Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase—A Review
Abstract
:1. Introduction
2. Basic Principles of Photocatalysis
3. General Issues in Gaseous Organic Compounds Photocatalytic Oxidation
- Charge-carrier generation.
- 2.
- Charge-carrier recombination. The photogenerated electrons can recombine in the range from microseconds to nanoseconds, and holes can recombine rapidly in a few nanoseconds [21]:
- 3.
- Generation of reactive oxygen species:
4. Adsorption of BTEX to TiO2 Surface
5. General Observation of Aromatic Molecules PCO Experiments
5.1. Gas-Phase By-Products
Catalyst/Method of Preparation | Experimental Conditions | Analytical Method | Identified Gaseous Products | Reference |
---|---|---|---|---|
Reagent grade TiO2 BET surface area: 10.4 m2/g | Inlet toluene conc. (ppm): 80 Flow rate (mL min−1): 300 | GS-FID HPLC | Humidified and un-humidified condition: CO2, Benzaldehyde. | [53] |
TiO2 in the anatase phase BET specific surface area 10 m2 g−1 | Inlet toluene conc. (molar fraction): 4.0 × 10−4 to 1.3 × 10−2 Flow rate (cm3 s−1) 0.17–10 Reaction temperature (K): 413 UV intensity (mW cm−2): 5 Type of reactor: fixed bed cylindrical | GC-FID HPLC | Major: Benzaldehyde; Minor (small amount): Benzene, Benzyl alcohol; Trace amounts: Benzoic acid, Phenol. | [42] |
(1) Degussa P25 TiO2 75% anatase/25% rutile with a BET surface area of 50 m2/g (2) 0.2 wt.% Pt/TiO2 | Inlet toluene conc. (ppm): 100 Reaction temperature: room temperature UV intensity (mW cm−2): 2.5 λ(max), UV: 356 nm | GS-MS | Humidified and un-humidified toluene: Major: CO2; Small amount: Benzene, Benzaldehyde. | [50] |
PC500 TiO2 100% anatase BET specific surface area: 300 m2 g−1 Crystal size: 5–10 nm. | Inlet toluene conc. (ppbv): 20–400 Flow rate (mL min−1): 70–350 Reaction temperature (K): 298 ± 2 UV intensity (mW cm−2): 4.3 Type of reactor: annular flow -through | ATD-GC-MS | 0% RH Major: CO2; (Small amount): Benzaldehyde, Benzene; Minor (Trace amount): Formaldehyde, methyl glyoxal, Vinyl methyl ketone. | [48] |
40% RH Major: CO2; (Small amount): Benzaldehyde; Minor (Small amount): (o,m,p-)-cresol, Benzene, Benzyl alcohol, Phenol. | ||||
Degussa P25 | Inlet toluene conc. (ppbv): 450; 1200; 8000; 3200 Flow rate (l min−1): 0.55 Reaction temperature (°C): 24.0–26.0 UV intensity (mW cm−2): 0.43–0.95 λ (UV): 254 nm Contact time: 0.2 s. Type of reactor: plate-type UV-PCO | PRT MS GS-MS | 47–50% RH Formaldehyde, Methanol, Propylene, Acetaldehyde, Formic acid /ethanol, Acetone/propionaldehyde, Acetic acid, Benzene, Benzaldehyde, Benzyl alcohol, Phenol, -methyl-. | [55] |
Degussa P25 TiO2 | Inlet toluene conc. (ppbv): 1–1000 UV intensity (mW cm−2): 10 ± 1 λ (UV): 365 nm Type of reactor: batch Pyrex | TDS-GS/MC/FID HPLC/UV FTIR | Major: CO2; Minor: Aromatics: Benzene, Phenol, Benzaldehyde, Cresols; Aldehydes: Formaldehyde, Acetaldehyde, Acroleine, Pentanal, Heptanal; Others: 2-methylfurane. | [56] |
