A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Sample Collection
4.3. Urinary Phthalate Metabolite Measurements
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Environmental Triggers of Asthm. Available online: https://www.atsdr.cdc.gov/csem/asthma/environmental_triggers_of_asthma.html (accessed on 28 November 2014).
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Li, S.S. Phthalates: Toxicogenomics and inferred human diseases. Genomics 2011, 97, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Wittassek, M.; Angerer, J. Phthalates: Metabolism and exposure. Int. J. Androl. 2008, 31, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic pollutants from plastic waste-a review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.Y.; Huang, P.C.; Lee, C.C.; Wu, M.H.; Lin, S.J. Phthalate exposure in girls during early puberty. J. Pediatr. Endocrinol. Metab. 2009, 22, 69–77. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, Q.; Kannan, K. Phthalate metabolites in urine from China, and implications for human exposures. Environ. Int. 2011, 37, 893–898. [Google Scholar] [CrossRef]
- Koch, H.M.; Bolt, H.M.; Preuss, R.; Angerer, J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch. Toxicol. 2005, 79, 367–376. [Google Scholar] [CrossRef]
- Silva, M.J.; Malek, N.A.; Hodge, C.C.; Reidy, J.A.; Kato, K.; Barr, D.B.; Needham, L.L.; Brock, J.W. Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. J. Chromatogr. B 2003, 789, 393–404. [Google Scholar] [CrossRef]
- Hauser, R. Urinary phthalate metabolites and semen quality: A review of a potential biomarker of susceptibility. Int. J. Androl. 2008, 31, 112–117. [Google Scholar] [CrossRef]
- Herr, C.; zur Nieden, A.; Koch, H.M.; Schuppe, H.C.; Fieber, C.; Angerer, J.; Eikmann, T.; Stilianakis, N.I. Urinary di(2-ethylhexyl)phthalate (DEHP)--metabolites and male human markers of reproductive function. Int. J. Hyg. Environ. Health 2009, 212, 648–653. [Google Scholar] [CrossRef]
- Park, M.S.; Yang, Y.J.; Hong, Y.P.; Kim, S.Y.; Lee, Y.P. Assessment of di (2-ethylhexyl) phthalate exposure by urinary metabolites as a function of sampling time. J. Prev. Med. Public Health 2010, 43, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, B.A.; Richthoff, J.; Rylander, L.; Giwercman, A.; Hagmar, L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology 2005, 16, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Duty, S.M.; Calafat, A.M.; Silva, M.J.; Ryan, L.; Hauser, R. Phthalate exposure and reproductive hormones in adult men. Hum. Reprod. 2005, 20, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Meeker, J.D.; Calafat, A.M.; Hauser, R. Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J. Androl. 2009, 30, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.; Knight, T.L. The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: A systematic review and meta-analysis. Environ. Health Perspect. 2008, 116, 845–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolling, A.K.; Sripadab, K.; Bechera, R.; Beko, G. Phthalate exposure and allergic diseases: Review of epidemiological and experimental evidence. Environ. Int. 2020, 139, 105706. [Google Scholar] [CrossRef]
