Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review
Abstract
:1. Introduction
2. An Overview of Strawberry Aroma
3. Effect of Different Drying Methods and Conditions on Strawberry VOCs and Aroma
Type of Drying | Drying Conditions | Main Findings | Ref. |
---|---|---|---|
Shade air drying |
|
| [12] |
Oven drying |
|
| [12] |
Hot air drying |
|
| [41] |
Freeze drying |
|
| [37] |
|
| [12] | |
|
| [39] | |
Microwave drying |
|
| [12] |
Refractance window drying |
|
| [36] |
Spray drying |
|
| [39] |
Vacuum freeze drying |
|
| [38] |
|
| [13] | |
|
| [43] |
4. Analytical Methods for the Determination of Aroma Compounds in Strawberry
Technique Name | Type of Study | Sensing System | Analytical Method | Pattern Recognition System | Main Goals | Ref. |
---|---|---|---|---|---|---|
GC-based methods |
| HS-SPME–GC–MS |
| [51] | ||
| Headspace solid- phase microextraction–gas chromatography–flame ionization detector (HS-SPME–GC-FID) |
| [31] | |||
| HS-SPME–GC–MS |
| [53] | |||
| HS-SPME–GC–MS |
| [12] | |||
| HS-SPME–GC–qMS (triple quadropole mass spectrometry) |
| [22] | |||
| Dynamic headspace–gas chromatography–time-of-flight mass spectrometry analysis (DHS–GC–Q-ToF) |
| [55] | |||
| HS-SPME–GC–MS |
| [54] | |||
Proton Transfer Reaction-MS (PTR-MS) |
| PTR–ToF–MS |
| [52] | ||
Electronic Nose (EN) |
| PEN 3, 10 MOS sensors | Combined with GC–MS | PCA, PLS-DA, SVM |
| [61] |
| PEN 3, 10 MOS sensors | Combined with near infrared HIS system | PCA |
| [62] | |
| Fox 4000, 6 MOS sensors | Combined with GC–MS | LS-SVM |
| [63] | |
| Designed E-nose, 13 MOS sensors | E-nose only | PCA |
| [64] | |
| Designed E-nose, 9 MOS sensors | E-nose only | PCA, LDA, QDA, SVM |
| [65] | |
| Designed E-nose, 10 MOS sensors | Combined with E-tongue | ANOVA, Pearson’s correlation, Growth curve |
| [66] |
5. Conclusions
- -
- The aroma of strawberries is developed during ripening, and it varies greatly depending on many factors, including the degree of maturity, strawberry cultivar and variety, environmental conditions, storage, and postharvest methods.
- -
- The aroma of strawberries consists of a highly complex mixture of compounds, such as furanones, esters, sulfur, and terpenoids compounds.
- -
- The impact of drying as a postharvest treatment on the changes of the aroma and sensory properties of strawberries is greatly variable. Oven drying, freeze drying, vacuum freeze drying, microwave drying, shade air drying, and hot air drying were the most common drying methods used for the production of strawberry powders with suitable aromas. Each drying technique has a different effect at varying levels, but in most of the cases, using higher temperatures resulted in greater deterioration of the sensory properties due to the loss of a major part of the esters.
- -
- Gas chromatography, electronic nose sensing, and proton-transfer- reaction mass spectrometry were mostly used to analyze and identify the VOCs of strawberry fruits.