Pt/TiO2 BET specific surface area: 67 m2 g−1 Crystal size: 5–10 nm. | Inlet toluene conc. (ppm): 1000 Weight hourly space velocity (mL g−1 h−1): 40,000 Reaction temperature (°C): 120–210 UV intensity (mW cm−2): Type of reactor: fixed-bed quartz tube | GS-MS | <160 °C Benzene, Nonbornane, o-xylen, p-xylen, Benzaldehyde, Phthalic acid; >160 °C Acetone, Acetic acid, Maleic anhydride, Itaconic anhydride, Benzene, Nonbornane, o-xylen, p-xylen, Benzaldehyde, Phtalic acid. | [57] |
5.2. Catalyst-Bound By-Products
Catalyst/Method of Preparation | Experimental Conditions | Analytical Method | Solvent | Identified Gaseous Products | Ref. |
---|---|---|---|---|---|
Degussa P-25 TiO2 Average particle size of about 21 nm and a specific surface area of around 50 m2/g 8% SiO2-TiO2 | Inlet toluene conc. (ppm): 30–200 Reaction temperature (K): 623 Type of reactor: in situ FTIR cell continuous flow | GS-MS GC-MS/DS | Methanol | Benzaldehyde, Benzyl alcohol, Benzoic acid. | [58] |
Degussa P25, BET specific surface area: 50 m2 g−1 | Inlet toluene conc. (ppmv): 13.1 Flow rate (cm3 s−1): 1 or 2 UV intensity (mW cm−2): λ(max), UV: 365 nm Type of reactor: continuous flow | GC-MS HPLC | Diethyl ether Water | Major: Benzoic acid, Benzyl alcohol, Benzaldehyde; Minor: 4-hydroxybenzoic acid, 4-hydroxybenzyl alcohol, 4-hydroxybenzaldehyde, and 3-hydroxybenzaldehyde Formic and acetic acids; A peak at 35 min perhaps corresponded to muconic acid (2,4-hexadienedioic acid). | [49] |
PC500 TiO2 100% anatase BET specific surface area: 300 m2 g−1 Crystal size: 5–10 nm. | Inlet toluene conc. (ppbv): 20–400 Flow rate (ml min−1): 70–350 Reaction temperature (K): 298 ± 2 UV intensity (mW cm−2): 4.3 Type of reactor: annular flow-through | GC-MS HPLC-UV Ion-chromatography | Solvent mixture of methanol/water (20/80 v/v) | 0% RH Major: Benzaldehyde, Benzoic acid; Minor (Trace amount): Benzene, Formic acid. | [48] |
40% RH Major: Benzaldehyde, Benzoic acid; Minor (Trace amount): Benzene, Formic acid; Additional: Cresols, Benzyl alcohol, 3-hydroxybenzaldehyde, Hydroquinone. | |||||
Degussa P25 | Inlet toluene conc. (ppbv): 450; 1200; 8000; 3200 Flow rate (l min−1): 0.55 Reaction temperature (C): 24.0–26.0 UV intensity (mW cm−2): 0.43–0.95 λ (UV): 254 nm Contact time: 0.2 s Type of reactor: plate-type UV-PCO | PRT MS GS-MS | Instant concentration pulse water | Butadiene, Acrylaldehyde, Butyraldehyde, Pentanal, Butyrolactone, Benzoic acid, Salicylaldehyde. | [55] |
TiO2-xNx powder samples BET specific surface area: 67 m2 g−1 | Inlet toluene conc. (ppm): 20 UV intensity (mW cm−2): 4.3 λ > 420 nm Type of reactor: IR-cell | IR spectrometer GC-MS IC (ICS-2000, Dionex Corporation, Sunnyvale, CA, USA) equipped with a conductivity detector | Water Ether | Major: Oxalic acid, Acetic acid, Formic acid, Pyruvic acid; In the early stage of PCO: Propionic acid, Isovaleric acid, Succinic acid. | [60] |
Nano-sized TiO2 with a size of 5−10 nm | Inlet toluene conc. (ppm): 206 UV intensity (mW cm−2): 0.95–3.1 Type of reactor: IR-cell | In situ DRIFTS On-line mass-spectrometer | Major: Benzaldehyde, Benzoic acid; Minor: Benzyl alcohol. | [61] | |