- Bornehag, C.G.; Nanberg, E. Phthalate exposure and asthma in children. Int. J. Androl. 2010, 33, 333–345. [Google Scholar] [CrossRef]
- Jurewicz, J.; Hanke, W. Exposure to phthalates: Reproductive outcome and children health. A review of epidemiological studies. Int. J. Occup. Med. Environ. Health 2011, 24, 115–141. [Google Scholar] [CrossRef]
- Adgent, M.A.; Carroll, K.N.; Hazlehurst, M.A.; Loftus, C.T.; Szpiro, A.A.; Karr, C.J.; Barrett, E.S.; LeWinn, K.Z.; Bush, N.R.; Tylavsky, F.A.; et al. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. Environ. Int. 2020, 143, 105970. [Google Scholar] [CrossRef]
- Odebeatu, C.C.; Taylor, T.; Fleming, L.E.; Osborne, N.J. Phthalates and asthma in children and adults: US NHANES 2007–2012. Environ. Sci. Pollut. Res. 2019, 26, 28256–28269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glue, C.; Platzer, M.H.; Larsen, S.T.; Nielsen, G.D.; Skov, P.S.; Poulsen, L.K. Phthalates potentiate the response of allergic effector cells. Basic Clin. Pharmacol. Toxicol. 2005, 96, 140–142. [Google Scholar] [CrossRef]
- Oie, L.; Hersoug, L.G.; Madsen, J.O. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ. Health Perspect. 1997, 105, 972–978. [Google Scholar] [CrossRef]
- Norback, D.; Wieslander, G.; Nordstrom, K.; Walinder, R. Asthma symptoms in relation to measured building dampness in upper concrete floor construction, and 2-ethyl-1-hexanol in indoor air. Int. J. Tuberc. Lung Dis. 2000, 4, 1016–1025. [Google Scholar] [PubMed]
- Richardson, G.; Eick, S.; Jones, R. How is the indoor environment related to asthma?: Literature review. J. Adv. Nurs. 2005, 52, 328–339. [Google Scholar] [CrossRef]
- Frederiksen, H.; Aksglaede, L.; Sorensen, K.; Skakkebaek, N.E.; Juul, A.; Andersson, A.M. Urinary excretion of phthalate metabolites in 129 healthy Danish children and adolescents: Estimation of daily phthalate intake. Environ. Res. 2011, 111, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Custovic, A.; Simpson, A.; Bardin, P.G.; Le Souef, P. Allergy is an important factor in asthma exacerbation: A pro/con debate. Respirology 2010, 15, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef]
- Andrasch, R.H.; Bardana, E.J., Jr. Thermoactivated price-label fume intolerance. A cause of meat-wrapper’s asthma. JAMA 1976, 235, 937. [Google Scholar] [CrossRef]
- Brooks, S.M.; Vandervort, R. Polyvinyl chloride film thermal decomposition products as an occupational illness: 2. Clinical studies. J. Occup. Med. 1977, 19, 192–196. [Google Scholar]
- Eisen, E.A.; Wegman, D.H.; Smith, T.J. Across-shift changes in the pulmonary function of meat-wrappers and other workers in the retail food industry. Scand. J. Work Environ. Health 1985, 11, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.S.; Larsen, S.T.; Poulsen, L.K.; Nielsen, G.D. Adjuvant effects of inhaled mono-2-ethylhexyl phthalate in BALB/cJ mice. Toxicology 2007, 232, 79–88. [Google Scholar] [CrossRef]