- -
- Using a combination of drying techniques to minimize the negative effects on the strawberry aroma and flavor could be recommended. More studies must be conducted to better understand the volatile profile of strawberries and to evaluate the impact of hybrid drying on the sensory properties.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and Human Health: Effects beyond Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [Google Scholar] [CrossRef] [PubMed]
- Chaves, V.C.; Calvete, E.; Reginatto, F.H. Quality properties and antioxidant activity of seven strawberry (Fragaria × ananassa duch) cultivars. Sci. Hortic. 2017, 225, 293–298. [Google Scholar] [CrossRef]
- Asao, T.; Asaduzzaman, M. (Eds.) Strawberry: Pre-and Post-Harvest Management Techniques for Higher Fruit Quality; BoD–Books on Demand: Norderstedt, Germany, 2019. [Google Scholar]
- El Hadi, M.A.M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.-W.; Ban, Z.-J.; Lu, H.-Y.; Li, D.; Poverenov, E.; Luo, Z.-S.; Li, L. The aroma volatile repertoire in strawberry fruit: A review. J. Sci. Food Agric. 2018, 98, 4395–4402. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Jiménez, S.M.; Angoa-Pérez, M.V.; Mena-Violante, H.G.; Oyoque-Salcedo, G.; Montañez-Soto, J.L.; Oregel-Zamudio, E. Identification of organic volatile markers associated with aroma during maturation of strawberry fruits. Molecules 2021, 26, 504. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, L.; Tu, K. Aroma in freshly squeezed strawberry juice during cold storage detected by E-nose, HS–SPME–GC–MS and GC-IMS. J. Food Meas. Charact. 2023, 17, 3309–3322. [Google Scholar] [CrossRef]
- Zhou, Y.; Abbas, F.; Wang, Z.; Yu, Y.; Yue, Y.; Li, X.; Yu, R.; Fan, Y. HS–SPME–GC–MS and Electronic Nose Reveal Differences in the Volatile Profiles of Hedychium Flowers. Molecules 2021, 26, 5425. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, M.; Wu, M.; Li, X.; Liu, H.; Niu, N.; Li, S.; Chen, L. Volatile organic compounds (VOCs) from plants: From release to detection. TrAC Trends Anal. Chem. 2022, 158, 116872. [Google Scholar] [CrossRef]
- Waghmare, R.; Kumar, M.; Yadav, R.; Mhatre, P.; Sonawane, S.; Sharma, S.; Gat, Y.; Chandran, D.; Hasan, M.; Dey, A.; et al. Application of ultrasonication as pre-treatment for freeze drying: An innovative approach for the retention of nutraceutical quality in foods. Food Chem. 2022, 404, 134571. [Google Scholar] [CrossRef]
- Tylewicz, U.; Mannozzi, C.; Castagnini, J.M.; Genovese, J.; Romani, S.; Rocculi, P.; Rosa, M.D. Application of PEF- and OD-assisted drying for kiwifruit waste valorisation. Innov. Food Sci. Emerg. Technol. 2022, 77, 102952. [Google Scholar] [CrossRef]
- Abouelenein, D.; Mustafa, A.M.; Angeloni, S.; Borsetta, G.; Vittori, S.; Maggi, F.; Sagratini, G.; Caprioli, G. Influence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams. Molecules 2021, 26, 4153. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Qiao, Y.; Liao, L.; Shi, D.; Wang, J.; Shi, L. Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. LWT 2022, 160, 113232. [Google Scholar] [CrossRef]
- Ihns, R.; Diamante, L.M.; Savage, G.P.; Vanhanen, L. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Int. J. Food Sci. Technol. 2011, 46, 275–283. [Google Scholar] [CrossRef]
- Bajramova, A.; Spégel, P. A comparative study of the fatty acid profile of common fruits and fruits claimed to confer health benefits. J. Food Compos. Anal. 2022, 112, 104657. [Google Scholar] [CrossRef]
- Simpson, D. The economic importance of strawberry crops. In The Genomes of Rosaceous Berries and Their Wild Relatives; Springer: Cham, Switzerland, 2018; pp. 1–7. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 12 April 2023).