Activated carbon fibers (ACFs)-supported TiO2 photocatalystTiO2/ACF Degussa P-25: surface area 50 m2/g, non- porous, about 80% anatase | λ (UV): 254 nm Constant temperatures (T, 25 ± 0.5 °C) Type of reactor: A Stainless-steel environmental condition-controlled chamber | GC-MS GC-FID | Carbon disulfide (CS2) | Major: Benzaldehyde, Benzyl alcohol; Minor: Benzoic acid, 2-methyl, p-benzoquinone, Cresol. | [62] |
TiO2 using sol gel method | Inlet toluene conc. (mg/m3): 170 UV: UV-C λ (UV): 254 nm Temperature: 22.4 ± 2.3 Type of reactor: batch reactor, mimicking the continuous operation of reactor | GC-MS | Methanol | Major: Acetone; Minor: Hexane, 1,4-benzoquinone, Benzaldehyde. | [59] |
6. PCO-Reaction Pathways of Toluene
6.1. Methyl Group Oxidation
6.2. Aromatic Ring Oxidation
6.3. Ring Opening
7. Risk Assessment of By-Products
8. Perspectives and Conclusions
- Better experimental measurement and identification of intermediate organic radicals (benzyl, peroxybenzyl, etc.) formed as a result of the catalyst illumination. To date, published research has only indirectly identified peroxybenzyl radical formation by assigning ESR signals;
- Consideration of those species that play a key role in the oxidation of toluene, as there is a significant body of literature indicating that photo-oxidation may take place either by OH• attack or by direct hole transfer. At the same time, the role of O2·− radicals is still not clear in the PCO of organic compounds in the gas phase, although the reduction of the adsorbed oxygen with surface-trapped electrons can be the rate-determining step.
- Development of deactivation-resistant catalysts that promote photocatalytic efficiency during progressive organic compound degradation by reducing accumulations of strongly bound and less-reactive intermediates on the catalyst surface. As an example, Li et al. used a facet-tailoring strategy on BiOCl to promote the selective ring opening at the benzoic acid intermediate [11];
- By means of modulation of the dopant coordination configuration and electron geometry in borocarbonitride, the lone electrons of carbon transform into delocalized counterparts, so it is possible to directly attack the aromatic ring, facilitating the degradation of toluene [67].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Li, J.; Wang, H.; Chen, P.; Dong, X.; Sun, Y.; Zhou, Y.; Dong, F. Photocatalytic Reaction Mechanisms at a Gas-Solid Interface for Typical Air Pollutant Decomposition. J. Mater. Chem. A 2021, 9, 20184–20210. [Google Scholar] [CrossRef]
- Li, K.; Wang, H.; Li, J.; Dong, F. Design and Mechanism of Photocatalytic Oxidation for the Removal of Air Pollutants: A Review. Environ. Chem. Lett. 2022, 20, 2687–2708. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.S.; Haghighat, F. TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase—A Review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Ajmal, Z.; ul Haq, M.; Naciri, Y.; Djellabi, R.; Hassan, N.; Zaman, S.; Murtaza, A.; Kumar, A.; Al-Sehemi, A.G.; Algarni, H.; et al. Recent Advancement in Conjugated Polymers Based Photocatalytic Technology for Air Pollutants Abatement: Cases of CO2, NOx, and VOCs. Chemosphere 2022, 308, 136358. