palm oil | 50.31 | 3.93 | 14.21 | [56] |
4 + 2% palm and sunflower oil | 49.36 | 3.94 | 14.22 | [56] |
2 + 4% palm and sunflower oil | 48.20 | 4.71 | 14.24 | [56] |
3.0 g/kg Sn1-monoglycerides | 63.80 | 5.60 | 8.99 | [78] |
2% coconut oil | 45.35 | 8.31 | 5.45 | [76] |
2% palm oil | 52.31 | 6.02 | 5.45 | [76] |
Supplementation | Tenderness | Work of |
5% coconut oil | 10.33 | [51] |
2.5 + 2.5% coconut and palm oil | 11.15 | [51] |
5% palm oil | 10.44 | [51] |
6% palm oil | 3.06 | [56] |
4 + 2% palm and sunflower oil | 3.08 | [56] |
2 + 4% palm and sunflower oil | 3.09 | [56] |
0.5% coconut oil | 35.84 | [73] |
1% coconut oil | 35.85 | [73] |
1.5% coconut oil | 40.99 | [73] |
2% coconut oil | 42.21 | [73] |
2% coconut oil | 10.21 | [76] |
2% palm oil | 39.87 | [76] |
Supplementation | Cooking Loss % | Work of |
0.5% coconut oil | 25.32 | [73] |
1% coconut oil | 25.54 | [73] |
1.5% coconut oil | 19.14 | [73] |
2% coconut oil | 18.87 | [73] |
2% coconut oil | 17.98 | [76] |
2% palm oil | 29.32 | [76] |
6% palm oil | 24.83 | [56] |
4 + 2% palm and sunflower oil | 24.85 | [56] |
2 + 4% palm and sunflower oil | 24.86 | [56] |
5% coconut oil | 19.32 | [51] |
2.5 + 2.5% coconut and palm oil | 15.47 | [51] |
5% palm oil | 18.74 | [51] |
Supplementation | Tenderness kg/cm2 | Work of |
---|---|---|
5% coconut oil | 1.93 | [51] |
2.5 + 2.5% coconut and palm oil | 2.10 | [51] |
5% palm oil | 1.80 | [51] |
6% palm oil | 1.20 | [56] |
4 + 2% palm and sunflower oil | 1.19 | [56] |
2 + 4% palm and sunflower oil | 1.19 | [56] |
0.5% coconut oil | 5.56 | [73] |
1% coconut oil | 5.28 | [73] |
1.5% coconut oil | 4.34 | [73] |
2% coconut oil | 3.38 | [73] |
2% coconut oil | 6.63 | [76] |
2% palm oil | 5.67 | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, R.T.; Kovács-Weber, M.; Zimborán, Á.; Kovács, L.; Erdélyi, M. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review. Molecules 2023, 28, 4956. https://doi.org/10.3390/molecules28134956
Szabó RT, Kovács-Weber M, Zimborán Á, Kovács L, Erdélyi M. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review. Molecules. 2023; 28(13):4956. https://doi.org/10.3390/molecules28134956
Chicago/Turabian StyleSzabó, Rubina Tünde, Mária Kovács-Weber, Ágnes Zimborán, Levente Kovács, and Márta Erdélyi. 2023. "Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review" Molecules 28, no. 13: 4956. https://doi.org/10.3390/molecules28134956
APA StyleSzabó, R. T., Kovács-Weber, M., Zimborán, Á., Kovács, L., & Erdélyi, M. (2023). Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review. Molecules, 28(13), 4956. https://doi.org/10.3390/molecules28134956