Improving Photocatalytic Activity for Formaldehyde Degradation by Encapsulating C60 Fullerenes into Graphite-like C3N4 through the Enhancement of Built-in Electric Fields
Abstract
:1. Introduction
2. Results and Discussion
Characterization of the Photocatalysts
3. Materials and Methods
3.1. Materials
3.2. Preparation of Graphite-like C3N4
3.3. Preparation of Graphite-like C3N4@C60 Composites
3.4. Photocatalytic Degradation of Gaseous Formaldehyde
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Han, K.H.; Zhang, J.S.; Guo, B. Toward effective design and adoption of catalyst-based filter for indoor hazards: Formaldehyde abatement under realistic conditions. J. Hazard. Mater. 2017, 331, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shi, M.; Li, Y.; Wu, Z.; Yang, L.; Zhang, S.; Xiao, X.; Liu, C.; Dai, W.; Chen, C.; et al. Congregated-electrons-strengthened anchoring and mineralization of gaseous formaldehyde on a novel self-supporting Cu2−xSe/Cu2O heterojunction photocatalyst under visible lights: A viable mesh for designing air purifier. Appl. Catal. B Environ. 2022, 312, 121427. [Google Scholar] [CrossRef]
- Suresh, S.; Bandosz, T.J. Removal of formaldehyde on carbon -based materials: A review of the recent approaches and findings. Carbon 2018, 137, 207–221. [Google Scholar] [CrossRef]
- Yusuf, A.; Snape, C.; He, J.; Xu, H.; Liu, C.; Zhao, M.; Chen, G.Z.; Tang, B.; Wang, C.; Wang, J.; et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review. Catal. Rev. 2017, 59, 189–233. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, N.; Wang, J.; Tong, H. Formaldehyde biofiltration as affected by spider plant. Bioresour. Technol. 2010, 101, 6930–6934. [Google Scholar] [CrossRef]
- Dingle, P.; Tapsell, P.; Hu, S. Reducing Formaldehyde Exposure in Office Environments Using Plants. Bull. Environ. Contam. Toxicol. 2000, 64, 302–308. [Google Scholar] [CrossRef]
- Liu, S.-H.; Lin, W.-X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde. J. Hazard. Mater. 2019, 368, 468–476. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, W.; Yu, J.; Tian, X.; Li, X.; Deng, Z.; Lin, F.; Zhang, Y. Enhanced photocatalytic degradation efficiency of formaldehyde by in-situ fabricated TiO2/C/CaCO3 heterojunction photocatalyst from mussel shell extract. J. Solid State Chem. 2022, 311, 123110. [Google Scholar] [CrossRef]
- Li, J.; Cui, W.; Chen, P.; Dong, X.; Chu, Y.; Sheng, J.; Zhang, Y.; Wang, Z.; Dong, F. Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl. Catal. B Environ. 2020, 260, 118130. [Google Scholar] [CrossRef]
- Sheng, C.; Wang, C.; Wang, H.; Jin, C.; Sun, Q.; Li, S. Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. J. Hazard. Mater. 2017, 328, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Haghighat, F.; Lee, C.-S.; Lakdawala, N. Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation. J. Hazard. Mater. 2013, 261, 130–138. [Google Scholar] [CrossRef]
- Xiang, N.; Bai, Y.; Li, Q.; Han, X.; Zheng, J.; Zhao, Q.; Hou, Y.; Huang, Z. ZIF-67-derived hierarchical hollow Co3O4@CoMn2O4 nanocages for efficient catalytic oxidation of formaldehyde at low temperature. Mol. Catal. 2022, 528, 112519. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Peng, K.; Qin, G.; Yang, Y.; Huang, Z. The intrinsic effects of oxygen vacancy and doped non-noble metal in TiO2(B) on photocatalytic oxidation VOCs by visible light driving. J. Environ. Chem. Eng. 2022, 10, 107390. [Google Scholar] [CrossRef]