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, C.; Zhu, Y.; Du, X.; Yao, C.; Ma, Y.; Zhao, J. Recent Advances of Photocatalytic Degradation for BTEX: Materials, Operation, and Mechanism. Chem. Eng. J. 2023, 455, 140461. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.S. Photocatalytic Oxidation Technology for Indoor Environment Air Purification: The State-of-the-Art. Appl. Catal. B Environ. 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Guo, D.; Feng, D.; Zhang, Y.; Zhang, Y.; Zhao, Y.; Zhou, Z.; Sun, J.; Quan, C.; Chang, G.; Sun, S. Carbon Material-TiO2 for Photocatalytic Reduction of CO2 and Degradation of VOCs: A Critical Review. Fuel Process. Technol. 2022, 231, 107261. [Google Scholar] [CrossRef]
- Paz, Y. Application of TiO2 Photocatalysis for Air Treatment: Patents’ Overview. Appl. Catal. B Environ. 2010, 99, 448–460. [Google Scholar] [CrossRef]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem. Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- Chen, P.; Cui, W.; Wang, H.; Dong, X.; Li, J.; Sun, Y.; Zhou, Y.; Zhang, Y.; Dong, F. The Importance of Intermediates Ring-Opening in Preventing Photocatalyst Deactivation during Toluene Decomposition. Appl. Catal. B Environ. 2020, 272, 118977. [Google Scholar] [CrossRef]
- Li, J.; Dong, X.; Zhang, G.; Cui, W.; Cen, W.; Wu, Z.; Lee, S.C.; Dong, F. Probing Ring-Opening Pathways for Efficient Photocatalytic Toluene Decomposition. J. Mater. Chem. A 2019, 7, 3366–3374. [Google Scholar] [CrossRef]
- Yu, B.F.; Hu, Z.B.; Liu, M.; Yang, H.L.; Kong, Q.X.; Liu, Y.H. Review of Research on Air-Conditioning Systems and Indoor Air Quality Control for Human Health. Int. J. Refrig. 2009, 32, 3–20. [Google Scholar] [CrossRef]
- Emmanuel, S.S.; Olawoyin, C.O.; Ayodele, I.D.; Oluwole, O.J. Emerging Nanosemiconductors for Photocatalytic Degradation of Mono-Aromatic Volatile Organic Compounds (BTEX): A Pragmatic Review. J. Organomet. Chem. 2023, 996, 122767. [Google Scholar] [CrossRef]
- Baltaretu, C.O.; Lichtman, E.I.; Hadler, A.B.; Elrod, M.J. Primary Atmospheric Oxidation Mechanism for Toluene. J. Phys. Chem. A 2009, 113, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Frankcombe, T.J.; Smith, S.C. OH-Initiated Oxidation of Toluene. 1. Quantum Chemistry Investigation of the Reaction Path. J. Phys. Chem. A 2007, 111, 3686–3690. [Google Scholar] [CrossRef] [PubMed]
- Derwent, R.G.; Jenkin, M.E.; Saunders, S.M. Photochemical Ozone Creation Potentials for a Large Number of Reactive Hydrocarbons under European Conditions. Atmos. Environ. 1996, 30, 181–199. [Google Scholar] [CrossRef]
- Wagner, V.; Jenkin, M.E.; Saunders, S.M.; Stanton, J.; Wirtz, K.; Pilling, M.J. Modelling of the Photooxidation of Toluene: Conceptual Ideas for Validating Detailed Mechanisms. Atmos. Chem. Phys. 2003, 3, 89–106. [Google Scholar] [CrossRef]
- AFNOR XP-B44-013 Standard; Photocatalysis: Test & Analysis Method for Determining the Efficiency of Photocatalytic Systems for Eliminating VOC/Odours in Recirculating Indoor Air—Confined Chamber Test. National Standards and National Normative Documents: Saint-Denis, France, 2009.