- Jaakkola, J.J.; Ieromnimon, A.; Jaakkola, M.S. Interior surface materials and asthma in adults: A population-based incident case-control study. Am. J. Epidemiol. 2006, 164, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, J.S. Self-reported short- and long-term respiratory effects among PVC-exposed firefighters. Arch. Environ. Health 1989, 44, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Polakoff, P.L.; Lapp, N.L.; Reger, R. Polyvinyl chloride pyrolysis products. A potential cause for respiratory impairment. Arch. Environ. Health 1975, 30, 269–271. [Google Scholar] [CrossRef]
- Tuomainen, A.; Seuri, M.; Sieppi, A. Indoor air quality and health problems associated with damp floor coverings. Int. Arch. Occup. Environ. Health 2004, 77, 222–226. [Google Scholar] [CrossRef]
- Kuo, P.L.; Hsu, Y.L.; Huang, M.S.; Tsai, M.J.; Ko, Y.C. Ginger suppresses phthalate ester-induced airway remodeling. J. Agric. Food Chem. 2011, 59, 3429–3438. [Google Scholar] [CrossRef] [PubMed]
- Skoog, D.A.; Holler, E.J.; Crouch, S. (Eds.) Principles of Instrumental Analysis, 6th ed.; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2007; pp. 13–15. [Google Scholar]
- Kato, K.; Silva, M.J.; Needham, L.L.; Calafat, A.M. Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry. Anal. Chem. 2005, 77, 2985–2991. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.J.; Liu, L.Y.; Ma, W.L.; Ren, N.Q.; Guo, Y.; Zhu, N.Z.; Jiang, L.; Li, Y.F.; Kannan, K. Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment. Sci. Total Environ. 2016, 543, 19–27. [Google Scholar] [CrossRef]
- Hsieh, C.J.; Chang, Y.H.; Hu, A.; Chen, M.L.; Sun, C.W.; Situmorang, R.F.; Wu, M.T.; Wang, S.L.; TMICS study group. Personal care products use and phthalate exposure levels among pregnant women. Sci. Total Environ. 2019, 648, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Yang, S.F.; Peng, C.Y.; Li, R.N.; Chen, Y.C.; Chan, T.F.; Tsai, E.M.; Kuo, F.C.; Huang, J.J.; Tsai, H.T.; et al. The precancerous effect of emitted cooking oil fumes on precursor lesions of cervical cancer. Int. J. Cancer 2010, 127, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lee, K.W.; Fang, F.M.; Wu, D.C.; Tsai, S.M.; Chen, P.H.; Shieh, T.Y.; Chen, C.H.; Wu, I.C.; Huang, H.L.; et al. The neoplastic impact of tobacco-free betel-quid on the histological type and the anatomical site of aerodigestive tract cancers. Int. J. Cancer 2012, 131, E733–E743. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Asthma | Control | p Value a | ||||
---|---|---|---|---|---|---|---|
Male (n = 57) | Female (n = 66) | Total (n = 123) | Male (n = 77) | Female (n = 62) | Total (n = 139) | ||
Age (years), mean ± SD | 46.0 ± 14.0 | 47.8 ± 14.7 | 47.0 ± 14.3 | 50.0 ± 15.5 | 47.1 ± 16.3 | 48.7 ± 15.9 | 0.357 |
Cigarette smoking | |||||||
No | 27 (47.4%) | 57 (86.4%) | 84 (68.3%) | 54 (70.1%) | 62 (100.0) | 116 (83.5%) | |
Yes | 30 (52.6%) | 9 (13.6%) | 39 (31.7%) | 23 (29.9%) | 0 (0.0%) | 23 (16.6%) | 0.004 |
FEV1 | |||||||
FEV1 ≥ 80% | 20 (35.1%) | 27 (40.9%) | 47 (38.2%) | 58 (75.3%) | 52 (83.9%) | 110 (79.1%) | <0.001 |
