The Influence of pH Value on the Microstructure and Properties of Strontium Phosphate Chemical Conversion Coatings on Titanium
Abstract
:1. Introduction
2. Results
2.1. Phase Composition
2.2. Microstructure
2.3. Bonding Strength
2.4. Corrosion Characteristics
2.5. Cytocompatibility
3. Discussion
4. Materials and Experimental Methods
4.1. Surface Pretreatment
4.2. Phosphate Chemical Conversion
4.3. Bonding Strength
4.4. Electrochemical Measurements
4.5. Cell Culture
4.6. Characterization of Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Yuan, Z.; He, Y.; Lin, C.; Liu, P.; Cai, K. Antibacterial surface design of biomedical titanium materials for orthopedic applications. J. Mater. Sci. Technol. 2021, 78, 51–67. [Google Scholar] [CrossRef]
- Xu, A.T.; Xie, Y.W.; Xu, J.G.; Li, J.; Wang, H.; He, F.M. Effects of strontium-incorporated micro/nano rough titanium surfaces on osseointegration via modulating polarization of macrophages. Colloids Surf. B Biointerfaces 2021, 207, 111992. [Google Scholar] [CrossRef]
- Yu, D.; Guo, S.; Yu, M.; Liu, W.; Li, X.; Chen, D.; Li, B.; Guo, Z.; Han, Y. Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content. Bioact. Mater. 2022, 10, 323–334. [Google Scholar] [CrossRef]
- Rajabalizadeh, Z.; Seifzadeh, D. Strontium phosphate conversion coating as an economical and environmentally-friendly pretreatment for electroless plating on AM60B magnesium alloy. Surf. Coat. Technol. 2016, 304, 450–458. [Google Scholar] [CrossRef]
- Li, Y.-B.; Lu, Y.-P.; Du, C.-M.; Zuo, K.-Q.; Wang, Y.-Y.; Tang, K.-L.; Xiao, G.-Y. Effect of Reaction Temperature on the Microstructure and Properties of Magnesium Phosphate Chemical Conversion Coatings on Titanium. Molecules 2023, 28, 4495. [Google Scholar] [CrossRef]
- Zhao, D.W.; Du, C.M.; Zuo, K.Q.; Zhao, Y.X.; Xu, X.Q.; Li, Y.B.; Tian, S.; Yang, H.R.; Lu, Y.P.; Cheng, L.; et al. Calcium–Zinc Phosphate Chemical Conversion Coating Facilitates the Osteointegration of Biodegradable Zinc Alloy Implants by Orchestrating Macrophage Phenotype. Adv. Healthc. Mater. 2023, 12, 2202537. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Y.; Ma, P.; Sutrisno, L.; Luo, Z.; Hu, Y.; Yu, Y.; Tao, B.; Li, C.; Cai, K. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials 2019, 212, 1–16. [Google Scholar] [CrossRef]
- Han, W.; Fan, S.; Bai, X.; Ding, C. Strontium ranelate, a promising disease modifying osteoarthritis drug. Expert Opin. Investig. Drugs 2017, 26, 375–380. [Google Scholar] [CrossRef]
- Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Cheng, D.; Liang, Q.; Li, Y.; Fan, J.; Wang, G.; Pan, H.; Ruan, C. Strontium incorporation improves the bone-forming ability of scaffolds derived from porcine bone. Colloids Surf. B Biointerfaces 2017, 162, 279–287. [Google Scholar] [CrossRef]
- Zhong, Z.; Wu, X.; Wang, Y.; Li, M.; Li, Y.; Liu, X.; Zhang, X.; Lan, Z.; Wang, J.; Du, Y.; et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact. Mater. 2022, 10, 195–206. [Google Scholar] [CrossRef]
- Lode, A.; Heiss, C.; Knapp, G.; Thomas, J.; Nies, B.; Gelinsky, M.; Schumacher, M. Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects. Acta Biomater. 2018, 65, 475–485. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Beswick, A.D.; Peters, T.J.; Gooberman-Hill, R.; Whitehouse, M.R.; Blom, A.W.; Moore, A.J. Health Care Needs and Support for Patients Undergoing Treatment for Prosthetic Joint Infection following Hip or Knee Arthroplasty: A Systematic Review. PLoS ONE 2017, 12, e0169068. [Google Scholar] [CrossRef]