- Bhat, R.; Geppert, J.; Funken, E.; Stamminger, R. Consumers Perceptions and Preference for Strawberries—A Case Study from Germany. Int. J. Fruit Sci. 2015, 15, 405–424. [Google Scholar] [CrossRef]
- Park, E.; Luo, Y.; Trouth, F.; Fonseca, J.M. Charting the Future of E-Grocery: An Evaluation of the Use of Digital Imagery as a Sensory Analysis Tool for Fresh Fruits. Horticulturae 2021, 7, 262. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Leonardou, V.K.; Doudoumis, E.; Tsormpatsidis, E.; Vysini, E.; Papanikolopoulos, T.; Papasotiropoulos, V.; Lamari, F.N. Quality Traits, Volatile Organic Compounds, and Expression of Key Flavor Genes in Strawberry Genotypes over Harvest Period. Int. J. Mol. Sci. 2021, 22, 13499. [Google Scholar] [CrossRef]
- Cozzolino, R.; Pace, B.; Palumbo, M.; Laurino, C.; Picariello, G.; Siano, F.; De Giulio, B.; Pelosi, S.; Cefola, M. Profiles of Volatile and Phenolic Compounds as Markers of Ripening Stage in Candonga Strawberries. Foods 2021, 10, 3102. [Google Scholar] [CrossRef]
- Parra-Palma, C.; Úbeda, C.; Gil, M.; Ramos, P.; Castro, R.I.; Morales-Quintana, L. Comparative study of the volatile organic compounds of four strawberry cultivars and it relation to alcohol acyltransferase enzymatic activity. Sci. Hortic. 2019, 251, 65–72. [Google Scholar] [CrossRef]
- Gu, I.; Howard, L.; Lee, S.-O. Volatiles in Berries: Biosynthesis, Composition, Bioavailability, and Health Benefits. Appl. Sci. 2022, 12, 10238. [Google Scholar] [CrossRef]
- Kafkas, E.; Sönmez, D.; Oğuz, İ. Comparison of strawberry (F. × ananassa Florida Fortuna) volatiles using various SPME fibers by GC/MS techniques. In Proceedings of the XXX International Horticultural Congress IHC2018: III International Berry Fruit Symposium 1265, Istanbul, Turkey, 12–16 August 2018; pp. 287–292. [Google Scholar]
- Cozzolino, R.; Amato, G.; Siano, F.; Picariello, G.; Stocchero, M.; Morra, L.; Mignoli, E.; Sicignano, M.; Petriccione, M.; Malorni, L. New Biodegradable Mulching Films for Strawberry (Fragaria × Ananassa Duch.): Effects on the Volatile Profiles of the Fruit. Agronomy 2022, 12, 2514. [Google Scholar] [CrossRef]
- Kafkas, E.; Kafkas, S. Identification of strawberry (Fragaria × ananassa ‘Rubygem’) volatiles using various SPME fibres by GC/MS. In Proceedings of the VIII International Strawberry Symposium 1156, Québec City, QC, Canada, 16–17 August 2016; pp. 689–694. [Google Scholar]
- Ceccarelli, A.; Farneti, B.; Frisina, C.; Allen, D.; Donati, I.; Cellini, A.; Costa, G.; Spinelli, F.; Stefanelli, D. Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy 2018, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, P.R.; Jayaprakasha, G.K.; Patil, B.S. Identification of volatile profiles of Rio Red grapefruit at various developmental to maturity stages. J. Essent. Oil Res. 2018, 30, 77–83. [Google Scholar] [CrossRef]
- Urün, I.; Attar, S.H.; Sönmez, D.A.; Gündeşli, M.A.; Ercişli, S.; Kafkas, N.E.; Bandić, L.M.; Duralija, B. Comparison of Polyphenol, Sugar, Organic Acid, Volatile Compounds, and Antioxidant Capacity of Commercially Grown Strawberry Cultivars in Turkey. Plants 2021, 10, 1654. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Akhatou, I.; Fernández-Recamales, Á. Volatile Profiling of Strawberry Fruits Cultivated in a Soilless System to Investigate Cultivar-Dependent Chemical Descriptors. Foods 2020, 9, 768. [Google Scholar] [CrossRef]
- Rohloff, J. Impact of agricultural and environmental factors on strawberry (Fragaria × ananassa Duch.) aroma—A review. Eur. J. Plant Sci. Biotechnol. 2011, 5, 17–34. [Google Scholar]
- Du, X.; Plotto, A.; Baldwin, E.; Rouseff, R. Evaluation of volatiles from two subtropical strawberry cultivars using GC–olfactometry, GC-MS odor activity values, and sensory analysis. J. Agric. Food Chem. 2011, 59, 12569–12577. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E. Bioactive, Physicochemical and Sensory Properties as Well as Microstructure of Organic Strawberry Powders Obtained by Various Drying Methods. Appl. Sci. 2020, 10, 4706. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food Bioprocess Technol. 2014, 7, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Al-Taher, F.; Nemzer, B. Identification of Aroma Compounds in Freeze-dried Strawberries and Raspberries by HS-SPME-GC-MS. J. Food Res. 2020, 9, 30–40. [Google Scholar] [CrossRef]