FEV1 < 80% | 37 (64.9%) | 39 (59.1%) | 76 (61.8%) | 19 (24.7%) | 10 (16.1%) | 29 (20.9%) | |
Body mass index (kg/m2), mean ± SD | 26.3 ± 5.2 | 24.8 ± 4.5 | 25.5 ± 4.9 | 24.6 ± 3.3 | 24.1 ± 5.0 | 24.4 ± 4.1 | 0.058 |
Urinary creatinine (mg/dL), mean ± SD | 165.1 ± 136.9 | 121.9 ± 111.7 | 141.9 ± 125.4 | 201.1 ± 138.5 | 105.9 ± 99.0 | 158.6 ± 131.0 | 0.296 |
Clinical treatment within 1 year | |||||||
Asthma attack | |||||||
1–3 times | 49 (86.0%) | 58 (87.9%) | 107 (87.0%) | ||||
≥4 times | 8 (14.0%) | 8 (12.1%) | 16 (13.0%) | ||||
Emergency asthma treatment | |||||||
No | 43 (75.4%) | 50 (75.8%) | 93 (75.6%) | ||||
Yes | 14 (24.6%) | 16 (24.2%) | 30 (24.4%) | ||||
Hospitalization for asthma | |||||||
No | 53 (93.0%) | 64 (97.0%) | 117 (95.1%) | ||||
Yes | 4 (7.0%) | 2 (3.0%) | 6 (4.9%) |
Gender/Metabolites | Arithmetic Scale, Mean ± SD | Log10 Scale, Mean ± SD | p for Mean Diff. a | Cont. aOR b | (95% CI) | ||
---|---|---|---|---|---|---|---|
Asthma | Control | Asthma | Control | ||||
Men | |||||||
MEHP | 116.3 ± 198.1 | 46.2 ± 40.1 | 1.76 ± 0.48 | 1.52 ± 0.38 | 0.002 | 5.0 | (1.8–14.2) |
5-OH-MEHP | 156.9 ± 241.3 | 112.6 ± 122.1 | 1.97 ± 0.77 | 1.85 ± 0.44 | 0.242 | 1.4 | (0.7–2.8) |
5-oxo-MEHP | 90.8 ± 140.1 | 59.3 ± 56.5 | 1.67 ± 0.47 | 1.60 ± 0.42 | 0.301 | 1.6 | (0.6–4.1) |
MBzP | 214.2 ± 427.0 | 159.5 ± 382.7 | 1.88 ± 0.77 | 1.95 ± 0.40 | 0.460 | 0.9 | (0.5–1.8) |
MBP | 850.3 ± 1282.0 | 502.3 ± 1039.6 | 2.73 ± 0.40 | 2.45 ± 0.39 | <0.001 | 5.8 | (1.8–18.3) |
MEP | 965.8 ± 4334.2 | 266.3 ± 260.6 | 2.46 ± 0.49 | 2.23 ± 0.46 | 0.006 | 4.2 | (1.6–11.1) |
Total metabolites c | 2398.3 ± 4802.4 | 1146.2 ± 1247.2 | 3.19 ± 0.58 | 2.94 ± 0.30 | 0.001 | 7.6 | (1.9–29.4) |
<p25, n (%) | 8 (14.0%) | 19 (24.7%) | 1.0 | ||||
p25–p74, n (%) | 19 (33.3%) | 39 (50.7%) | 1.6 | (0.5–5.2) | |||
≥p75, n (%) | 30 (52.6%) | 19 (24.7%) | 0.004 | 5.8 | (1.7–19.2) | ||
p for trend | 0.002 | ||||||
Women | |||||||
MEHP | 101.8 ± 125.5 | 116.8 ±160.5 | 1.77 ± 0.47 | 1.81 ± 0.46 | 0.679 | 1.3 | (0.5–3.3) |
5-OH-MEHP | 152.7 ± 354.7 | 101.6 ± 88.5 | 1.87 ± 0.50 | 1.82 ± 0.46 | 0.600 | 1.0 | (0.4–2.5) |
5-oxo-MEHP | 86.1 ± 212.8 | 59.9 ± 60.4 | 1.63 ± 0.45 | 1.59 ± 0.45 | 0.599 | 1.0 | (0.4–2.6) |
MBzP | 133.3 ± 139.4 | 168.3 ± 182.4 | 1.85 ± 0.64 | 2.05 ± 0.42 | 0.037 | 0.5 | (0.2–1.1) |
MBP | 2902.4 ± 15673.6 | 726.7 ± 993.3 | 2.87 ± 0.47 | 2.63 ± 0.41 | 0.004 | 5.3 | (1.8–15.5) |
MEP | 821.1 ± 2463.6 | 490.9 ± 600.4 | 2.56 ± 0.46 | 2.41 ± 0.53 | 0.086 | 1.6 | (0.6–3.8) |
Total metabolites c | 4197.4 ± 16,588.0 | 1664.2 ± 1459.1 | 3.22 ± 0.41 | 3.09 ± 0.34 | 0.040 | 3.4 | (0.9–12.2) |
<p25, n (%) | 7 (10.6%) | 15 (24.2%) | 1.0 | ||||
p25–p74, n (%) | 41 (62.1%) | 32 (51.6%) | 1.2 | (0.3–5.1) | |||
≥p75, n (%) | 18 (27.3%) | 15 (24.2%) | 0.124 | 3.1 | (0.8–12.0) | ||
p for trend | 0.029 |
Metabolites | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
Asthma n = 57 | Control n = 77 | Diff. (%) | p for Diff. | Asthma n = 66 | Control n = 62 | Diff. (%) | p for Diff. | |
MEHP, % | 32.5 ± 20.0 | 25.3 ± 19.7 | 7.2 | 0.040 | 35.3 ± 23.5 | 38.7 ± 25.8 | −3.3 | 0.445 |