- Akpan, U.G.; Hameed, B.H. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef]
- Dal Santo, V.; Naldoni, A. Titanium Dioxide Photocatalysis. Catalysts 2018, 8, 591. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, e1901997. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, X.; Yao, M.; Yao, X. Band Structure Design of Semiconductors for Enhanced Photocatalytic Activity: The Case of TiO2. Prog. Nat. Sci. Mater. Int. 2013, 23, 402–407. [Google Scholar] [CrossRef]
- Rasoulnezhad, H.; Kavei, G.; Ahmadi, K.; Rahimipour, M.R. Combined Sonochemical/CVD Method for Preparation of Nanostructured Carbon-Doped TiO2 Thin Film. Appl. Surf. Sci. 2017, 408, 1–10. [Google Scholar] [CrossRef]
- Tatykayev, B.; Chouchene, B.; Balan, L.; Gries, T.; Medjahdi, G.; Girot, E.; Uralbekov, B.; Schneider, R. Heterostructured G-Cn/TiO2 Photocatalysts Prepared by Thermolysis of g-Cn/Mil-125(Ti) Composites for Efficient Pollutant Degradation and Hydrogen Production. Nanomaterials 2020, 10, 1387. [Google Scholar] [CrossRef] [PubMed]
- Bilgin Simsek, E.; Kilic, B.; Asgin, M.; Akan, A. Graphene Oxide Based Heterojunction TiO2–ZnO Catalysts with Outstanding Photocatalytic Performance for Bisphenol-A, Ibuprofen and Flurbiprofen. J. Ind. Eng. Chem. 2018, 59, 115–126. [Google Scholar] [CrossRef]
- Moussa, H.; Girot, E.; Mozet, K.; Alem, H.; Medjahdi, G.; Schneider, R. ZnO Rods/Reduced Graphene Oxide Composites Prepared via a Solvothermal Reaction for Efficient Sunlight-Driven Photocatalysis. Appl. Catal. B Environ. 2016, 185, 11–21. [Google Scholar] [CrossRef]
- Peng, F.; Cai, L.; Huang, L.; Yu, H.; Wang, H. Preparation of Nitrogen-Doped Titanium Dioxide with Visible-Light Photocatalytic Activity Using a Facile Hydrothermal Method. J. Phys. Chem. Solids 2008, 69, 1657–1664. [Google Scholar] [CrossRef]
- Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Belousov, A.S.; Parkhacheva, A.A.; Suleimanov, E.V.; Shafiq, I. Potential of Bi2WO6-Based Heterojunction Photocatalysts for Environmental Remediation. Mater. Today Chem. 2023, 32, 101633. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef] [PubMed]
- Colbeau-Justin, C.; Valenzuela, M.A. Time-Resolved Microwave Conductivity (TRMC) a Useful Characterization Tool for Charge Carrier Transfer in Photocatalysis: A Short Review. Rev. Mex. Fis. 2013, 59, 191–200. [Google Scholar]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based Photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Yamada, Y.; Kanemitsu, Y. Determination of Electron and Hole Lifetimes of Rutile and Anatase TiO2 Single Crystals. Appl. Phys. Lett. 2012, 101, 133907. [Google Scholar] [CrossRef]
- Salvador, P. On the Nature of Photogenerated Radical Species Active in the Oxidative Degradation of Dissolved Pollutants with TiO2 Aqueous Suspensions: A Revision in the Light of the Electronic Structure of Adsorbed Water. J. Phys. Chem. C 2007, 111, 17038–17043. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Aghighi, A.; Haghighat, F. Using Physical-Chemical Properties of Reactants to Estimate the Performance of Photocatalytic Oxidation Air Cleaners. Build. Environ. 2015, 85, 114–122. [Google Scholar] [CrossRef]
- Nagao, M.; Suda, Y. Adsorption of Benzene, Toluene, and Chlorobenzene on Titanium Dioxide. Langmuir 1989, 5, 42–47. [Google Scholar] [CrossRef]