- Kopjar, M.; Pilizota, V.; Hribar, J.; Zlatic, E.; Nedic Tiban, N.; Subaric, D.; Babic, J. Aroma retention in evaporated and freeze-dried strawberry pastes. In Proceedings of the 13th World Congress of Food Science & Technology 2006, Nantes, France, 17–21 September 2006; p. 346. [Google Scholar]
- Abonyi, B.; Feng, H.; Tang, J.; Edwards, C.; Chew, B.; Mattinson, D.; Fellman, J. Quality Retention in Strawberry and Carrot Purees Dried with Refractance WindowTM System. J. Food Sci. 2002, 67, 1051–1056. [Google Scholar] [CrossRef]
- Latrasse, A. Fruits III in Volatile Components in Food and Beverages; Henk: Maarse, The Netherlands, 1991. [Google Scholar]
- Tekgül, Y.; Erten, E.S. Quality Properties and Headspace Volatiles of Hot Air-Dried Strawberries. An. Acad. Bras. Cienc. 2022, 94, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Scherb, J.; Kreissl, J.; Haupt, S.; Schieberle, P. Quantitation of S-methylmethionine in raw vegetables and green malt by a stable isotope dilution assay using LC-MS/MS: Comparison with dimethyl sulphide formation after heat treatment. J. Agric. Food Chem. 2009, 57, 9091–9096. [Google Scholar] [CrossRef]
- Xu, B.; Chen, J.; Tiliwa, E.S.; Yan, W.; Azam, S.R.; Yuan, J.; Wei, B.; Zhou, C.; Ma, H. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrason. Sonochem. 2021, 78, 105714. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Tappi, S.; Rosa, M.D.; Rocculi, P.; Romani, S. The Influence of Different Pre-Treatments on the Quality and Nutritional Characteristics in Dried Undersized Yellow Kiwifruit. Appl. Sci. 2020, 10, 8432. [Google Scholar] [CrossRef]
- Eom, H.; Jang, Y.H.; Lee, D.Y.; Kim, S.S.; Lee, S.M.; Cho, E.M. Optimization of a hybrid sludge drying system with flush drying and microwave drying technology. Chem. Eng. Res. Des. 2019, 148, 68–74. [Google Scholar] [CrossRef]
- Komes, D.; Lovrić, T.; Ganić, K.K. Aroma of dehydrated pear products. LWT-Food Sci. Technol. 2007, 40, 1578–1586. [Google Scholar] [CrossRef]
- Jordán, M.J.; Margaría, C.A.; Shaw, P.E.; Goodner, K.L. Volatile components and aroma active compounds in aqueous essence and fresh pink guava fruit puree (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O. J. Agric. Food Chem. 2003, 51, 1421–1426. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Šimunek, M.; Petrović, M.; Bedić, H.; Herceg, Z.; Juretić, H. Aromatic profile and sensory characterisation of ultrasound treated cranberry juice and nectar. Ultrason. Sonochem. 2017, 38, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Caleb, O.J.; Ilte, K.; Herppich, W.B.; Geyer, M.; Mahajan, P.V. Impacts of minimal processing and hot water dipping of ‘Sonata’ strawberries on volatiles emitted during storage. Sci. Hortic. 2019, 243, 385–391. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Wei, B.; Zeng, R. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason. Sonochem. 2018, 40, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Buvé, C.; Neckebroeck, B.; Haenen, A.; Kebede, B.; Hendrickx, M.; Grauwet, T.; Van Loey, A. Combining untargeted, targeted and sensory data to investigate the impact of storage on food volatiles: A case study on strawberry juice. Food Res. Int. 2018, 113, 382–391. [Google Scholar] [CrossRef]
- Li, H.; Brouwer, B.; Oud, N.; Verdonk, J.C.; Tikunov, Y.; Woltering, E.; Schouten, R.; da Silva, F.P. Sensory, GC-MS and PTR-ToF-MS profiling of strawberries varying in maturity at harvest with subsequent cold storage. Postharvest Biol. Technol. 2021, 182, 111719. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Liu, X.; Xiao, Y.; Zhang, Z.; Shi, Y.; Kong, W.; Yang, X.; Jiang, G.; Zhang, B.; et al. Cultivation Conditions Change Aroma Volatiles of Strawberry Fruit. Horticulturae 2021, 7, 81. [Google Scholar] [CrossRef]
- Liu, J.; Chen, M.; Ma, W.; Zheng, L.; Zhang, B.; Zhao, H.; Jiang, Y. Composition of Strawberry Flower Volatiles and Their Effects on Behavior of Strawberry Pollinators, Bombus terrestris and Apis mellifera. Agronomy 2023, 13, 339. [Google Scholar] [CrossRef]