- Zuo, S.; Zan, J.; Li, D.; Guan, Z.; Yang, F.; Xu, H.; Huang, M.; Xia, D. Efficient peroxymonosulfate nonradical activity of Zn-Mn-Al2O3@g-C3N4 via synergism of Zn, Mn doping and g-C3N4 composite. Sep. Purif. Technol. 2021, 272, 118965. [Google Scholar] [CrossRef]
- Liu, M.; Wei, C.; Zhuzhang, H.; Zhou, J.; Pan, Z.; Lin, W.; Yu, Z.; Zhang, G.; Wang, X. Fully Condensed Poly (Triazine Imide) Crystals: Extended π-Conjugation and Structural Defects for Overall Water Splitting. Angew. Chem. Int. Ed. 2021, 61, e202113389. [Google Scholar] [CrossRef]
- Fang, Y.; Hou, Y.; Fu, X.; Wang, X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem. Rev. 2022, 122, 4204–4256. [Google Scholar] [CrossRef]
- Chen, X.; Weng, M.; Lan, M.; Weng, Z.; Wang, J.; Guo, L.; Lin, Z.; Qiu, B. Superior antibacterial activity of sulfur-doped g-C3N4 nanosheets dispersed by Tetrastigma hemsleyanum Diels & Gilg’s polysaccharides-3 solution. Int. J. Biol. Macromol. 2021, 168, 453–463. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Yang, D.; Liu, J.; He, L.; Tang, M.; Feng, W.; Wu, X. Fabrication, characterization and high photocatalytic activity of Ag–ZnO heterojunctions under UV-visible light. RSC Adv. 2021, 11, 27257–27266. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, Q.; Xia, Y.; Wang, J.; Chen, H.; Xu, Q.; Liu, J.; Feng, W.; Chen, S. Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 21511–21524. [Google Scholar] [CrossRef]
- Patnaik, S.; Sahoo, D.P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon 2021, 172, 682–711. [Google Scholar] [CrossRef]
- Qin, J.; Huo, J.; Zhang, P.; Zeng, J.; Wang, T.; Zeng, H. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 2016, 8, 2249–2259. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bai, X.; Shi, J.; Du, X.; Xu, L.; Jin, P. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Appl. Catal. B Environ. 2019, 256, 117759. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, W.; Wang, X.; Li, P.; Gao, W.; Zou, H.; Wu, S.; Ding, K. Surface Engineering for Extremely Enhanced Charge Separation and Photocatalytic Hydrogen Evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J.-M. Surface Engineering of g-C3N4 by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angew. Chem. Int. Ed. 2020, 59, 4519–4524. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xu, X.; Zhou, Y.; Liu, J.; Yang, H. Rational design via surface engineering on dual 2-dimensional ZnSe/g-C3N4 heterojunction for efficient sequestration of elemental mercury. Chem. Eng. J. 2022, 448, 137606. [Google Scholar] [CrossRef]
- Talukdar, M.; Behera, S.K.; Bhattacharya, K.; Deb, P. Surface modified mesoporous g-C3N4@FeNi3 as prompt and proficient magnetic adsorbent for crude oil recovery. Appl. Surf. Sci. 2019, 473, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Clancy, A.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118, 7363–7408. [Google Scholar] [CrossRef] [Green Version]
- Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 2015, 3, 10715–10722. [Google Scholar] [CrossRef] [Green Version]
- Tezuka, N.; Umeyama, T.; Matano, Y.; Shishido, T.; Yoshida, K.; Ogawa, T.; Isoda, S.; Stranius, K.; Chukharev, V.; Tkachenko, N.V.; et al. Photophysics and photoelectrochemical properties of nanohybrids consisting of fullerene-encapsulated single-walled carbon nanotubes and poly(3-hexylthiophene). Energy Environ. Sci. 2011, 4, 741–750. [Google Scholar] [CrossRef]