5-OH-MEHP, % | 42.8 ± 14.1 | 47.9 ± 14.7 | −5.1 | 0.044 | 41.3 ± 16.5 | 38.9 ± 17.6 | 2.4 | 0.436 |
5-oxo-MEHP, % | 24.7 ± 8.4 | 26.8 ± 9.4 | −1.6 | 0.123 | 23.4 ± 9.8 | 22.4 ± 11.2 | 1.0 | 0.595 |
Total metabolites | 100.0 | 100.0 | 100.0 | 100.0 |
log10 Scale, Mean ± SD (nmol/g) | p for Mean Diff. a | Cont. aOR b | (95% CI) | ||
---|---|---|---|---|---|
Asthma | Control | ||||
Men | |||||
5-OH-MEHP/MEHP | 0.13 ± 0.49 | 0.32 ± 0.48 | 0.024 | 0.2 | (0.1–0.5) |
5-oxo-MEHP | 1.67 ± 0.47 | 1.59 ± 0.42 | 0.301 | 4.2 | (1.3–13.6) |
Women | |||||
5-OH-MEHP/MEHP | 0.09 ± 0.61 | 0.02 ± 0.62 | 0.468 | 0.8 | (0.4–1.8) |
5-oxo-MEHP | 1.63 ± 0.45 | 1.59 ± 0.45 | 0.599 | 1.2 | (0.4–3.6) |
Clinical Factor | No. of Subject | Total Metabolites a log10 Scale, Mean ± SD | Cont. aOR b | (95% CI) |
---|---|---|---|---|
Overall | ||||
Controls | 139 | 3.00 ± 0.33 | 1.0 | (base outcome) |
Asthma patients: clinical event | ||||
Asthma attack | ||||
1–3 times | 107 | 3.21 ± 0.51 | 4.7 | (1.9–11.3) |
≥4 times | 16 | 3.18 ± 0.36 | 4.3 | (1.1–16.1) |
Emergency asthma treatment | ||||
No | 93 | 3.19 ± 0.49 | 4.3 | (1.8–10.4) |
Yes | 30 | 3.27 ± 0.49 | 6.4 | (2.1–19.0) |
Hospitalization for asthma | ||||
No | 117 | 3.20 ± 0.49 | 4.5 | (1.9–10.8) |
Yes | 6 | 3.41 ± 0.51 | 8.8 | (2.2–35.2) |
Male | ||||
Controls | 77 | 2.94 ± 0.30 | 1.0 | (base outcome) |
Asthma patients: clinical event | ||||
Asthma attack | ||||
1–3 times | 49 | 3.19 ± 0.60 | 7.5 | (1.9–29.6) |
≥4 times | 8 | 3.15 ± 0.42 | 8.7 | (1.3–58.7) |
Emergency asthma treatment | ||||
No | 43 | 3.14 ± 0.59 | 7.2 | (1.8–28.4) |
Yes | 14 | 3.33 ± 0.55 | 10.1 | (2.0–50.5) |
Hospitalization for asthma | ||||
No | 53 | 3.17 ± 0.30 | 7.1 | (1.8–27.8) |
Yes | 4 | 3.44 ± 0.58 | 15.4 | (2.2–105.1) |
Female | ||||
Controls | 62 | 3.09 ± 0.34 | 1.0 | (base outcome) |
Asthma patients: clinical event | ||||
Asthma attack | ||||
1–3 times | 58 | 3.23 ± 0.42 | 3.3 | (0.9–12.2) |
≥4 times | 8 | 3.21 ± 0.31 | 3.8 | (0.4–34.5) |
Emergency asthma treatment | ||||
No | 50 | 3.23 ± 0.40 | 3.5 | (0.9–12.9) |
Yes | 16 | 3.22 ± 0.44 | 3.0 | (0.5–16.2) |
Hospitalization for asthma | ||||
No | 64 | 3.22 ± 0.41 | 0.3 | (0.1–1.1) |
Yes | 2 | 3.35 ± 0.35 | 2.6 | (0.02–277.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duh, T.-H.; Yang, C.-J.; Lee, C.-H.; Ko, Y.-C. A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan. Molecules 2023, 28, 5230. https://doi.org/10.3390/molecules28135230
Duh T-H, Yang C-J, Lee C-H, Ko Y-C. A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan. Molecules. 2023; 28(13):5230. https://doi.org/10.3390/molecules28135230
Chicago/Turabian StyleDuh, Tsai-Hui, Chih-Jen Yang, Chien-Hung Lee, and Ying-Chin Ko. 2023. "A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan" Molecules 28, no. 13: 5230. https://doi.org/10.3390/molecules28135230
APA StyleDuh, T. -H., Yang, C. -J., Lee, C. -H., & Ko, Y. -C. (2023). A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan. Molecules, 28(13), 5230. https://doi.org/10.3390/molecules28135230