- Ji, H.; Huang, Z.; Xia, Z.; Molokeev, M.S.; Atuchin, V.V.; Fang, M.; Liu, Y. Discovery of New Solid Solution Phosphors via Cation Substitution-Dependent Phase Transition in M3(PO4)2:Eu2+ (M = Ca/Sr/Ba) Quasi-Binary Sets. J. Phys. Chem. C 2015, 119, 2038–2045. [Google Scholar] [CrossRef]
- Zuo, K.-Q.; Xiao, G.-Y.; Du, C.-M.; Liu, B.; Li, Y.-B.; Lu, Y.-P. Controllable phases evolution and properties of zinc-phosphate/strontium-zinc-phosphate composite conversion coatings on Ti: Effect of temperature. Surf. Coat. Technol. 2022, 447, 128885. [Google Scholar] [CrossRef]
- Phuong, N.V.; Lee, K.H.; Chang, D.; Moon, S. Effects of Zn2+ concentration and pH on the zinc phosphate conversion coatings on AZ31 magnesium alloy. Corros. Sci. 2013, 74, 314–322. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wei, Q.L.; Huang, Y.M. Preparation and adsorption properties of the biomimetic gama-alumina. Mater. Lett. 2015, 157, 67–69. [Google Scholar] [CrossRef]
- Du, C.; Zuo, K.; Ma, Z.; Zhao, M.; Li, Y.; Tian, S.; Lu, Y.; Xiao, G. Effect of Substrates Performance on the Microstructure and Properties of Phosphate Chemical Conversion Coatings on Metal Surfaces. Molecules 2022, 27, 6434. [Google Scholar] [CrossRef]
- Akhtar, A.S.; Wong, K.C.; Mitchell, K.A.R. The effect of pH and role of Ni2+ in zinc phosphating of 2024-Al alloy. Part I: Macroscopic studies with XPS and SEM. Appl. Surf. Sci. 2006, 253, 493–501. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, G.-y.; Lu, Y.-p. Effect of pH on the Phase Composition and Corrosion Characteristics of Calcium Zinc Phosphate Conversion Coatings on Titanium. J. Electrochem. Soc. 2016, 163, C477–C485. [Google Scholar] [CrossRef]
- Kuzenkov, Y.A.; Konovalov, A.S.; Grafov, O.Y. Influence of pH and modifying additives on the protective properties of ultrathin conversion coatings for AMg3 aluminum alloy. Int. J. Corros. Scale Inhib. 2023, 12, 170–179. [Google Scholar]
- Gashti, M.P.; Stir, M.; Hulliger, J. Growth of strontium hydrogen phosphate/gelatin composites: A biomimetic approach. New J. Chem. 2016, 40, 5495–5500. [Google Scholar] [CrossRef]
- Scheel, H.J.; Fukuda, T. Crystal Growth Technology; Wiley: Hoboken, NJ, USA, 2003; pp. 225–249. [Google Scholar]
- Li, W.J.; Shi, E.W.; Zheng, Y.Q.; Yin, Z.W. Nucleating Mechanism of Oxide Crystal and Its Particle Size. J. Inorg. Mater. 2000, 15, 777–786. [Google Scholar]
- Liu, Q.; Cao, X.; Du, A.; Ma, R.; Zhang, X.; Shi, T.; Fan, Y.; Zhao, X. Investigation on adhesion strength and corrosion resistance of Ti-Zr aminotrimethylene phosphonic acid composite conversion coating on 7A52 aluminum alloy. Appl. Surf. Sci. 2018, 458, 350–359. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L.; Lan, W.; Du, J.; Hu, Y.; Wei, Y.; Hang, R.; Chen, W.; Huang, D. In situ titanium phosphate formation on a titanium implant as ultrahigh bonding with nano-hydroxyapatite coating for rapid osseointegration. Biomater. Sci. 2023, 11, 2230–2242. [Google Scholar] [CrossRef]
- Cheng, F.; Xu, Y.; Zhang, J.; Wang, L.; Zhang, H.; Wan, Q.; Li, W.; Wang, L.; Lv, Z. Growing carbon nanotubes in-situ via chemical vapor deposition and resin pre-coating treatment on anodized Ti-6Al-4V titanium substrates for stronger adhesive bonding with carbon fiber composites. Surf. Coat. Technol. 2023, 457, 129296. [Google Scholar] [CrossRef]
- Garrido, B.; Martin-Morata, A.; Dosta, S.; Cano, I.G. Improving the bond strength of bioactive glass coatings obtained by atmospheric plasma spraying. Surf. Coat. Technol. 2023, 470, 129837. [Google Scholar] [CrossRef]
- Liang, Y.; Li, H.; Xu, J.; Li, X.; Li, X.; Yan, Y.; Qi, M.; Hu, M. Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models. Exp. Ther. Med. 2015, 9, 172–176. [Google Scholar] [CrossRef]