- Dubrow, G.A.; Forero, D.P.; Peterson, D.G. Identification of volatile compounds correlated with consumer acceptability of strawberry preserves: Untargeted GC–MS analysis. Food Chem. 2022, 378, 132043. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Hashim, N.; Aziz, S.A.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Szulczyński, B.; Wasilewski, T.; Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Gębicki, J. Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants. Sensors 2017, 17, 2671. [Google Scholar] [CrossRef] [Green Version]
- Tatli, S.; Mirzaee-Ghaleh, E.; Rabbani, H.; Karami, H.; Wilson, A.D. Rapid Detection of Urea Fertilizer Effects on VOC Emissions from Cucumber Fruits Using a MOS E-Nose Sensor Array. Agronomy 2022, 12, 35. [Google Scholar] [CrossRef]
- Staerz, A.; Roeck, F.; Weimar, U.; Barsan, N. Electronic nose: Current status and future trends. In Surface and Interface Science: Volume 9: Applications of Surface Science I; Wiley: Hoboken, NJ, USA, 2020; Volume 9, pp. 335–379. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Xing, M.; Sun, K.; Liu, Q.; Pan, L.; Tu, K. Development of Novel Electronic Nose Applied for Strawberry Freshness Detection during Storage. Int. J. Food Eng. 2018, 14, 20180111. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, K.; Peng, J.; Xing, M.; Pan, L.; Tu, K. Identification of Bruise and Fungi Contamination in Strawberries Using Hyperspectral Imaging Technology and Multivariate Analysis. Food Anal. Methods 2018, 11, 1518–1527. [Google Scholar] [CrossRef]
- Rao, J.; Zhang, Y.; Yang, Z.; Li, S.; Wu, D.; Sun, C.; Chen, K. Application of electronic nose and GC–MS for detection of strawberries with vibrational damage. Food Qual. Saf. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Radi, R.; Barokah, B.; Rohmah, D.N.; Wahyudi, E.; Adhityamurti, M.D.; Putro, J.P.L.Y. Implementation of an electronic nose for classification of synthetic flavors. Bull. Electr. Eng. Inform. 2021, 10, 1283–1290. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H. Application of electronic nose with chemometrics methods to the detection of juices fraud. J. Food Process. Preserv. 2021, 45, e15432. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Pan, L.-Q.; Tu, K. Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue. Sensors 2022, 22, 8205. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Nzekoue, F.K.; Abouelenein, D.; Sagratini, G.; Caprioli, G.; Torregiani, E. An Overview on Truffle Aroma and Main Volatile Compounds. Molecules 2020, 25, 5948. [Google Scholar] [CrossRef]
- Angeloni, S.; Mustafa, A.M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F.K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; et al. Characterization of the Aroma Profile and Main Key Odorants of Espresso Coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef]
Reference | 21 | 22 | 23 | 25 | 26 | 6 | 30 | 31 | 12 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound Name | Class | Odor Descriptors | Samples Type | Mean of 6 Genotypes | Candonga Sabrosa | Camarosa | Crystal | Monterey | Portola | Florida Fortuna | Sabrina | Elide | Frontera | Festival | Albion | Rubygem | Fortuna | Festival | Calinda | FL127 | Plared | Sahara | Sabrina | Victory | E-22 | Camarosa | Candonga | Festival | commercial | Total Occurrence | |
1 | Linalool (3,7-dime-thylocta-1,6-dien-3-ol) | terpens | citrus, fruity/floral | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 25 | ||
2 | methyl hexanoate (hexa-noic acid, methyl ester) | esters | fruity, pineapple | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 24 | |||
3 | nerolidol | terpens | mild floral | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 23 | ||||
4 | 2-methyl butanoic acid (2-methyl butyric acid) | acids | sour, cheesy, sweety | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 22 | |||||
5 | hexanoic acid | acids | sweety, cheesy | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 21 | ||||||
6 | ethyl hexanoate (hexa-noic acid, ethyl ester) | esters | fruity, sweet, pineapple | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 20 | |||||||
7 | 5-hexyldihydro-2(3H)-furanone (γ-decalactone) | lactones | fruity, peach, sweet | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 19 | ||||||||