- Augugliaro, V.; Coluccia, S.; Loddo, V.; Marchese, L.; Martra, G.; Palmisano, L.; Schiavello, M. Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation. Appl. Catal. B Environ. 1999, 20, 15–27. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, X.; Xie, X.; Sun, J. Degradation Behavior of Mixed and Isolated Aromatic Ring Containing VOCs: Langmuir-Hinshelwood Kinetics, Photodegradation, in-Situ FTIR and DFT Studies. J. Environ. Chem. Eng. 2021, 9, 105069. [Google Scholar] [CrossRef]
- Dos Reis Vargas, M.; de Castro, E.A.S.; do. S. Politi, J.R.; Gargano, R.; Martins, J.B.L. BTEX Adsorption on TiO2 Anatase and Rutile Surfaces: DFT Functionals. J. Mol. Model. 2019, 25, 137. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, S.W.; Masschaele, K.; Moortgat, E.; Korany, T.E.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. Factors Driving the Activity of Commercial Titanium Dioxide Powders towards Gas Phase Photocatalytic Oxidation of Acetaldehyde. Catal. Sci. Technol. 2012, 2, 2311–2318. [Google Scholar] [CrossRef]
- Luo, Y.; Ollis, D.F. Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air: Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity. J. Catal. 1996, 163, 1–11. [Google Scholar] [CrossRef]
- Obee, T.N.; Brown, R.T. TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ. Sci. Technol. 1995, 29, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, M.; Conchon, P.; Ferronato, C.; Chovelon, J.M. Photocatalytic Oxidation of Toluene at Indoor Air Levels (Ppbv): Towards a Better Assessment of Conversion, Reaction Intermediates and Mineralization. Appl. Catal. B Environ. 2009, 86, 159–165. [Google Scholar] [CrossRef]
- D’Hennezel, O.; Pichat, P.; Ollis, D.F. Benzene and Toluene Gas-Phase Photocatalytic Degradation over H2O and HCl Pretreated TiO2: By-Products and Mechanisms. J. Photochem. Photobiol. A Chem. 1998, 118, 197–204. [Google Scholar] [CrossRef]
- Blount, M.C.; Falconer, J.L. Steady-State Surface Species during Toluene Photocatalysis. Appl. Catal. B Environ. 2002, 39, 39–50. [Google Scholar] [CrossRef]
- Blount, M.C.; Falconer, J.L. Characterization of Adsorbed Species on TiO2 after Photocatalytic Oxidation of Toluene. J. Catal. 2001, 200, 21–33. [Google Scholar] [CrossRef]
- Larson, S.A.; Falconer, J.L. Initial Reaction Steps in Photocatalytic Oxidation of Aromatics. Catal. Lett. 1997, 44, 57–65. [Google Scholar] [CrossRef]
- Ibusuki, T.; Takeuchi, K. Toluene Oxidation on u.v.-Irradiated Titanium Dioxide with and without O2, NO2 OR H2O at Ambient Temperature. Atmos. Environ. 1986, 20, 1711–1715. [Google Scholar] [CrossRef]
- Martra, G.; Coluccia, S.; Marchese, L.; Augugliaro, V.; Loddo, V.; Palmisano, L.; Schiavello, M. The Role of H2O in the Photocatalytic Oxidation of Toluene in Vapour Phase on Anatase TiO2 Catalyst A FTIR Study. Catal. Today 1999, 53, 695–702. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, Y.; Xu, Q.; Zhu, Y.; Lamson, J.J.; Zhao, R. Determination and Risk Assessment of By-Products Resulting from Photocatalytic Oxidation of Toluene. Appl. Catal. B Environ. 2009, 89, 570–576. [Google Scholar] [CrossRef]
- Debono, O.; Thevenet, F.; Gravejat, P.; Hequet, V.; Raillard, C.; Lecoq, L.; Locoge, N. Toluene Photocatalytic Oxidation at Ppbv Levels: Kinetic Investigation and Carbon Balance Determination. Appl. Catal. B Environ. 2011, 106, 600–608. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Liu, R.; Xie, S.; Liu, Y.; Dai, H.; Huang, H.; Deng, J. Probing Toluene Catalytic Removal Mechanism over Supported Pt Nano- and Single-Atom-Catalyst. J. Hazard. Mater. 2020, 392, 122258. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Román, R.; Cardona-Martínez, N. Relationship between the Formation of Surface Species and Catalyst Deactivation during the Gas-Phase Photocatalytic Oxidation of Toluene. Catal. Today 1998, 40, 353–365. [Google Scholar] [CrossRef]