- Ishida, A.; Hori, S.; Tani, T.; Ikeda-Fukazawa, T.; Aizawa, M. Hydrothermal synthesis of single-crystal α-tristrontium phosphate particles. J. Eur. Ceram. Soc. 2017, 37, 351–357. [Google Scholar] [CrossRef]
- Shokouhfar, M.; Dehghanian, C.; Montazeri, M.; Baradaran, A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl. Surf. Sci. 2012, 258, 2416–2423. [Google Scholar] [CrossRef]
- Hulshof, F.F.B.; Papenburg, B.; Vasilevich, A.; Hulsman, M.; Zhao, Y.; Levers, M.; Fekete, N.; de Boer, M.; Yuan, H.; Singh, S.; et al. Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration. Biomaterials 2017, 137, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, Z.; Mo, F.; Yang, C.; Jiao, Y.; Wang, E.; Zhang, Y.; Lin, P.; Hu, C.; Fu, W.; et al. A biomaterial-based therapy for lower limb ischemia using Sr/Si bioactive hydrogel that inhibits skeletal muscle necrosis and enhances angiogenesis. Bioact. Mater. 2023, 26, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Hurtel-Lemaire, A.S.; Mentaverri, R.; Caudrillier, A.; Cournarie, F.; Wattel, A.; Kamel, S.; Terwilliger, E.F.; Brown, E.M.; Brazier, M. The Calcium-sensing Receptor Is Involved in Strontium Ranelate-induced Osteoclast Apoptosis. J. Biol. Chem. 2009, 284, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Liu, X.S.; Zhou, G.; Li, Z.; Luk, K.D.K.; Guo, X.E.; Lu, W.W. Osteoprotegerin deficiency attenuates strontium-mediated inhibition of osteoclastogenesis and bone resorption. J. Bone Miner. Res. 2011, 26, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- ASTM C633-01; Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings. ASTM International: West Conshohocken, PA, USA, 2017.
- Lv, G.-H.; Chen, H.; Li, L.; Niu, E.-W.; Pang, H.; Zou, B.; Yang, S.-Z. Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy. Curr. Appl. Phys. 2009, 9, 126–130. [Google Scholar] [CrossRef]
pH Value | O | P | Sr | Ti | C | Sr/P |
---|---|---|---|---|---|---|
2.50 | 67.59 | 9.56 | 10.10 | 2.81 | 9.94 | 1.06 |
2.75 | 62.13 | 13.52 | 13.85 | ---- | 10.50 | 1.02 |
3.00 | 70.17 | 14.02 | 15.68 | 0.13 | ---- | 1.12 |
3.25 | 57.52 | 13.20 | 16.52 | ---- | 12.76 | 1.25 |
Sample | Ecorr (V) | Icorr (×10−8 A/cm2) | βa (V·dec−1) | −βc (V·dec−1) | Rp (×104 Ω·cm2) |
---|---|---|---|---|---|
Bare Ti | −0.426 ± 0.006 | 42.67 ± 4.35 | 0.129 ± 0.007 | 0.107 ± 0.005 | 11.230 ± 0.675 |
pH = 2.75 | −0.212 ± 0.009 | 28.32 ± 6.24 | 0.221 ± 0.010 | 0.179 ± 0.019 | 15.163 ± 0.022 |
pH = 3.00 | −0.325 ± 0.011 | 30.04 ± 4.54 | 0.399 ± 0.006 | 0.088 ± 0.013 | 24.122 ± 0.286 |
pH = 3.25 | −0.072 ± 0.016 | 53.89 ± 3.46 | 0.445 ± 0.001 | 0.215 ± 0.002 | 16.026 ± 0.954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, G.; Li, Y.; Zuo, K.; Xiao, G. The Influence of pH Value on the Microstructure and Properties of Strontium Phosphate Chemical Conversion Coatings on Titanium. Molecules 2023, 28, 6651. https://doi.org/10.3390/molecules28186651
Gu G, Li Y, Zuo K, Xiao G. The Influence of pH Value on the Microstructure and Properties of Strontium Phosphate Chemical Conversion Coatings on Titanium. Molecules. 2023; 28(18):6651. https://doi.org/10.3390/molecules28186651
Chicago/Turabian StyleGu, Guochao, Yibo Li, Kangqing Zuo, and Guiyong Xiao. 2023. "The Influence of pH Value on the Microstructure and Properties of Strontium Phosphate Chemical Conversion Coatings on Titanium" Molecules 28, no. 18: 6651. https://doi.org/10.3390/molecules28186651
APA StyleGu, G., Li, Y., Zuo, K., & Xiao, G. (2023). The Influence of pH Value on the Microstructure and Properties of Strontium Phosphate Chemical Conversion Coatings on Titanium. Molecules, 28(18), 6651. https://doi.org/10.3390/molecules28186651