- Huber, R.C.; Ferreira, A.S.; Thompson, R.; Kilbride, D.; Knutson, N.S.; Devi, L.S.; Toso, D.B.; Challa, J.R.; Zhou, Z.H.; Rubin, Y.; et al. Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies. Science 2015, 348, 1340–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Chen, C.-H.; Chen, N.; Echegoyen, L. Fullerenes as Nanocontainers That Stabilize Unique Actinide Species Inside: Structures, Formation, and Reactivity. Accounts Chem. Res. 2019, 52, 1824–1833. [Google Scholar] [CrossRef] [PubMed]
- Zieleniewska, A.; Lodermeyer, F.; Roth, A.; Guldi, D.M. Fullerenes—How 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem. Soc. Rev. 2018, 47, 702–714. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Guan, J.; Zhen, J.; Sun, Z.; Du, P.; Lu, Y.; Yang, S. A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production. Nanoscale 2017, 9, 5615–5623. [Google Scholar] [CrossRef]
- Lee, H.K.H.; Telford, A.M.; Röhr, J.A.; Wyatt, M.F.; Rice, B.; Wu, J.; Maciel, A.d.C.; Tuladhar, S.M.; Speller, E.; McGettrick, J.; et al. The role of fullerenes in the environmental stability of polymer:fullerene solar cells. Energy Environ. Sci. 2018, 11, 417–428. [Google Scholar] [CrossRef]
- Li, P.; Fang, J.; Wang, Y.; Manzhos, S.; Cai, L.; Song, Z.; Li, Y.; Song, T.; Wang, X.; Guo, X.; et al. Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Non-Fullerene-Based Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 15054–15062. [Google Scholar] [CrossRef]
- Huang, Q.; Zhuang, G.; Jia, H.; Qian, M.; Cui, S.; Yang, S.; Du, P. Photoconductive Curved-Nanographene/Fullerene Supramolecular Heterojunctions. Angew. Chem. 2019, 131, 6310–6315. [Google Scholar] [CrossRef]
- Eom, T.; Barát, V.; Khan, A.; Stuparu, M.C. Aggregation-free and high stability core–shell polymer nanoparticles with high fullerene loading capacity, variable fullerene type, and compatibility towards biological conditions. Chem. Sci. 2021, 12, 4949–49577. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, J.; Mao, J.; Li, H.; Wang, Y. Selective aerobic oxidation of alcohols by a mesoporous graphitic carbon nitride/N-hydroxyphthalimide system under visible-light illumination at room temperature. Chin. J. Catal. 2015, 36, 1580–1586. [Google Scholar] [CrossRef]
- Gong, Y.; Li, M.; Li, H.; Wang, Y. Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015, 17, 715–736 . [Google Scholar] [CrossRef]
- Xu, X.; Yue, Y.; Xin, G.; Huang, N. Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor–Acceptor Interaction. Macromol. Rapid Commun. 2022, 44, 2200715. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, D.; Zhang, Z.; Zhang, J.; Yang, Y. Improving Photocatalytic Activity for Formaldehyde Degradation by Encapsulating C60 Fullerenes into Graphite-like C3N4 through the Enhancement of Built-in Electric Fields. Molecules 2023, 28, 5815. https://doi.org/10.3390/molecules28155815
Peng D, Zhang Z, Zhang J, Yang Y. Improving Photocatalytic Activity for Formaldehyde Degradation by Encapsulating C60 Fullerenes into Graphite-like C3N4 through the Enhancement of Built-in Electric Fields. Molecules. 2023; 28(15):5815. https://doi.org/10.3390/molecules28155815
Chicago/Turabian StylePeng, Dongmei, Zhongfeng Zhang, Jijuan Zhang, and Yang Yang. 2023. "Improving Photocatalytic Activity for Formaldehyde Degradation by Encapsulating C60 Fullerenes into Graphite-like C3N4 through the Enhancement of Built-in Electric Fields" Molecules 28, no. 15: 5815. https://doi.org/10.3390/molecules28155815
APA StylePeng, D., Zhang, Z., Zhang, J., & Yang, Y. (2023). Improving Photocatalytic Activity for Formaldehyde Degradation by Encapsulating C60 Fullerenes into Graphite-like C3N4 through the Enhancement of Built-in Electric Fields. Molecules, 28(15), 5815. https://doi.org/10.3390/molecules28155815