8 | 2-hexenal | aldehydes | green, fruity | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 18 | |||||||||
9 | ethyl butanoate (buta-noic acid ethyl ester) | esters | fruity, sweet, pineapple | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 15 | ||||||||||||
10 | methyl butanoate (buta-noic acid methyl ester) | esters | sour, cheesy, sweety | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 15 | ||||||||||||
11 | nonanoic acid | acids | waxy, fatty, cheesy | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 14 | |||||||||||||
12 | octanoic acid | acids | fatty, waxy, rancid vegetable oil | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 14 | |||||||||||||
13 | benzaldehyde | aldehydes | Sweet, bitter, almond | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 14 | |||||||||||||
14 | decanoic acid | acids | rancid odor | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 13 | ||||||||||||||
15 | terpineol | terpens | herbal | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 13 | ||||||||||||||
16 | acetic acid | acids | strong vinegar | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
17 | hexanal | aldehydes | fresh, green | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
18 | nonanal | aldehydes | waxy, aldehydic, fatty | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
19 | 2-hexen-1-ol acetate | esters | pleasant, fruity, green | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
20 | benzyl acetate (acetic acid phenylmethyl ester) | esters | sweet, floral, fruity | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
21 | hexyl acetate (acetic acid hexyl ester) | esters | fruity, green apple, banana | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
22 | DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone) o furaneol | furanones | sweet, caramel, candy | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
23 | DMMF (2,5-dimethyl-4-methoxy-3(2H)-furanone) o mesifurane | furanones | sweet, caramel | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
24 | γ-dodecalactone | lactones | sweet, flower, fruit | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 12 | |||||||||||||||
25 | butanoic Acid | acids | sour, cheesy, sweety | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 | ||||||||||||||||
26 | butyl acetate (acetic acid butyl ester) | esters | fruity, banana | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 | ||||||||||||||||
27 | hexyl hexanoate | esters | green herbal, fruity | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 | ||||||||||||||||
28 | farnesene | terpens | woody, green | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 | ||||||||||||||||
29 | Geraniol (3,7-dime-thylocta-2,6-dien-1-ol) | terpens | sweet, berry, floral | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 | ||||||||||||||||
30 | 1,2-benzenedicarboxylic acid diethyl ester | esters | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 10 | ||||||||||||||||||
31 | benzophenone | ketons | balsamic, geranium | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Borsetta, G.; Caprioli, G.; Mannozzi, C.; Marconi, R.; Piatti, D.; Santanatoglia, A.; Sagratini, G.; et al. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules 2023, 28, 5810. https://doi.org/10.3390/molecules28155810
Abouelenein D, Acquaticci L, Alessandroni L, Borsetta G, Caprioli G, Mannozzi C, Marconi R, Piatti D, Santanatoglia A, Sagratini G, et al. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules. 2023; 28(15):5810. https://doi.org/10.3390/molecules28155810
Chicago/Turabian StyleAbouelenein, Doaa, Laura Acquaticci, Laura Alessandroni, Germana Borsetta, Giovanni Caprioli, Cinzia Mannozzi, Riccardo Marconi, Diletta Piatti, Agnese Santanatoglia, Gianni Sagratini, and et al. 2023. "Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review" Molecules 28, no. 15: 5810. https://doi.org/10.3390/molecules28155810
APA StyleAbouelenein, D., Acquaticci, L., Alessandroni, L., Borsetta, G., Caprioli, G., Mannozzi, C., Marconi, R., Piatti, D., Santanatoglia, A., Sagratini, G., Vittori, S., & Mustafa, A. M. (2023). Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules, 28(15), 5810. https://doi.org/10.3390/molecules28155810