- Dhada, I.; Sharma, M.; Nagar, P.K. Quantification and Human Health Risk Assessment of By-Products of Photo Catalytic Oxidation of Ethylbenzene, Xylene and Toluene in Indoor Air of Analytical Laboratories. J. Hazard. Mater. 2016, 316, 1–10. [Google Scholar] [CrossRef]
- Irokawa, Y.; Morikawa, T.; Aoki, K.; Kosaka, S.; Ohwaki, T.; Taga, Y. Photodegradation of Toluene over TiO2-XNx under Visible Light Irradiation. Phys. Chem. Chem. Phys. 2006, 8, 1116–1121. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, Y.; Chen, J.; Wang, C.; Yin, H.; Wang, H.; You, C.; Li, J. Performance and Mechanism of Photocatalytic Toluene Degradation and Catalyst Regeneration by Thermal/UV Treatment. Environ. Sci. Technol. 2020, 54, 14465–14473. [Google Scholar] [CrossRef]
- Guo, T.; Bai, Z.; Wu, C.; Zhu, T. Influence of Relative Humidity on the Photocatalytic Oxidation (PCO) of Toluene by TiO2 Loaded on Activated Carbon Fibers: PCO Rate and Intermediates Accumulation. Appl. Catal. B Environ. 2008, 79, 171–178. [Google Scholar] [CrossRef]
- Cao, L.; Gao, Z.; Suib, S.L.; Obee, T.N.; Hay, S.O.; Freihaut, J.D. Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts: Studies of Deactivation and Regeneration. J. Catal. 2000, 196, 253–261. [Google Scholar] [CrossRef]
- Coronado, J.M.; Soria, J. ESR Study of the Initial Stages of the Photocatalytic Oxidation of Toluene over TiO2 Powders. Catal. Today 2007, 123, 37–41. [Google Scholar] [CrossRef]
- Klotz, B.; Barnes, I.; Golding, B.T.; Becker, K.H. Atmospheric Chemistry of Toluene-1,2-Oxide/2-Methyloxepin. Phys. Chem. Chem. Phys. 2000, 2, 227–235. [Google Scholar] [CrossRef]
- Atkinson, R.; Carter, W.P.L.; Darnall, K.R.; Winer, A.M.; Pitts, J.N. A Smog Chamber and Modeling Study of the Gas Phase NOx–Air Photooxidation of Toluene and the Cresols. Int. J. Chem. Kinet. 1980, 12, 779–836. [Google Scholar] [CrossRef]
- Qu, W.; Wang, P.; Gao, M.; Hasegawa, J.Y.; Shen, Z.; Wang, Q.; Li, R.; Zhang, D. Delocalization Effect Promoted the Indoor Air Purification via Directly Unlocking the Ring-Opening Pathway of Toluene. Environ. Sci. Technol. 2020, 54, 9693–9701. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Institute for Occupational Safety and Health. NIOSH Web Site. Available online: https://www.cdc.gov/niosh/npg/pgintrod.html (accessed on 3 August 2023).
- U.S. Occupational Safety and Health Administration. OSHA Web Site. Available online: https://www.osha.gov/annotated-pels (accessed on 3 August 2023).
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans—Organization, World Health. In Chromium, Nickel and Welding; International Agency for Research on Cancer: Lyon, France, 1990. [Google Scholar]
- EPA Website. Available online: https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system (accessed on 3 August 2023).
- Lyulyukin, M.N.; Kolinko, P.A.; Selishchev, D.S.; Kozlov, D.V. Hygienic Aspects of TiO2-Mediated Photocatalytic Oxidation of Volatile Organic Compounds: Air Purification Analysis Using a Total Hazard Index. Appl. Catal. B Environ. 2018, 220, 386–396. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
Compounds | 1 CAS No. | IARC Carcinogenic Classification [70] | 2 REL, NIOSH [68] | Reference Concentration for Inhalation Exposure (RfC) mg/m3 [71] | 3 OSHA PEL [69] |
---|---|---|---|---|---|
Formaldehyde | 50-00-0 | Group 1, Carcinogenic to humans | Ca TWA 0.016 ppm C 0.1 ppm (15 min) | B1 (Probable human carcinogen—based on limited evidence of carcinogenicity in humans), Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986) | TWA 0.75 ppm ST 2 ppm |
Benzene | 71-43-2 | Group 1, Carcinogenic to humans | Ca TWA 0.1 ppm ST 1 ppm | 3 × 10−2 A (Human carcinogen), Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986) | TWA 1 ppm ST 5 ppm |
Acrolein | 107-02-8 | 2A, Probably carcinogenic to humans | TWA 0.1 ppm (0.25 mg/m3) ST 0.3 ppm (0.8 mg/m3) | 2 × 10−5 | TWA 0.1 ppm (0.25 mg/m3) |
Acetaldehyde | 75-07-0 | Group 2B, Possibly carcinogenic to humans | Ca | 9 × 10−3 B2 (Probable human carcinogen—based on sufficient evidence of carcinogenicity in animals), Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986) | TWA 200 ppm (360 mg/m³) |
Maleic anhydride | 108-31-6 | - | TWA 1 mg/m3 (0.25 ppm) | TWA 1 mg/m3 (0.25 ppm) | |
m-Cresol p-Cresol o-Cresol | 108-39-4 106-44-5 95-48-7 | - | TWA 2.3 ppm (10 mg/m3) | TWA 5 ppm (22 mg/m3) (skin) | |
Formic acid | 64-18-6 | TWA 5 ppm | TWA 5 ppm | ||
Phenol | 108-95-2 | Group 3, Not classifiable as to its carcinogenicity to humans | TWA 5 ppm (19 mg/m3) C 15.6 ppm (60 mg/m3) (15 min) | - | TWA 5 ppm (19 mg/m3) |
Acetic acid | 64-19-7 | - | TWA 10 ppm (25 mg/m3) ST 15 ppm (37 mg/m3) | TWA 10 ppm (25 mg/m3) | |
Pentanal | 110-62-3 | TWA 50 ppm (175 mg/m3) | - | ||
o-xylen p-xylen | 95-47-6 106-42-3 | Group 3, Not classifiable as to its carcinogenicity to humans | TWA 100 ppm (435 mg/m3) ST 150 ppm (655 mg/m3) | TWA 100 ppm (435 mg/m3) | |
Toluene | 108-88-3 | TWA 100 ppm (375 mg/m3) ST 150 ppm (560 mg/m3) | 5 | TWA 200 ppm C 300 ppm 500 ppm (10 min maximum peak) | |
Methanol | 67-56-1 | TWA 200 ppm (260 mg/m3) ST 250 ppm (325 mg/m3) (skin) | 2 × 101 | TWA 200 ppm (260 mg/m3) | |
Acetone | 67-64-1 | TWA 250 ppm (590 mg/m3) | - | TWA 1000 ppm (2400 mg/m3) | |
Ethanol | 64-17-5 | TWA 1000 ppm | TWA 1000 ppm | ||
Propionaldehyde | 123-38-6 | 8 × 10−3 | |||
methyl glyoxal | 78-98-8 | Group 3, Not classifiable as to its carcinogenicity to humans | - | - | - |
Propylene | 115-07-1 | Group 3, Not classifiable as to its carcinogenicity to humans | |||
Benzaldehyde | 100-52-7 | - | - | - | - |
Benzyl alcohol | 100-51-6 | - | - | - | - |
Benzoic acid | 65-85-0 | - | - | - | - |
Vinyl methyl ketone | 78-94-4 | - | - | - | - |
Nonbornane | 279-23-2 | ||||
phthalic acid | 88-99-3 | - | |||
Itaconic anhydride | 2170-03-8 | - | - | - | - |
Pentanal | 110-62-3 | TWA 50 ppm (175 mg/m3) | - | ||
Heptanal | 111-71-7 | ||||
2-methylfurane | 534-22-5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tulebekov, Y.; Orazov, Z.; Satybaldiyev, B.; Snow, D.D.; Schneider, R.; Uralbekov, B. Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase—A Review. Molecules 2023, 28, 6451. https://doi.org/10.3390/molecules28186451
Tulebekov Y, Orazov Z, Satybaldiyev B, Snow DD, Schneider R, Uralbekov B. Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase—A Review. Molecules. 2023; 28(18):6451. https://doi.org/10.3390/molecules28186451
Chicago/Turabian StyleTulebekov, Yerzhigit, Zhandos Orazov, Bagdat Satybaldiyev, Daniel D. Snow, Raphaël Schneider, and Bolat Uralbekov. 2023. "Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase—A Review" Molecules 28, no. 18: 6451. https://doi.org/10.3390/molecules28186451
APA StyleTulebekov, Y., Orazov, Z., Satybaldiyev, B., Snow, D. D., Schneider, R., & Uralbekov, B. (2023). Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase—A Review. Molecules, 28(18), 6451. https://doi.org/10.3390/molecules28186451